Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Keywords: Parkinson’s disease, oxidative stress, Nrf2, heme oxygenase-1, neuroprotection
Introduction
Parkinson’s disease (PD) is defined primarily as a movement disorder, with the typical symptoms being resting tremor, rigidity, bradykinesia, and postural instability (Rai et al., 2020; Rai and Singh, 2020; Rai et al., 2021). PD is pathologically characterized by degeneration of nigrostriatal dopaminergic neurons and the presence of Lewy bodies (LBs), which mainly consist of misfolded α-synuclein, ubiquitin, Parkin, PTEN-induced kinase-1 (PINK1), and other proteins in the surviving neurons (Rai et al., 2017, 2019a; Zahra et al., 2020; Oliveira et al., 2021). PD is the second most common age-related neurodegenerative disease, affecting more than 2% of the population older than 65 years old (Aarsland et al., 2017). PD is becoming a major age-related health problem (Zou Y. et al., 2015; Hirsch et al., 2016; Savica et al., 2016).
The majority of PD cases are idiopathic or sporadic, and approximately 10% of PD cases are associated with a genetic component. Even though familial PD is the less frequent form as only 10% of cases comprise only a minor subset of the overall PD pool, these are of high relevance since they have provided extended information about pathogenesis (Cuenca et al., 2018; Deng et al., 2018; Domingo and Klein, 2018). Since the first PD-associated substitution mutation of alanine in position 53 for threonine (A53T) in α-synuclein was identified more than 20 years ago (Polymeropoulos et al., 1997), many other genes with Mendelian inheritance have been identified, and the number of PD-related genes as risk factors has exponentially increased (Brás and Outeiro, 2021; Oliveira et al., 2021). Twenty-three loci and nineteen genes have been directly linked to the cause of genetic PD (Deng et al., 2018) (Table 1). PINK1, leucine-rich repeat kinase 2 (LRRK2), Parkin, DJ-1, and α-synuclein are the proteins that have been strongly linked to the familial PD (Polymeropoulos et al., 1997; Bonifati et al., 2003; Valente et al., 2004; Di Fonzo et al., 2005; Nichols et al., 2005). Of note, because of its predominance in LBs, α-synuclein is most commonly associated with PD pathogenesis (Spillantini et al., 1997). These different mutation genes are involved in the regulation of different pathways, Parkin, and UCHL-1 for proteasomal degradation pathways; PINK1, Omi/Htra, DJ-1, and LRRK2 for mitochondrial homeostasis; DJ-1 for antioxidant response pathways; ATP13A2 for lysosome function; and PINK1 and Parkin for mitophagy.
TABLE 1.
Common monogenic forms of Parkinson’s disease-causing locus and genes.
| References | Locus name | Locus location | Gene name | Symbol | Clinical features | LBs | Inheritance | Pathogenic mutation(s) |
|---|---|---|---|---|---|---|---|---|
| Polymeropoulos et al. (1997); Farrer et al. (1999) | PARK1PARK4 | 4q22.1 | α-Synuclein | SNCA | EO(PARK4); LO | Yes | AD | MUs (A53T, A30P, A18T, A29S, E46K, H50Q, G51D, and A53E); multiplications (duplications and triplications) |
| Paisán-Ruíz et al. (2004) | PARK8 | 12q12 | Leucine-rich repeat kinase 2 gene | LRRK2 | LO | Yes | AD | MUs [I1371V, N1437H, R1441C, R 1441G, R1441H, Y1699C, G2019S (most common), and I2020T] |
| Vilariño-Güell et al. (2011) | PARK17 | 16q11.2 | Vacuolar protein sorting 35 | VPS35 | LO | No | AD | MU (D620N) |
| Kitada et al. (1998) | PARK2 | 6q26 | Parkin | PRKN | EO | No | AR | ERs, including exon deletions or multiplications (most common); MUs and NMs, small deletions or insertions; splice-site alterations |
| Valente et al. (2001) | PARK6 | 1p36 | PTEN-induced kinase-1 | PINK1 | EO | No | AR | MUs or NMs (most common); ERs, including exon deletions or duplications |
| van Duijn et al. (2001) | PARK7 | 1p36.23 | Parkinsonism-associated deglycase gene | DJ-1 | EO | No | AR | MUs or ERs (most common); splice-site alterations |
AD, autosomal dominant; AR, autosomal recessive; EO, early onset; LO, late onset; MUs, missense mutations; NMs, nonsense mutations; ERs, exon rearrangements.
Despite all the efforts that have been directed to interpret which mechanisms are responsible for neuronal degeneration in PD, its origin and the cause of PD remain unknown in most patients and remain to be fully elucidated (Przedborski, 2017), leading to unsustainable treatment options that only provide symptomatic relief, and there are no preventative or curative therapies that slow the neurodegenerative process. Most PD cases have a multifactorial etiology and a complicated interplay of genetic and environmental factors, which affect numerous fundamental cellular processes. Since 1992, the oxidative stress (OS) hypothesis came into existence with an observation of postmortem brain of PD patients (Fahn and Cohen, 1992); accumulating evidence indicates that OS leads to the neurodegeneration of these DA neurons (Dias et al., 2013; Blesa et al., 2015; Sarrafchi et al., 2016; Puspita et al., 2017; Guo et al., 2018). It is now believed that OS plays an important role during the pathogenesis of PD (Subramaniam and Chesselet, 2013). Ample evidence has supported the OS hypothesis, which prompted an investigation into the efficacy of nonenzymatic exogenous antioxidants to treat PD (Todorovic et al., 2016). More recently, much attention and interest have been centered on targeting antioxidant gene transcription through pharmacological modulation, which leads to mitigating OS-dependent neuronal injury (Buendia et al., 2016). The common target is Nrf2, which is a transcription factor and “master regulator.” Cells have been equipped with a complex endogenous protection system against OS through the antioxidant response element (ARE) pathway, which renders neuronal cells resistant to OS. The nuclear factor E2-related factor 2 (Nrf2) regulates this coordinated induction of detoxifying and antioxidative enzymes through the binding of the ARE within the regulatory region of target genes. Nrf2 regulates the coordinated expression of cytoprotective genes, including heme oxygenase-1 (HO-1), among other enzymes (Jiang L. et al., 2016; Deshmukh et al., 2017). Thus, considering the neuroprotective role of the Nrf2/HO-1 pathway, pharmacological modulation of the activation of Nrf2/HO-1 may represent a novel therapeutic target for the treatments of PD (Cuadrado et al., 2018). Currently, ongoing investigations have been focused on the potential of natural compounds targeting the Nrf2/HO-1 signaling pathway as a neuroprotective agent for the therapeutic treatment of PD. Therefore, it will be vital to summarize the current literature on Nrf2/HO-1 signaling pathway in PD.
Here, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of the Keap1/Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. Following this background, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
The Role of Oxidative Stress in Parkinson’s Disease
General Aspects Regarding Oxidative Stress
OS was first introduced by Helmut Sies in 1985, who stated “A disturbance in the prooxidant/antioxidant systems in favor of the former may be denoted as an OS” (Sies, 2020a; Lushchak and Storey, 2021). More recently, OS was defined as a disequilibrium between the levels of produced reactive oxygen species (ROS) and the ability of a biological system to readily detoxify the reactive intermediates or to repair the resulting damage, creating a perilous state contributing to cellular damage (Ji and Yeo, 2021). Many complex mechanisms maintained the delicate balance between ROS generation and elimination. The dysfunction of any of these mechanisms could result in alterations in cellular redox status. An increase in ROS production or a decrease in ROS-scavenging capacity resulting from exogenous stimuli or endogenous metabolic alterations can disrupt redox homeostasis, leading to OS.
ROS is a collective term that describes the oxygen-derived small molecules that are formed upon incomplete reduction of oxygen. ROS includes oxygen radicals and certain nonradicals that either are oxidizing agents or are easily converted into radicals. Oxygen radicals include O2 •– (superoxide anion), HO• (hydroxyl radical), RO2 • (peroxyl), and RO• (alkoxyl), and certain nonradicals include HOCl (hypochlorous acid), O3 (ozone),1O2 (singlet oxygen), and H2O2 (hydrogen peroxide) (Bedard and Krause, 2007; D'Autréaux and Toledano, 2007). The greater chemical reactivity of ROS with regard to oxygen mediates the toxicity of oxygen (Gutowski and Kowalczyk, 2013).
O2 •– is considered the “primary” ROS, which is produced mainly by mitochondrial complexes I and III of the electron transport chain (ETC), is highly reactive, and can easily cross the inner mitochondrial membrane (IMM), where it can be reduced to H2O2 (Elfawy and Das, 2019).
O2 •– can further interact with other molecules to generate “secondary” ROS either directly or prevalently through enzyme- or metal-catalyzed processes. The “secondary” ROS are highly reactive and can attack and damage DNA, purines, pyrimidines, deoxyribose backbone, leading to mutation (Pisoschi et al., 2021). OS causes injury to macromolecular components (DNA, proteins, and lipids), which lead to various pathological conditions and human diseases, such as PD.
ROS can be either harmful or beneficial to living systems, which make them play a dual role as both deleterious and beneficial species. ROS exerts beneficial effects at low to moderate concentrations, which involve physiological roles in cellular responses to noxia, such as in defense against infectious agents and cellular signaling systems (Sachdev et al., 2021). The balance between harmful and beneficial effects of free radicals is a very important aspect of living organisms. This balance is achieved by mechanisms called “redox regulation.” The process of “redox regulation” maintains “redox homeostasis” and protects living organisms from various OS and by controlling the redox status in vivo (Sies, 2020b).
In response to OS, cells have developed and are equipped with an antioxidant defense system, which uses enzymatic and nonenzymatic antioxidant systems to eliminate ROS and maintain redox homeostasis, thereby protecting cells from damage (Trachootham et al., 2008). Nonenzymatic defenses are the thiol-containing small molecules, including compounds of intrinsic antioxidant properties, such as thioredoxin (Txn), glutathione (GSH), vitamins C and E, and β-carotene. Purely enzymatic defenses ROS-inactivating enzymes, such as glutathione peroxide (GPx), superoxide dismutases (SOD), catalases (CAT), and peroxidases, can exert a protective effect through directly scavenging superoxide radicals and hydrogen peroxide, therefore converting them to less reactive species (Jung and Kwak, 2010). CAT, SOD, and GPx directly neutralize ROS. GSH and Txn neutralize ROS via direct interactions serving as substrates for GPx and peroxiredoxins (Prxs). CAT, GPx, and Prxs reduce hydrogen peroxide to water. Antioxidants can be classified into endogenous and exogenous or direct antioxidants, indirect antioxidants, and bifunctional antioxidants according to source, nature, and mechanism of action (Dinkova-Kostova and Talalay, 2008; Magesh et al., 2012). Direct antioxidants are redox-active and short-lived, and they are consumed during the process and need to be regenerated to offer further protection. Indirect antioxidants show with or without redox activity and exert their antioxidant effects through upregulating various antioxidant genes such as HO-1, NAD(P)H, NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), glutamate-cysteine ligase (GCL), SOD, GPx, CAT, and Txn (Talalay, 2000). These protective proteins have relatively long half-lives, are not consumed during their antioxidant actions, are members of this antioxidant system, and are referred to as the “ultimate antioxidants.” They catalyze various chemical detoxification reactions related to the regeneration of some direct antioxidants (Dinkova-Kostova and Talalay, 2008; Magesh et al., 2012). The Keap1, Nrf2, and ARE are the three main cellular components involved in regulating antioxidant response. The Keap1/Nrf2/ARE is a major signaling pathway that regulates the basal and inducible expression of a wide array of antioxidant genes (Cuadrado et al., 2019). The Keap1/Nrf2/ARE signaling pathway induces an adaptive response for OS that can otherwise lead to PD. Thus, targeting the Keap1/Nrf2/ARE pathway is being regarded as a rational strategy to prevent and treat PD.
Evidence of Oxidative Stress in PD
OS leads to cellular dysfunction and eventual cell death in both familial and sporadic forms of PD. Both postmortem studies, modeling of PD in animals with toxins in neuronal degeneration of the DAergic nigral neurons (Gilgun-Sherki et al., 2001; Mythri et al., 2011), and in vivo observations of patients with PD supported the occurrence of OS in PD (Vinish et al., 2011).
Ample of studies on postmortem brain tissues of PD patients has shown decreased levels of antioxidant enzyme activity (including GPx and CAT), reduced levels of GSH, elevated free iron levels, an augmented activity of SOD, and a decreased mitochondrial complex I activity in the SN of PD patients (Morris and Edwardson, 1994; Pearce et al., 1997; Blum et al., 2001; Jenner, 2003). Evidence showed a selective loss of GSH in the SN (Sian et al., 1994), which is thought of to be one of the earliest biochemical changes in PD (Perry et al., 1982, 1984; Riederer et al., 1989; Danielson and Andersen, 2008) and is not found in other parts of the brain (Sian et al., 1994). Studies have also demonstrated a reduction in mitochondrial complex I activity in PD compared to controls (Mizuno et al., 1989; Parker et al., 1989; Schapira et al., 1989; Mann et al., 1992).
Accumulating evidence indicates that OS markers, such as high levels of oxidatively modified lipids, proteins, and DNA/RNA, are all found in the SNpc of postmortem brains of PD patients. Compared with other brain regions and age-matched controls, cholesterol lipid hydroperoxides and malondialdehyde, the lipid peroxidation products, are 10-fold higher (Dexter et al., 1989). The amounts of nitrotyrosine (3-NT), a marker of damage to protein, have been identified in peripheral polymorphonuclear cells in PD patients and increased in their brains in LBs (Good et al., 1998; Gatto et al., 2000). Increased levels of carbonyl modifications of soluble proteins are also found throughout the brain in PD (Alam et al., 1997a). Meanwhile, the byproduct of lipid peroxidation, 4-hydroxyl-2-nonenal (HNE), is also increased in the SN of PD patients (Yoritaka et al., 1996). Lastly, DNA and RNA oxidation products 8-hydroxydeoxyguanosine (8-OHdG) and 8-hydroxy-guanosine (8-OHG) are also increased in the SN and cerebrospinal fluid of PD patients (Alam et al., 1997b; Zhang et al., 1999; Kikuchi et al., 2002; Isobe et al., 2010).
Evidence of OS existing in PD is further supported by PD animals modeled with toxins that can cause OS, which includes 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Dong et al., 2021), rotenone (Sharma et al., 2021), paraquat (Ahmad et al., 2021), and 6-hydroxydopamine (6-OHDA) (Zou et al., 2021). Moreover, in vivo observations revealed that several markers of OS are altered in the cerebrospinal fluid and blood samples of PD patients (Vinish et al., 2011).
The Sources of Oxidative Stress in Parkinson’s Disease
Numerous pieces of evidence suggest that a number of sources and mechanisms for OS are recognized in PD. The major sources of OS in PD include mitochondrial dysfunction, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) activation, the metabolism of dopamine by autooxidation, and iron (Fe2+) accumulation (Figure 1). We will discuss how these PD-associated factors induce ROS and how ROS results in cell death in dopaminergic neurons in PD.
FIGURE 1.
The schematic pathway of major sources of oxidative stress (OS) and induction of DA neuron death in Parkinson’s disease (PD).
Mitochondrial Dysfunction and Oxidative Stress in PD
Mitochondria are an organelle for their cellular function essential for their role in ATP production, calcium homeostasis, and apoptotic signaling. In eukaryotic cells, mitochondria are the primary source of energy through the process of respiration and oxidative phosphorylation (OXPH) to produce adenosine triphosphate (ATP). The process of OXPH involves coupling of both redox and phosphorylation reactions in the IMM, leading to effective ATP synthesis. During this process, electrons donated from nicotinamide adenine dinucleotide (NADH) or flavin adenine dinucleotide (FADH2) are transported through the ETC, which is comprised of complexes I–IV, to produce water and create a proton electrochemical gradient across the IMM (Subramaniam and Chesselet, 2013). The ETC constitutes electron carriers that transport electrons from reduced cofactors, which are reduced during the catabolism of energy nutrients, to molecular oxygen. This comprises the primary energy transformation step. The designated protonmotive force, i.e., the dual gradient across the IMM, is composed of a pH and electrical potential, which provides the driving force for ATP synthesis through the backflow of protons into the mitochondrial matrix through the ATP synthase complex (Figure 2). Protons flow back into the mitochondrial matrix providing energy for the ATP synthase to phosphorylate ADP into ATP. This metabolic process is a critical means of energy production and the main source of O2 •– and H2O2 as a major byproduct, leading to propagation of free radicals, thereby contributing to the disease (Boveris and Chance, 1973; Turrens, 2003; Figueira et al., 2013) (Figure 2).
FIGURE 2.
Schematic presentation of the mitochondrial electron transport chain and production of mitochondrial O2 •−. The mitochondrial electron transport chain produces ROS. Mitochondrial complexes I and II use electrons donated from NADH and FADH2 to reduce coenzyme Q. Coenzyme Q shuttles these electrons to complex III, where they are transferred to cytochrome c. Complex IV uses electrons from cytochrome c to reduce molecular oxygen to water. The action of complexes I, III, and IV produce a proton electrochemical potential gradient, the free energy of which is used to phosphorylate ADP at ATP synthase. Complexes I, II, and III produce superoxide through the incomplete reduction of oxygen to superoxide, whereas complexes I and II produce superoxide only into the mitochondrial matrix and complex III produces superoxide into both the matrix and the intermembrane space.
The main sites of ROS production in mitochondria are considered to be complexes I III in the ETC. The primary ROS produced in mitochondria is O2 •–, which results from a single electron transfer to O2 in the respiratory chain. Superoxide dismutase 2 (SOD2) or MnSOD converts O2 •– to H2O2, which is further detoxified by the CAT. Redox-active metals such as Fe2+ also contribute to ROS generation. The highly reactive HO• can be generated through the Fenton reaction or Haber-Weiss reaction in the presence of Fe2+, causing severe oxidative damage to the cellular components and leading to DNA damage and lipid damage (Kehrer, 2000) (Figure 2).
Many lines of evidence provide substantial evidence that mitochondrial dysfunction involves in the pathogenesis of PD. Histology of postmortem brains of PD patients, which supports the notion of mitochondrial dysfunction, is a common pathological mechanism employed in PD pathology (Chaturvedi and Beal, 2008; Isobe et al., 2010). Accidental administration of MPTP in young drug users, who eventually developed parkinsonism, reveals significant lesions of DAergic neurons in the SNpc (Langston et al., 1983). It was reported that deficiency in mitochondrial complex I was identified for the first time in PD brains but remains normal in other neuronal regions (Schapira et al., 1989, 1990). Since then, ample evidence has been well documented on the role of mitochondrial dysfunction in the pathogenesis of PD. Mounting evidence has shown that mitochondrial dysfunction is one unique feature observed in PD (Figure 3) (Prasuhn et al., 2020). Numerous studies have suggested that mitochondria are the primary source of ROS and contribute to the intracellular OS in PD (Onyango, 2008; Hauser and Hastings, 2013; Subramaniam and Chesselet, 2013). Complex I deficiencies of the ETC account for the majority of sources of ROS in PD. Premature electron leakage from complex I and complex III of ETC to oxygen is the main source of mitochondrial O2 •–(Kussmaul and Hirst, 2006). The dysfunction of ETC in damaged mitochondrial leads to excessive ROS production, which is quite detrimental to cells, resulting in dopaminergic neuron death. ROS also triggers the autophagy/mitophagy process, with the consequent removal of damaged mitochondria, and in turn enhances cellular survival (Elfawy and Das, 2019). However, once the accumulation of ROS results from OS, proteins and toxic wastes can be deposited in the brain, thereby leading to dysfunction of the brain. Along with increased production of ROS, decreased production of antioxidant enzymes can together lead to neurodegeneration in PD. ROS can damage mtDNA by inducing mutations, leading to more dysfunction of OXPH and mitochondrial morphology, resulting in the vicious cycle of the mitochondria in PD (Elfawy and Das, 2019). Mitochondrial dysfunction also causes the decreased production of ATP, an influx of calcium, and the opening of the mitochondrial permeability pore, eventually resulting in apoptosis.
FIGURE 3.

Mitochondrial dysfunction and OS in PD. The mechanism of mitochondrial dysfunction and OS highlights the inhibition of mitochondrial complex I (CI) and associated ROS production leading to loss of dopaminergic neurons in PD.
NADPH Oxidases Activation and Oxidative Stress in PD
NADPH oxidases are a family of membrane-bound, multisubunit enzyme complexes. The primary function of NADPH oxidases is to transfer electrons across the plasma membrane from NADPH to molecular oxygen via their “Nox” catalytic subunit to generate O2 •− and subsequently ROS, including H2O2 and HO (Figure 4) (Tarafdar and Pula, 2018). NADPH oxidases consist of two membrane-bound components and three components in the cytosol, plus rac 1 or rac 2. The NADPH oxidase family of enzymes, consisting of seven members in mammalian species (NOX2, NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2-containing NADPH oxidases), was a major source of ROS that is important in diverse cellular functions, including antimicrobial defense, inflammation, and redox signaling (Bedard and Krause, 2007). According to the new terminology, the catalytic subunit of NADPH oxidases includes NOX2 (gp91phox), and its six homologs (NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2) are referred to as the NOX family. These seven isoforms, sharing not only conserved functions but also conserved structural properties, are transmembrane proteins and primarily distinguished by the presence of the distinct membrane-spanning catalytic “Nox” (Nox1-Nox5) or “Duox” subunit (Duox1-Duox 2), which mediate the electron transfer process from NADPH to molecular oxygen (Vermot et al., 2021). The catalytic NOX subunits have unique distribution patterns and are widely expressed in different tissues throughout the body. Many cells express several NOX isoforms; differences in subcellular distributions and activation mechanisms of different NOX isoforms might explain the nonredundancy in their functions [for a review see: references (Bedard and Krause, 2007; Ma et al., 2017)].
FIGURE 4.
Activation of the NADPH oxidase family members. Several components and domains make up the transmembrane-active enzyme complexes of NADPH oxidase isoforms. NOX1-5 and DUOX1/DUOX2 are shown. Upon activation, an electron will be transferred from NADPH to O2 to form superoxide. NOX4-generated superoxide undergoes rapid conversion into hydrogen peroxide, which mediates many of its downstream effects. NOX5 and the DUOX enzymes are sensitive to cellular Ca2+ concentrations.
NOX2-containing NADPH oxidases are the best-characterized member of the NADPH oxidase family of enzymes (Figure 4). NOX2-containing NADPH oxidases were firstly identified and discovered in studying a process called “respiratory burst” in neutrophils (Berendes et al., 1957; Sbarra and Karnovsky, 1959; Rossi and Zatti, 1964; Babior et al., 1973, 1975; Segal et al., 1978; Segal and Jones, 1978). Two research groups cloned the gene coding for the catalytic subunit of the phagocyte NADPH oxidase, i.e., the gp91phox in the late 1980s (Royer-Pokora et al., 1986; Teahan et al., 1987). gp91phox is now called NOX2 in the novel NOX terminology.
NADPH oxidases are activity-dependent, which activation usually requires the translocation of cytosolic subunits to the membrane-bound subunits p22phox and NOX isoforms. NOX2 (gp91phox) is the best-characterized member of the NOX family. Once stimulation, the cytosolic subunits of NADPH oxidases, i.e., p47phox, p67phox, p40phox, and the small Rho GTPase, Rac1, or Rac2, translocate to the membrane-bound p22phox/NOX2 heterodimer to assemble the active NADPH oxidases complexes, which catalyzes the reduction of O2 to generate O2 •− and subsequently H2O2 and HO•.
Mounting evidence has shown that microglial NOX2 contributes to CNS OS and neuronal damage. NOX2-containing NADPH oxidases have emerged as a major source of OS in PD (Gao et al., 2003a; Qin et al., 2004; Wu et al., 2005; Kim et al., 2007; Gao et al., 2012; Marrali et al., 2018; Sun et al., 2020) (Figure 5). NOX2 is expressed in several regions of the brain and various cell types, including neurons at the striatum (McCann et al., 2008; Guemez-Gamboa et al., 2011), substantia nigra (Zawada et al., 2011; Qin et al., 2013), and midbrain (Qin et al., 2013), and is heavily expressed in microglia than in neurons and astroglia. Postmortem SN samples from brains of patients with PD had higher NOX2 protein content than samples from control individuals, and an increase of NOX2 was also observed in microglia in the ventral midbrain of MPTP-treated mice (Wu et al., 2003). The same study also showed that NOX2 is upregulated in SNpc of mice after repeated intraperitoneal injections of MPTP. The upregulation of NOX2 coincides with the local production of ROS, microglial activation, and DA neuronal loss. NOX2 knockdown abates MPTP-associated ROS production and shows less SNpc DA neuronal loss than their WT littermates (Wu et al., 2003). These findings support that microglial NOX2 is a common pathway for selective DA neurotoxicity. Since then, ample evidence has been well documented on the role of microglial NADPH oxidase activation in the pathogenesis of PD. This study was corroborated by numerous in vitro cell cultures lacking functional NOX2 failing to produce neurotoxicity induced by MPP+ (Kim et al., 2007; Zhang et al., 2008; Jiang T. et al., 2016), MPTP (Gao et al., 2003b, 2003c; Kim et al., 2007), paraquat (Wu et al., 2005), or rotenone (Gao et al., 2003a) and in vivo studies show that mice lacking NOX2 receiving MPTP (Kim et al., 2007), paraquat (Purisai et al., 2007), and 6-OHDA (Hernandes et al., 2013a; 2013b) are less sensitive to dopaminergic degeneration. Many studies have suggested that NADPH oxidase has been linked to microglia-derived OS after a variety of PD-related neurotoxin, for example, 6-OHDA (Rodriguez-Pallares et al., 2007), rotenone (Gao et al., 2002), paraquat (Wu et al., 2005), and α-synuclein (Zhang et al., 2005), which suggest that microglia are the major NOX2-expressing cells in PD and in PD experimental models. Microglial NADPH oxidase activation and NOX2-containing NADPH oxidases-derived ROS have been suggested to contribute to the injury to DA neurons in PD, which may be a common denominator associated with neurotoxicity in PD, and could contribute to its pathophysiology.
FIGURE 5.
Alpha-synuclein and microglial Nox2 activation. The activation of microglia by alpha-synuclein can implicate several cell-surface receptors, such as P2X7, TLR2/4, and CR3, and subsequent activation of several kinases, such as PKC, Akt, MAPKs, PAK, and ERK1/2. This in turn could promote the phosphorylation and translocation of p47phox and subsequent Nox2 activation. Released oxygen species appear to promote microglia chemoattraction, activation, and OS. Neuronal damage leads to the release of alpha-synuclein and the TLR-agonist high mobility group box protein 1 (HMGB1).
Oxidative Stress Caused by Dopamine Autooxidation
The pathological hallmarks of PD are selective degeneration of the DA neurons of the SN, which is more vulnerable ROS generated by the nigral DA neurons during dopamine metabolism (Chinta and Andersen, 2008), suggesting the possibility that dopamine itself may lead to the neurodegenerative process (Hastings, 2009). Under normal conditions, dopamine is synthesized from tyrosine in the cytosol, in which the phenol ring undergoes hydroxylation to levodopa under the catalysis of tyrosine hydroxylase (TH). The TH is the rate-limiting enzyme in dopamine biosynthesis (Figure 6). Levodopa is then decarboxylated to DA by the enzyme aromatic L-amino acid decarboxylase (AADC) (Napolitano et al., 2011; Segura-Aguilar et al., 2016). Once formed, dopamine is safely stored in high millimolar concentrations in synaptic vesicles after uptake by vesicular monoamine transporter 2 (VMAT2) (Miesenböck et al., 1998; Staal et al., 2004). TH and AADC are associated with VMAT-2 generating a complex.
FIGURE 6.
SN neuron DA metabolism. In addition to the uptake of DA by the DA transporter (DAT) from outside, DAergic neurons in the SN produce DA under the action of tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC) in the cytosol. The amino acid tyrosine is converted to L-dopa using TH, and the second L-dopa is converted to dopamine using AADC. The newly synthesized or taken up DA is immediately transported to and stored in the monoaminergic vesicles by VMAT-2, preventing the existence of free dopamine in the cytosol. Cytosolic DA oxidizes to dopamine o-quinone (DAQ), which is immediately cyclized to aminochrome, which induces mitochondrial dysfunction, endoplasmic reticulum stress (ERS), oxidative stress (OS), the aggregation of alpha-synuclein, and the dysfunction of protein degradation. Dopamine in the cytosol can be degraded by monoamine oxidase-mediated degradation to 3,4-dihydroxyphenylacetaldehyde (DOPAL), hydrogen peroxide, and ammonia, which is converted to 3,4-dihydroxyphenylacetic acid (DOPAC) by aldehyde dehydrogenase. DA can be taken up into glial cells and degraded by catechol-o-methyltransferase (CMOT) or monoamine oxidase (MAO) to form homovanillic acid (HVA).
Excess DA that is not stored in vesicles by VMAT2 will undergo either degradation or oxidation in the cytosol (Zhang B. et al., 2019). The MAO-mediated degradation of DA produces H2O2, which leads to OS in PD. DA eventually degrades to homovanillic acid (HVA) under the action of monoamine oxidase-B (MAO-B) and catechol-o-methyltransferase (COMT), producing H2O2 (Zhang S. et al., 2019). Once the excitation of DAergic neurons, dopamine in synaptic vesicles is released into the synaptic cleft from dopaminergic axon terminals and then binds to its receptors that are localized in postsynaptic dendrites/neurons (Werkman et al., 2006; Zhang B. et al., 2019). At a later stage, the excitation signal is terminated and the extracellular free DA is removed from the synaptic cleft by the dopamine transporter (DAT) expressed on the dopaminergic nerve endings and can be reutilized by DAergic neurons or taken up by astrocytes. The DA that DAT-mediated took up in DAergic neurons is sequestered by VMAT2 into synaptic vesicles. DA leaking from synaptic vesicles accumulates in the cytosol and then is degraded by MAO-B, producing hydrogen peroxide and 3,4-dihydroxyphenylacetaldehyde (DOPAL) (Zucca et al., 2017), which is then reduced to inactive 3,4-dihydroxyphenylethanol (DOPET) or further oxidized to 3,4-dihydroxyphenylacetic acid (DOPAC) by alcohol dehydrogenase (ADH) or acetaldehyde dehydrogenase (ALDH) (Herrera et al., 2017). Astrocytes can also take up DA in the synaptic cleft and easily degrade DA by MAO and COMT, which catalyzes the methylation of DOPAC to finally form HVA, the main product of DA degradation (Inyushin et al., 2012).
DA autooxidation, another source of OS to DAergic neurons, forms ROS and reactive o-quinones, which include DA-o-quinone (DAQ) and aminochrome (Zucca et al., 2017). When free DA in the cytosol of DA neurons exceeds the physiological content, DA can oxidize to DAQ, where they finally polymerize, producing neuromelanin (Segura-Aguilar et al., 2014; Herrera et al., 2017), which immediately cyclizes to aminochrome (Herrera et al., 2017). Aminochrome then participates in neurotoxic reactions by inducing chronic neurotoxicity in the dopaminergic neurons. Aminochrome can result in α-synuclein modification (generating neurotoxic oligomers), mitochondrial dysfunction, OS, autophagy dysfunction, proteasomal dysfunction, and endoplasmic reticulum stress (Herrera et al., 2017), all of which are related to cellular changes in PD.
Iron Accumulation (Fe2+) and Oxidative Stress in PD
Specifically increased content of iron in SN is another common hallmark of PD brains, suggesting the possibility that iron may contribute to the selective degeneration of the DA neurons in the SN. Lhermitte’s pioneering study has shown the occurrence of abnorma1 iron deposits in the brain of PD patients (Lhermitte et al., 1924). After that pioneering study, accumulating evidence suggests that iron accumulation results in OS in PD. A more detailed description of the molecular mechanism by which iron leads to OS in PD is seen in other reviews (Ke and Qian, 2007; Weinreb et al., 2013; Belaidi and Bush, 2016; Xu et al., 2017; Zucca et al., 2017; Chen et al., 2019).
Nrf2/ARE Pathway and PD
Concise Overview of Keap1/Nrf2/ARE Pathway
Based on previous works, targeting Keap1/Nrf2/ARE pathway is becoming a strong candidate for therapy for neurodegenerative disease (Zgorzynska et al., 2021). As a core factor, Nrf2 orchestrates the cytoprotective pathway and regulates the expression of several protective genes containing AREs in their promoters, which function to restore homeostasis after combatting OS (Bento-Pereira and Dinkova-Kostova, 2021). Nrf2 was discovered as a member of the human cap’n’collar (CNC) basic-region leucine zipper transcription factor family in 1994 (Moi et al., 1994). In the nucleus, NRF2 forms complexes with small musculoaponeurotic fibrosarcoma protein (MAF) K, G, and F, which recognizes and is bound to an enhancer sequence termed ARE; the latter is present in the regulatory regions of over 250 genes (i.e., ARE genes) (Cuadrado et al., 2018). In unstressed conditions, KEAP1 and CULLIN3 (CUL3) form a ubiquitin E3 ligase complex in the cytoplasm, which polyubiquitinates NRF2 for rapid degradation through the proteasome system (Yamamoto et al., 2018). NRF2 is synthesized but constantly degraded. KEAP1 was identified as a repressor of Nrf2 in 1999 (Itoh et al., 1999). KEAP1 functions were identified as a sensor, while NRF2 plays a role as an effector for the coordinated activation of cytoprotective genes in the KEAP1/NRF2 system. Nrf2 regulates the expression of a battery of cytoprotective genes involved in several cellular processes, such as xenobiotic metabolism and detoxification, ROS scavenging, glutathione, NADPH homeostasis, and autophagy (Bento-Pereira and Dinkova-Kostova, 2021).
The Keap1/Nrf2/ARE signaling pathway is primarily regulated by Keap1-dependent and Keap1-independent mechanisms [more detail seen in other reviews (Bryan et al., 2013; Zhang et al., 2013; Tebay et al., 2015; Zenkov et al., 2017)]. In brief, the activity of Nrf2 is primarily regulated by Keap1, through its interaction with Keap1 which directs the transcription factor for proteasomal degradation. OS or exposure to electrophilic agents can react with Keap1 and stabilize Nrf2, leading to nuclear accumulation of Nrf2 and upregulated Nrf2 protein levels. Once in the nucleus, Nrf2 dimerizes with small Maf proteins and binds to the ARE, leading to transcriptionally driving the expression of several protective genes. The alternative Keap1-independent regulation mechanisms of Nrf2 include protein kinases-induced phosphorylation of Nrf2, interaction with other protein partners, and epigenetic factors (Zhou et al., 2019). Human Nrf2 contains a large number of serine, threonine, and tyrosine residues (17%), which can be phosphorylated by the protein kinases, which belong to various families, including PKC, JNK, PI3K, ERK, p38 MAPK, PERK, AMPK, and GSK-3β, all of which participate in regulating Nrf2 stability and translocation into the nucleus and bind to ARE (Zenkov et al., 2017; Rai et al., 2019b).
Growing experimental evidence implicates that the Keap1/Nrf2 system serves as an attractive drug development target in PD. Nrf2 may play several significant roles in mitochondrial function, which provides a potential therapeutic target for mitochondrial dysfunction in PD. Activation of Nrf2 by natural bioactive compounds is a promising approach for PD.
Role Played by Nrf2 During PD
The pioneering studies of Johnson and colleagues have provided the proof of concept that activation of Nrf2 protects cells and animal models against OS-associated neurodegeneration and revealed appropriate strategies for induction of Nrf2 through pharmacologic modulation to combat OS (Lee et al., 2003a; Shih et al., 2003; Kraft et al., 2004; Johnson et al., 2008; Calkins et al., 2009). Systematic Nrf2 deficiency sensitizes neurons to 3-NP toxicity in cell culture and in whole animals (Calkins et al., 2005). Nrf2 knockout mice are significantly more sensitive to mitochondrial complex I and II inhibitors (Johnson et al., 2008).
Recent evidence has proven that Nrf2 is a novel neuroprotective platform that rendered resistance to a variety of PD-related OS-dependent neurotoxin insults. Regarding PD, evidence from Nrf2 deficiency in cell and animal models supports the functional importance of Nrf2 during PD. Nrf2 protects mixed primary astrocytes and neurons through coordinate upregulation of ARE-driven genes. Nrf2-/- neurons in primary neuronal cultures containing both astrocytes and neurons were more sensitive to MPTP or rotenone (Lee et al., 2003b). This observation was corroborated by further studies, which reported that Nrf2 deficiency exacerbates vulnerability to the 6-OHDA both in vitro and in vivo ( Jakel et al., 2007). They further showed that tert-butylhydroquinone activates the Nrf2/ARE pathway and protects against 6-OHDA in vitro. Induction of Nrf2/ARE by transplantation of astrocytes overexpressed Nrf2 can protect living mice against 6-OHDA-induced damage (Jakel et al., 2007). Nrf2 deficiency increases the vulnerability to PD-related neurotoxin MPTP sensitivity in vivo ( Chen et al., 2009). Using siRNA knockdown of Keap1, activation of the Nrf2/ARE pathway can reduce OS and partially provide protection against MPTP-mediated neurotoxicity (Williamson et al., 2012). Overexpression of Nrf2 in astrocyte delays synuclein aggregation and motor deficit throughout the CNS in the alpha-synuclein mutant (A53T) mouse model, suggesting that Nrf2 in astrocytes exerts neuroprotection from hSYN(A53T)-mediated toxicity through promoting the degradation of hSYN(A53T) via autophagy-lysosome pathway in vivo. Thus, activation of the astrocytes Nrf2 is a potential target to develop therapeutic strategies for treating PD (Gan et al., 2012). Collectively, these studies suggest that the Nrf2/ARE pathway is a promising target for therapeutics in PD (Jakel et al., 2007).
Nrf2/ARE/HO-1 Pathway and Therapeutic Modulation of Parkinson’s Disease
Neuroprotective Role of the Activation of Nrf2 in PD
Mounting evidence indicates that activators of the Nrf2/ARE pathway displayed significantly greater resistance to neurotoxicity induced by 6-OHDA (Table 2), MPP+ (Table 3), MPTP (Table 4), paraquat (Table 5), and rotenone-induced (Table 6) in vitro or in vivo model. The presence of activation of Nrf2 by pharmacologic compounds was shown to exert neuroprotection, or conversely, Nrf2 deficiency led to exacerbating neuron sensitivity to the neurotoxin. It is becoming evident from the published literature that activation of Nrf2 can protect against PD-related neurotoxin-induced neurotoxicity when activated before or coincident with neurotoxin exposure. Targeting Nrf2 activity is emerging as a strong candidate for the treatment of PD.
TABLE 2.
Summary of the experimental studies involving compounds able to modulate the Nrf2 pathway in 6-OHDA-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | Nrf2 | Signaling | ARE gene |
|---|---|---|---|---|---|---|---|---|
| Sheng et al. (2021) | SDA | 20–30% | 6-OHDA | 60 µM | PC12 | + | ND | ↑HO-1(P) |
| Wu et al. (2021) | Fucoxanthin | 1–5 µM | 6-OHDA | 250 µM | PC12 | + | ↓Nrf2-Keap1 binding | ↑GCLC, GCLM, and HO-1(P) |
| Zhang et al. (2021) | Ginnalin A | 10–20 µM | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑GCLC, HO-1, and NQO1(P, M) |
| Sano et al. (2021) | Fluprostenol | 100–500 mM | 6-OHDA | 50 µM | SH-SY5Y | + | ERK | ↑GCLM, HO-1, and NQO1(M) |
| Ma et al. (2020) | Isoorientin | 5–20 µM | 6-OHDA | 300 µM | SH-SY5Y | + | AMPK; PI3K/AKT | ↑GCLC, GCLM, HO-1, NQO1, and Trx-1(P) |
| Kaji et al. (2020) | Sesaminol | 1 μg/ml | 6-OHDA | 20 µM | SH-SY5Y | + | ND | ↑Activities of NQO1 |
| Ji et al. (2021) | Piperlongumine | 5–20 µM | 6-OHDA | 150 µM | PC12 | + | ND | ↑NQO1, HO-1, GCLC, GCLM, and TrxR1(P) |
| Chen et al. (2020) | T-006 | 3–30 µM | 6-OHDA | 30 µM | DA neuron | + | Akt/GSK3β | ↑HO-1(P) |
| Darabi et al. (2019) | Trehalose | - | 6-OHDA | 25 μg | Wistar rats | + | ND | Activities of GR and GPX |
| Anis et al. (2020) | Perillyl alcohol | 100 mg/kg BW | 6-OHDA | - | Male Wistar rats | + | ND | ND |
| Colonnello et al. (2020) | Caffeic acid | 100 µM | 6-OHDA | 100 µM | Rat cortical slices | + | ND | ↑Nrf2/ARE binding activity |
| Colonnello et al. (2020) | Caffeic acid | 25 mM | 6-OHDA | 25 mM | C. elegans | + | ND | ↑Nrf2/ARE binding activity |
| Kwon et al. (2019) | Hyperoside | 0.5–2 µM | 6-OHDA | 200 µM | SH-SY5Y | + | ND | ↑HO-1(M, P) |
| Betharia et al. (2019) | ACDT | 25–50 µM | 6-OHDA | 40 µM | SH-SY5Y | + | ND | ↑NQO1(P) |
| Xu L. L. et al. (2019) | Andrographolide | 5–12.5 µM | 6-OHDA | 900 µM | PC12 | + | ↓neuroinflammation | ↑HO-1(P) |
| Ren et al. (2019) | Tricetin | 20–80 µM | 6-OHDA | 200 µM | SH-SY5Y | + | ND | ↑HO-1(P) |
| Feng et al. (2019) | Stellettin B | 0.1 nM | 6-OHDA | 20 µM | SH-SY5Y | + | PI3K/Akt | ↑HO-1(P) |
| Yan et al. (2019) | Selenepezil | 5–10 µM | 6-OHDA | 200 µM | SH-SY5Y | + | ND | ↑GCLC, GCLM, HO-1,NQO1, and TrxR(P) |
| Zhang B. et al. (2019) | Icariin | 60 mg/kg BW | 6-OHDA | 4 µg | Mice | + | ↓neuroinflammation | ↑GCLC, NQO1, and HO-1 |
| Zhu J. L. et al. (2019) | Icariin | 0.005–0.05 µM | 6-OHDA | 100 µM | PC12 | + | ND | ↑GCLC, NQO1, and HO-1 |
| Eo et al. (2019) | Ukgansan | 0.1–10 μg/ml | 6-OHDA | 75 µM | PC12 | + | ND | ↑NQO1(P) |
| Darabi et al. (2018) | SMER28 | 50 μg/kg BW | 6-OHDA | 12.5 µg | Wistar rats | ↑Activity | ND | ↑Activities of GSH, GPX, and SOD |
| Li C. et al. (2018) | Acteoside | 100–400 μg/ml | 6-OHDA | 250 µM | Zebrafish | + | ND | ↑GCLC, GCLM, HO-1, and NQO1(M). ↑Activities of CAT, GPX, and SOD |
| Chandrasekhar et al. (2018) | Gallic acid | 1 μg/ml | 6-OHDA | 50 µM | SH-SY5Y | + | ND | ↑Activities of CAT, GPX, SOD, and GR |
| Wu J. et al. (2018) | Protodioscin | 5–20 mg/kg BW | 6-OHDA | 8 µg/time × 8 weeks | Wistar rats | + | ND | ND |
| Morroni et al. (2018) | Sulforaphane | 5 μM | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑Activities of GSH |
| Morroni et al. (2018) | Erucin | 5 μM | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑Activities of GSH |
| Funakohi-Tago et al. (2018) | Hydroxytyrosol butyrate | 5–10 µM | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑HO-1(P + M) |
| Hou et al. (2018) | Honokiol | 5–10 µM | 6-OHDA | 200 µM | PC12 | + | ND | ↑HO-1(P), NQO1, Trx, and TrxR(P) |
| Lee et al. (2018) | Sesquiterpenoid | 5–10 µM | 6-OHDA | 250 µM | PC12 | + | ND | ↑HO-1(P/M) |
| Moon et al. (2018) | Carbon monoxide | 100 µM | 6-OHDA | 150 µM | C6 glioma cells | + | ND | ↑HO-1(P/M); ↑SOD(P/M) |
| Izumi et al. (2018) | TPNA10168 | 10 µM | 6-OHDA | 250 µM | PC12 | + | Akt | ↑HO-1(P/M); ↑γ-GCS(P); ↑ NQO1(P) |
| Inoue et al. (2018) | HPO-DAEE | 10 µM | 6-OHDA | 70 µM | SH-SY5Y | + | ND | ↑HO-1(P/+M) |
| Kao et al. (2017) | 1T3O | 0.001∼1 µM | 6-OHDA | 20 µM | SH-SY5Y | + | Akt | ↑HO-1(P/M) |
| Peng et al. (2017) | Cardamonin | 1–10 μM | 6-OHDA | 200 µM | PC12 | + | ND | ↑HO-1, NQO1, Trx1, and Trx1R(P) |
| Masaki et al. (2017) | DDC | 1 nM | 6-OHDA | 2 μg/μl | C57BL/6N mice | + | ND | ↑HO-1(P) |
| Masaki et al. (2017) | DDC | 3–30 μM | 6-OHDA | 50 µM | PMC | + | ND | ↑HO-1 and NQO1(P + M) |
| Murakami et al. (2018) | FPP | 3 mg/ml | 6-OHDA | 12.5–100 µM | PCARE | + | ND | ↑HO-1, NQO1, and GSH(P) |
| Pasban-Aliabadi et al. (2017) | Orexin-A | 500 pM | 6-OHDA | 150 µM | SH-SY5Y | + | PKC; PI3K | ND |
| Feng et al. (2016) | 11-de | 10 nM | 6-OHDA | 150 µM | SH-SY5Y | + | PI3K/Akt | ↑HO-1 and SOD(P) |
| Baluchnejadmojarad et al. (2017) | Ellagic acid | 50 mg/kg | 6-OHDA | 2.5 μg/μM | Wistar rats | + | ND | ↑HO-1 (ELISA) |
| Kim et al. (2017) | Capillarisin | 10–50 µM | 6-OHDA | 150 µM | SH-SY5Y | + | JNK | ↑HO-1(P + M); ↑Prx(P); ↑Trx(P); ↑NQO1(P) |
| Jing et al. (2016) | Tanshinone I | 2.5–5 µM | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑HO-1(P); ↑ GCLC(P); ↑GCLM(P) |
| Yang et al. (2015) | PACA | 5–50 µM | 6-OHDA | 200 µM | PC12 | + | ND | ↑HO-1(P); ↑NQO1(P); ↑ GCLC(P); ↑GCLM(P) |
| Peng et al. (2015a) | PLA4 | 20 µM | 6-OHDA | 200 µM | PC12 | + | ND | H↑O-1, Trx1, TrxR1, NQO1, GCLC, and GCLM(M) |
| Peng et al. (2015a) | PLA5 | 20 µM | 6-OHDA | 200 µM | PC12 | + | ND | ↑HO-1, Trx1, TrxR1, NQO1, GCLC, and GCLM(M) |
| Peng et al. (2015b) | Hydroxytyrosol | 10–50 μM | 6-OHDA | 200 µM | PC12 | + | ND | ↑HO-1, NQO1, and Trx1R(P) |
| Ju et al. (2015) | Chondroitin sulfate | 200–800 mg/L | 6-OHDA | 50 µM | SH-SY5Y | + | ND | ↑HO-1. ↑Activities of CAT, GSH, and SOD |
| Park et al. (2014) | α-Iso-cubebene | 20 µM | 6-OHDA | 200 µM | SH-SY5Y | + | PKA; PKB | ↑HO-1 and NQO1(P) |
| Lou et al. (2014) | Naringenin | 20–80 μM | 6-OHDA | 200 µM | SH-SY5Y | + | ND | ↑HO-1, GCLC, and GCLM(P) |
| Jing et al. (2015) | Dimethyl fumarate | 1–4 μM | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑HO-1, NQO1, GCLC, and GCLM(P + M) |
| Meng et al. (2013) | NGR2 | 10–40 µM | 6-OHDA | 50 µM | SH-SY5Y | + | MEK1/2; ERK1/2 | ↑Activities of HO-1, GPX, and GR |
| Ryu et al. (2013) | Phloroglucinol | 5–20 μg/ml | 6-OHDA | 90 µM | SH-SY5Y | + | Akt | ↑CAT and GPX(P) |
| Deng et al. (2012a) | Sulforaphane | 1–5 µM | 6-OHDA | 80 µM | PC12 | + | ND | ND |
| Siebert et al. (2009) | tBHQ | 5 µM | 6-OHDA | 100 nM | ONC | + | ND | ↑NQO1(M) |
| Siebert et al. (2009) | Sulforaphane | 5 µM | 6-OHDA | 100 nM | ONC | + | ND | ↑NQO1(M) |
| Fujita et al. (2008) | Alpha-lipoic acid | 300 µM | 6-OHDA | 75 µM | PC12 | + | ND | ↑Activities of GSH |
| Jakel et al. (2007) | tBHQ | 10 µM | 6-OHDA | 75 µM | N27 cells | + | ND | ↑HO-1 and NQO1(M) |
| Yamamoto et al. (2007) | Lactacystin | 0.2–1 µM | 6-OHDA | 150 µM | PC12 | + | p38 MAPK | ↑Activities of GSH; ↑γ-GCS(M) |
| Zhang X. S. et al. (2015) | Tanshinone IIA | 5–80 μg/ml | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑HO-1(P/M) |
| Zhang X. S. et al. (2015) | PCA | 0.5–1 µM | 6-OHDA | 100 µM | PC12 | + | ND | ↑HO-1(P/M) |
| Zhang Z. et al. (2015) | Chrysin | 12 µM | 6-OHDA | 100 µM | PC12 | + | ND | ↑HO-1(P/M) |
| Jin et al. (2015) | Pinocembrin | 5–25 µM | 6-OHDA | 50 µM | SH-SY5Y | + | ND | ↑HO-1(P); ↑γ-GCS(P) |
| Zhang et al. (2014) | Urate | 200–400 µM | 6-OHDA | 50 µM | SH-SY5Y | + | ND | ↑HO-1(P/M); ↑ GCLC(P) |
| Wang L. et al. (2014) | Carvedilol | 10–20 µM | 6-OHDA | 100 µM | PC12 | + | Akt | ↑HO-1(P/M); ↑ NQO1(P) |
| Gunjima et al. (2014) | DBL | 10–20 µM | 6-OHDA | 30 µM | SH-SY5Y | + | PI3K/Akt | ↑HO-1(P/M); ↑ NQO1(P) |
| Chong et al. (2013) | Danshensu | 200–400 µM | 6-OHDA | 250 µM | PC12 | + | PI3K/Akt | ↑HO-1(P) |
| Bae et al. (2013) | Berberine | 10 µM | 6-OHDA | 60 µM | SH-SY5Y | + | PI3K/Akt; p38 | ↑HO-1(P) |
| Zhang C. t al. (2017) | Berberine | 0.25–2 µM | 6-OHDA | 250 µM | PC12 | + | PI3K/Akt | ↑HO-1(P) |
| Lin et al. (2012) | Desipramine | 10–20 µM | 6-OHDA | 50 µM | MDC | + | ERK; JNK | ↑HO-1(P/M) |
| Oh et al. (2013) | SRE | 10–50 µM | 6-OHDA | 200 µM | SH-SY5Y | + | ND | ↑HO-1(P) |
| Izumi et al. (2012) | DDC | 3–30 µM | 6-OHDA | 200 µM | PC12 | + | PI3K/Akt; p38 | ↑HO-1(P) |
| Kim S.S. et al. (2012) | IGF-1 | 1–100 nM | 6-OHDA | 25 µM | PC12 | + | ND | ↑HO-1(P) |
| Kim Y. et al. (2012) | Licochalcone E | 5 µM | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑HO-1(P/M); ↑ NQO1(P/M) |
| Deng et al. (2012b) | Sulforaphane | 5 µM | 6-OHDA | 80 µM | PC12 | + | PI3K/Akt | ↑HO-1(P) |
| Hara et al. (2011) | Thapsigargin | 0.3–30 µM | 6-OHDA | 80 µM | SH-SY5Y | + | ND | ↑HO-1(M) |
| Hwang and Jeong (2010) | Ginsenoside Rb1 | 30–100 μg/ml | 6-OHDA | 50 µM | SH-SY5Y | + | PI3K/Akt | ↑HO-1(P/M) |
| Hwang and Jeong (2008) | Kahweol | 5–10 μM | 6-OHDA | 50 µM | SH-SY5Y | + | PI3K; p38 | ↑HO-1(P/M) |
| Hwang et al. (2008) | Metallothionein-III | 25–50 ng/ml | 6-OHDA | 50 µM | SH-SY5Y | + | PI3K; ERK | ↑HO-1(P/M) |
| Li et al. (2007) | tBHQ | 40 μM | 6-OHDA | 100 µM | PC12 | + | ND | ↑HO-1(P/M) |
| Hara et al. (2006) | Apomorphine | 20–30 µM | 6-OHDA | 50 µM | SH-SY5Y | + | ND | ↑HO-1(M) |
| Zhang et al. (2012) | Baicalein | 50–200 μM | 6-OHDA | 100 µM | PC12 | + | PKCα; PI3K/AKT | ↑HO-1(P/M) |
| Kurauchi et al. (2012) | CAPE | 10–30 mg/kg | 6-OHDA | 2 μg/μM | Mouse | + | p38 MAPK | ↑HO-1(P) |
| Hu et al. (2014) | Luteolin | 20 μM | 6-OHDA | 100 µM | PC12 | + | ND | ↑HO-1(M); ↑ GCLC(M) |
| Kim et al. (2015) | DHC | 0.4–10 μM | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑HO-1(P); ↑NQO1(P); ↑ GCLC(P) |
| Luo et al. (2017) | L-F001 | 1–10 μM | 6-OHDA | 200 µM | PC12 | + | Akt/GSK-3beta | ↑HO-1(P) |
| Ba et al. (2015) | Schisandrin B | 100 μM | 6-OHDA | 100 µM | SH-SY5Y | + | ND | ↑HO-1(P); ↑NQO1(P) |
ND, not described; ACDT, disubstituted dithiolethione 5-amino-3-thioxo-3H-(1,2) dithiole-4-carboxylic acid ethyl ester; T-006, tetramethylpyrazine derivative; SDA, Shende’an tablet; HPO-DAEE, 4-hydroperoxy-2-decenoic acid ethyl ester; 1T3O, 1-tosylpentan-3-one; DDC, 2′,3′-dihydroxy-4′,6′-dimethoxychalcone; DFC, deferricoprogen; DMA. PACA, dimerumic acid, N-propargyl caffeate amide; PCA, protocatechuic acid; DBL, 3,4-dihydroxybenzalacetone; MDC, Mes23.5 dopaminergic cells; SRE, Sanguisorbae Radix extract; IGF-1, insulin-like growth factor-1; PCN, primary cortical neuron cultures; MGF24, 24-amino acid C-terminal peptide of mechano growth factor; lactacystin, a proteasome inhibitor; PMC, primary mesencephalic cultures; PSI, benzyloxycarbonyl-Ile-Glu(O-t-butyl)-Ala-leucinal; MG-132, benzyloxycarbonyl-Leu-Leu-leucinal; tBHQ, tert-butylhydroquinone; GLNVA, glyceryl nonivamide; NGF, Nerve Growth Factor; CAPE, caffeic acid phenethyl ester; SHXT, San-Huang-Xie-Xin-Tang; BNC, B35 neuroblastoma cells; DFE, Drynaria fortunei extract; DHC, 5,7-dihydroxychromone; NQO1, NAD(P)H:quinone1; Trx, thioredoxin; TrxR, thioredoxin reductase; SOD, superoxide dismutase; GCLC, glutathione cysteine ligase regulatory subunit; GLCM, glutathione cysteine ligase modulatory subunit; γ-GCS, γ-glutamylcysteine synthetase; Prx, peroxiredoxin; SMER28, 6-bromo-N-prop-2-enylquinazolin-4-amine, which is an autophagy inducer; GSH, glutathione; GPX, glutathione peroxidase; SCAE, sugarcane aqueous extract; CAT, catalase; GR, glutathione reductase; DDC, 2′,3′-dihydroxy-4′,6′-dimethoxychalcone from green perilla; PMC, primary mesencephalic cultures; FPP, fermented papaya preparation; PCARE, primary cultured astrocytes from rat embryos; 11-de,11-dehydrosinulariolide; NGR2, notoginsenoside R2; ONC, Organotypic Nigrostriatal Cocultures; PLA4, piperlongumine analogues 4; PLA5, piperlongumine analogues 5; n-3 PUFAs, omega-3 polyunsaturated fatty acids; P, protein; M, mRNA.
TABLE 3.
Summary of the experimental studies involving compounds able to modulate Nrf2 pathway in MPP+-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | Nrf2 | Signaling | ARE gene |
|---|---|---|---|---|---|---|---|---|
| Liu et al. (2021) | α-Lipoic acid | 1–20 mM | MPP+ | 1 mM | PC12 | + | PI3K/Akt | ND |
| Guo et al. (2021) | Irigenin | 5–20 µM | MPP+ | 300 µM | BV-2 cells | + | ND | ↑Activities of SOD, CAT, and GPx |
| Wang L. et al. (2020) | Ghrelin | 1–10 µM | MPP+ | 1 mM | SH-SY5Y | + | ERK1/2 | ↑HO-1(P) |
| Li et al. (2020a) | Puerarin | 3–10 µM | MPP+ | 250 µM | PC12 | + | GSK-3β; Fyn | ↑GCLC(P) |
| Zheng et al. (2020) | PGK1 inhibitor CBR-470-1 | 10 µM | MPP+ | 3 mM | SH-SY5Y | + | ND | ↑HO-1, SOD1, and NQO1(P + M) |
| Li et al. (2020b) | Ferulic acid | 3–10 µM | MPP+ | 250 µM | SH-SY5Y | + | ERK1/2 | ↑HO-1, GCLC, Trx1, and NQO1(P + M) |
| Yang et al. (2020) | Bruceine D | 40–160 µM | MPP+ | 1 mM | MPCN | + | ND | ↑GCLM and NQO1(P) |
| Wei et al. (2019) | NC001-8 | 100 nM | MPP+ | 1 mM | SH-SY5Y | + | ND | NQO1(P) |
| Guo C. et al. (2019) | Protocatechuic aldehyde | 5–20 µM | MPP+ | 1 mM | SH-SY5Y | + | PLK2; p-GSK3β | ND |
| Zhu L. et al. (2019) | SC79 | 10 µM | MPP+ | 3 mM | SH-SY5Y | + | Akt | ↑HO-1 and NQO1(P + M) |
| Li et al. (2019) | Salidroside | 10–50 µM | MPP+ | 200 µM | MN9D cells | + | ND | ↑SOD, GPx, and CAT(P) |
| Bao et al. (2019) | Sulforaphane | 1–10 µM | MPP+ | 500 µM | PC12 | + | ND | ↑HO-1 and NQO1(P) |
| Guo X. et al. (2019) | Hydralazine | 10 µM | MPP+ | 1 mM | SH-SY5Y | + | ND | ↑HO-1, GCLC, GCLM, and NQO1(P) |
| Yan et al. (2018) | Simvastatin | 1–1.5 µM | MPP+ | 100 µM | SH-SY5Y | + | ERK1/2 | ↑HO-1(P) |
| Chidambaram et al. (2018) | Cocoa beans | 3–10 μg/ml | MPP+ | 2 µM | SH-SY5Y | + | ND | ND |
| Wu et al. (2017) | Salidroside | 25–100 µM | MPP+ | 500 µM | SH-SY5Y | + | ND | ↑SOD; GCLC(P + M) |
| Wang et al. (2017) | Thiazolidinedione | 0.1–10 µM | MPP+ | 1 mM | SH-SY5Y | + | ND | ND |
| Lee et al. (2017) | 2,4-Dinitrophenol | 10 µM | MPP+ | 500 µM | PCNC | + | ND | ND |
| Zou Y. M. et al. (2015) | β-Ecdysterone | 1–10 µM | MPP+ | 500 µM | PC12 | + | Akt | ↑HO-1(P + M) |
| Son et al. (2015) | KMS04014 | 1–10 µM | MPP+ | 1 mM | CATH.a cells | + | ND | ↑NQO1(P + M) |
| Zhou et al. (2014) | Salvianolic acid B | 10–100 µM | MPP+ | 1 mM | MCC | + | ND | ND |
| Alarcón-Aguilar et al. (2014) | tBHQ | 10–50 µM | MPP+ | 25 µM | Cortical astrocytes | + | ND | ↑γ-GCS(P); ↑GSH |
| Xiao et al. (2011) | Deprenyl | 20–100 µM | MPP+ | 500 µM | PC12 | + | PI3K/Akt; Erk | ↑NQO1(P + M) |
| Li M. et al. (2018) | Pinostrobin | 1–25 µM | MPP+ | 150 µM | SH-SY5Y | + | PI3K/AKT; ERK | ↑HO-1(P) |
| Li X. et al. (2018) | FG-4592 | 50 µM | MPP+ | 350 µM | SH-SY5Y | + | ND | ↑HO-1(P) |
| Jiang et al. (2014) | Gastrodin | 1–25 µM | MPP+ | 100 µM | SH-SY5Y | + | P38MAPK | ↑HO-1(P + M) |
| Jo et al. (2018) | Gintonin | 50–100 mg/kg | MPP+ | 250 µM | SH-SY5Y | + | ND | ↑HO-1(P) |
| Liu et al. (2017) | MT-20R | 10–100 µM | MPP+ | 150 µM | CGNs | + | AKT | ↑HO-1(P) |
| Ye et al. (2012) | Astaxanthin | 5–20 µM | MPP+ | 500 µM | PC12 | + | ND | ↑HO-1(P) |
| Chen et al. (2012) | β-PGG | 20–100 µM | MPP+ | 500 µM | PC12 | + | AKT; ERK | ↑HO-1(P + M) |
| Moreira et al. (2017) | TUDCA | 100 µM | MPP+ | 100 µM | SH-SY5Y | + | ND | ↑HO-1(P) |
| Wang et al. (2016) | Pinocembrin | 10–30 µM | MPP+ | 200 µM | SH-SY5Y | + | ERK | ↑HO-1(P + M) |
| Huang and Chuang (2010), Chuang et al. (2015) | FGF-9 | 10–100 ng/ml | MPP+ | 100 µM | PCN | + | AKT; ERK | ↑HO-1(P + M) |
| Wruck et al. (2007) | Luteolin | 20 μM | MPP+ | 100 µM | PC12 | + | ERK | ↑HO-1(M) |
FG-4592, prolyl hydroxylase inhibitor; BCP, β-caryophyllene; PLE, Paeonia lactiflora extract; CGNs, cerebellar granule neurons; β-PGG, 1,2,3,4,6-penta-O-galloyl-β-D-glucose; TUDCA, tauroursodeoxycholic acid; NNCs, neocortical neuronal cells; FGF-9, fibroblast growth factor 9; PCNC, primary cortical neuron cultures; MGF24, 24-amino acid C-terminal peptide of mechano growth factor; MANF, mesencephalic astrocyte-derived neurotrophic factor; PLE, Paeonia lactiflora extract; DNC, dopaminergic neuron cultures; MPCN, mouse primary cortical neurons; MPP5, 3-methoxy-5-pentyl-phenol; MCC, mesencephalic cell culture; SC79, Akt activator; P, protein; M, mRNA.
TABLE 4.
Summary of the experimental studies involving compounds able to modulate Nrf2 pathway in MPTP-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | Nrf2 | Signaling | ARE gene |
|---|---|---|---|---|---|---|---|---|
| Zhao et al. (2021) | Withaferin A | 20 μg/kg/day, i.p. × 7, 14 or 21 days | MPTP | 25 mg/kg/day, i.p. × 7 days | C57BL/6 mice | + | ND | ND |
| Dong et al. (2021) | Paeoniflorin/glycyrrhetinic acid | 50/50 mg/kg, p.o. × 2 weeks | MPTP | 25 mg/kg/day, i.p. × 5 days | C57BL/6 mice | + | ERK1/2 and Akt | ↑GCLM; GCLC(P) |
| Dutta et al. (2021) | Andrographolide | 10 mg/kg/day, i.p. × 10 times | MPTP | 20 mg/kg/day, i.p. on alternate days × 5 times | Male Swiss albino mice | + | p38 MAPK and ERK | ND |
| Sheng et al. (2021) | SDA | 100–900 mg/kg, p.o. × 4 weeks | MPTP | 30 mg/kg/day, i.p.) for 5 days | Male C57BL/6J mice | + | ND | ↑HO-1 (P) |
| Dong et al. (2020) | Thymoquinone | 10 mg/kg/day, i.p. × 7 d | MPTP | 25 mg/kg/day, i.p. × 5 days | C57/BL6 mice | + | ND | ↑HO-1, NQO1, and GST(P) |
| Huang et al. (2021) | PSP | 30 mg/kg/day, p.o. × 4 weeks | MPTP | 30 mg/kg/day, i.p. × 5 days | Male C57BL/6J mice | + | Akt | ↑NQO1, HO-1, GCLM, and GCLC(P) |
| Choi et al. (2021) | Vinyl sulfones 9d | 30 mg/kg/day, p.o. × 3 d | MPTP | 20 mg/kg, i.p. four times at 2 h intervals | Male C57BL/6 mice | + | ND | ↑NQO1, HO-1, GCLM, and GCLC(P + M) |
| Mohamed et al. (2021) | Tiron | 140 and 280 mg/kg, i.p. × 10 days starting 5 days before MPTP injection | MPTP | 30 mg/kg/day, i.p. × 5 days | Male albino mice | + | ND | ↑HO-1(ICH) |
| Lin C. H. et al. (2020) | Trehalose | 2% in drinking water | MPTP | 30 mg/kg/day, i.p. × 15 times | Male C57BL/6 mice | + | ND | ↑HO-1(P) |
| Li et al. (2020a) | Puerarin | 15–60 mg/kg/day, p.o. × 14 d (3 d before MPTP) | MPTP | 25 mg/kg/day, i.p. × 5 d | C57BL/6 | + | GSK-3β; Fyn | ↑GCLC(P) |
| Chen et al. (2020) | T-006 | 3–10 mg/kg/day, p.o. ×14 d | MPTP | 30 mg/kg/day, i.p. × 5 d | Female C57BL/6 mice | + | Akt/GSK3β | ↑HO-1(P) |
| Lee J. A. et al. (2020) | KKC080106 | 30 mg/kg, tid, p.o. | MPTP | 20 mg/kg, i.p. four times at 2 h intervals | Male C57BL/6 mice | + | ND | ↑NQO1, HO-1, GCLM, and GCLC(P + M) |
| Wang L. et al. (2020) | Piperine analogues-3b | 50–100 mg/kg/day, p.o. × 7 d | MPTP | 25 mg/kg/day, i.p. × 7 d | Male C57BL/6 mice | + | ND | ↑HO-1; NQO1(P) |
| Li et al. (2020b) | Ferulic ACID | 50 mg/kg/day, p.o. × 15 d | MPP+ | 25 mg/kg/day, i.p. ×5 d | C57BL/6J mice | + | ERK1/2 | ↑HO-1, GCLC, Trx1, and NQO1(P + M) |
| Yang et al. (2020) | Bruceine D | 20–40 mg/kg/day, i.p. × 7 d | MPP+ | 15 mg/kg/day, i.p. × 7 d | MPCN | + | ND | ↑GCLM; NQO1(P) |
| Zhao et al. (2020) | Rosmarinic acid | 10–100 µM | MPTP | 50 µM | Zebrafish embryos | + | ND | GCLM; NQO-1(P) |
| Kim et al. (2020) | KKPA4026 | 30 mg/kg/day, p.o. × 3 d | MPTP | 20 mg/kg, i.p. four times at 2 h intervals | Male C57BL/6 mice | + | ND | ↑GCLC, GCLM, NQO-1, and HO-1(P) |
| Guo C. et al. (2019) | Protocatechuic aldehyde | 20 mg/kg/day, i.p. × 5 d | MPTP | 30 mg/kg/day, i.p. × 7 d | Male C57BL/6 mice | + | PLK2;GSK3β | ND |
| Yang et al. (2019) | Astragaloside IV | 40 mg/kg, oral gavage as described above for 7 days | MPTP | 18 mg/kg, four times at 2 h intervals | Male C57BL/6 mice | + | ND | ND |
| Choi et al. (2019) | Compound 3c | 20 mg/kg, p.o., 3 days | MPTP | 20 mg/kg, i.p.; four times at 2 h intervals | Mice | + | ND | ↑HO-1; GCLM(P + M) |
| Li et al. (2019) | Salidroside | 15 and 50 mg/kg/day, 7 days | MPTP | 30 mg/kg/day, i.p. × 5 d | Male C57BL/6 mice | + | ND | ↑SOD, GPx, and CAT(P) |
| Guo X. et al. (2019) | Hydralazine | 51.7 mg/kg per day by oral gavage for 3 weeks | MPTP | 30 mg/kg/day, i.p. × 7 d | Male C57/BL6 mice | + | ND | ↑HO-1, GCLC, GCLM, and NQO1(P) |
| Park et al. (2019) | β-Lapachone | 5 mg/kg/day, i.p. × 3 d | MPTP | 20 mg/kg, 4 times a day; 2 h interval | Male C57BL/6 mice | + | AMPK | ↑HO-1(P) |
| Choi et al. (2018) | Kyung-Ok-Ko | 2 g/kg/day | MPTP | 20 mg/kg/day, i.p. | Male C57BL/6 mice | + | ND | ↑HO-1; NQO1(P) |
| Xu Y. et al. (2019) | DDO-7263 | 50–100 mg/kg/day, i.p. × 10 d | MPTP | 20 mg/kg/day, i.p. × 7 d | Male C57BL/6 mice | + | ND | ↑HO-1; NQO1(P) |
| Wang G. et al. (2018) | Pramipexole | 0.07–0.15 cm2 (TP) | MPTP | 30 mg/kg, i.p. | C57BL/6 mice | + | ND | ↑HO-1(P) |
| Li M. et al. (2018) | Pinostrobin | 0.2–125 µM | MPTP | 360 μM | Zebrafish | + | PI3K/AKT; ERK | ↑HO-1(P) |
| Li X. et al. (2018) | FG-4592 | 10 mg/kg/day, i.p. | MPTP | 30 mg/kg/day, i.p. | C57BL/6 mice | + | ND | ↑HO-1(P) |
| Begum M and Sen (2018) | SNC-80 | 10 mg/kg | MPTP | 30 mg/kg/day, i.p. | Swiss albino mice | + | ND | ↑HO-1(P) |
| Jo et al. (2018) | Gintonin | 50–100 mg/kg | MPTP | 30 mg/kg/day, i.p. × 5 d | C57BL/6N mice | + | ND | ↑HO-1(P) |
| Kabel et al. (2018) | Linagliptin | 3–10 mg/kg/day | MPTP | * | 80 Balb/c mice | +(ELISA) | ND | ↑(ELISA) |
| Huang et al. (2017) | Uric acid | 25 mg/kg/day × 13 d | MPTP | 25 mg/kg/day, i.p. × 7 d | C57BL/6 mice | + | ND | HO-1(M) |
| Son et al. (2017) | Exemestane | 1–10 mg/kg | MPTP | 20 mg/kg, i.p. × 4 times | C57BL/6J mice | + | ND | ↑GCLC, GCLM, HO-1, and NQO1(P + M) |
| Wang et al. (2017) | Thiazolidinedione | 10–40 mg/kg | MPTP | 30 mg/kg/day, i.p. × 5 d | C57BL/6 mice | + | ERK | ND |
| Meng et al. (2017) | Matrine | 4–16 mg/kg | MPTP | 30 mg/kg/day, i.p. ×4 d | C57BL mice | + | ND | ↑Activities of SOD and GSH |
| Lee et al. (2017) | 2,4-Dinitrophenol | 1–5 mg/kg × 13 d | MPTP | 20 mg/kg/2 h, i.p. × 4 times | C57BL mice | + | ND | ND |
| Smirnova et al. (2016) | NDGA | 100 mg/kg/day | MPTP | 10 mg/kg/2 h × 4 times | C57Bl6 mice | + | ND | ND |
| Ahuja et al. (2016) | DMF | 100 mg/kg/day | MPTP | 10 mg/kg | C57BL/6 mice | + | S-Alkylation of Keap1 | ↑GCLC, GCLM, HO-1, GSR, and NQO1(P) |
| Ahuja et al. (2016) | MMF | 100 mg/kg/day | MPTP | 10 mg/kg | C57BL/6 mice | + | S-Alkylation of Keap1 | ↑GCLC, GCLM, HO-1, GSR, and NQO1(P) |
| Moreira et al. (2017) | TUDCA | 50 mg/kg × 3 d | MPTP | 40 mg/kg | C57BL/6 mice | + | ND | ↑HO-1(P); GPX (P + M) |
| Liu et al. (2017) | MT-20R | 60–180 mg/kg × 7 d | MPTP | 30 mg/kg/day, i.p. × 5 d | C57BL/6 mice | + | AKT | ↑HO-1(P) |
| Luo et al. (2017) | L-F001 | 35–70 mg/kg × 7 d | MPTP | 40 mg/kg | C57BL/6 mice | + | Akt/GSK-3beta | ↑HO-1(P) |
| Ozkan et al. (2016) | DHA | 36 mg/kg/day | MPTP | 20 mg/kg | C57BL/6 mice | + | ND | ↑HO-1(P) |
| Zhao J. et al. (2015) | Fasudil | 20 mg/kg, bid × 7 d | MPTP | % | C57BL/6 mice | + | ND | ↑HO-1(P) |
| Son et al. (2015) | KMS04014 | 30 mg/kg, qd × 3 d | MPTP | 20 mg/kg, i.p. × 4 times | C57Bl/6 mice | + | ND | ↑NQO1(P + M) |
| Zhao Y. F. et al. (2015) | Puerarin | 50–150 mg/kg/day | MPTP | 25 mg/kg/day, i.p. × 7 d | C57BL/6 mice | + | ERK1/2; PI3K/Akt | HO-1(P) |
| Wang L. et al. (2014) | Gastrodin | 60 mg/kg/day, i.p. × 14 d | MPTP | 30 mg/kg, qd, i.p. × 3 d | C57BL/6 mice | + | ERK1/2 | ↑HO-1; SOD (P + M) |
| Lee G. et al. (2016) | ITC-57 | 30 mg/kg × 3 d | MPTP | 20 mg/kg/2 h, i.p. × 4 | C57BL/6J mice | + | ND | HO-1(P + M) |
| Lee H. J et al. (2015) | VSC2 | 10 mg/kg/day × 3 d | MPTP | 20 mg/kg, i.p. × 4 | C57BL/6 mice | + | ND | HO-1(P + M) |
| Woo et al. (2014) | Vinyl sulfones | 10 mg/kg | MPTP | 20 mg/kg/2 h, i.p. × 4 | C57BL/6 mice | + | ND | HO-1(P + M) |
| García et al. (2014) | S-Allyl cysteine | 120 mg/kg, i.p. × 5 d | MPTP | 30 mg/kg/day, i.p. × 5 d | C57BL/6 mice | + | ND | HO-1(P) |
| Zhou et al. (2014) | SalB | 25 mg/kg, i.p. × 5 d | MPTP | 20 mg/kg/2 h, i.p. × 4 | C57BL/6J mice | + | ND | ND |
| Swanson et al. (2013) | Tetramethylpyrazine | 20 mg/kg, i.p. × 7 d | MPTP | 0.5 μm/μM | Wistar rats | + | ND | ↑GCLC (P) |
| García et al. (2014) | S-Allyl cysteine | 120 mg/kg, i.p. × 5 d | MPTP | 30 mg/kg, i.p. × 5 d | C57BL/6J mice | + | ND | ↑Activities of HO-1 and SOD |
| Galuppo et al. (2013) | RS-GRA | 10 mg/kg | MPTP | 40 mg/kg × 2 | C57BL/6 mice | + | ND | ND |
| Kaidery et al. (2013) | Triterpenoids | 4 μM | MPTP | C57Bl6 mice | + | ND | ↑GCLC, GCLM, HO-1, and NQO1(P + M) | |
| Yang et al. (2009) | CDDO-MA | 50 mg/kg | MPTP | 10 mg/kg/2 h, i.p. × 4 | C57BL/6 mice | + | ND | ↑GR, HO-1, and NQO1(P) |
| Jazwa et al. (2011) | Sulforaphane | 50 mg/kg | MPTP | 30 mg/kg | mice | + | ND | GCLC, HO-1, and NQO1(P + M) |
| Minelli et al. (2012) | Gly-Pro-Glu tripeptide | 100 mg/kg | MPTP | 4 mg/kg, i.p. × 4 | C57BL/6 mice | + | ND | HO-1(P + M) |
*MPTP: 8 mg/kg/day during the 1st week, 16 mg/kg/day during the 2nd week, 24 mg/kg/day during the 3rd week, and 32 mg/kg/day during the 4th week. %15 mg/kg bodyweight MPTP (Sigma, United States) dissolved in 0.9% saline on the 1st day, 20 mg/kg MPTP on the 2nd day, and 30 mg/kg MPTP daily next 5 days.
TP, transdermal patch; SNC-80, DOR agonist; L-F001, a multifunction ROCK inhibitor; DHA, docosahexaenoic acid; ITC-57, novel synthetic isothiocyanate; VSC2, (E)-1-(2-((2-methoxyphenyl)sulfonyl)vinyl)-2-chlorobenzene); PLGA, poly(lactic-co-glycolic) acid; DHB, the prolyl hydroxylase inhibitor 3,4-dihydroxybenzoate; HIF, hypoxia-inducible factor; NDGA, nordihydroguaiaretic acid; DMF, dimethylfumarate; MMF, monomethylfumarate; Gsr, glutathione reductase; SalB, salvianolic acid B; RS-GRA, (RS)-glucoraphanin, bioactivated with myrosinase enzyme; GR, glutathione reductase; CDDO-MA, 2-cyano-N-methyl-3,12-dioxooleana-1,9(11)-dien-28 amide; DDO-7263, 5-(3,4-difluorophenyl)-3-(6-methylpyridin-3-yl)-1,2,4-oxadiazole; PSP, Polygonatum sibiricum Polysaccharides; P, protein; M, mRNA.
TABLE 5.
Summary of the experimental studies involving compounds able to modulate Nrf2 pathway in paraquat-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | Nrf2 | Signaling | ARE gene |
|---|---|---|---|---|---|---|---|---|
| Rasheed et al. (2020) | Resveratrol | Paraquat | + | ND | ↑ HO-1, NQO1, and Trx1(P) | |||
| Dos Santos Nunes et al. (2019) | Caffeic acid | 0.25, 0.5, 1, and 2 mg/g of died × 7 days | Paraquat | 0.44 mg/g of diet | Drosophila melanogaster | + | ND | ND |
| Srivastav et al. (2018) | BME | 0.1–0.25% | Paraquat | 20 mM | Drosophila | + | ND | ND |
| de Oliveira et al. (2017a); (2018a) | Carnosic acid | 1 μM | Paraquat | 100 μM | SH-SY5Y | + | ND | ↑ HO-1(P) |
| Li et al. (2012) | tBHQ | Oral feeding | Paraquat | 7 mg/kg | C57BL/6 mice | + | ND | ↑ HO-1(P) |
| Li et al. (2012) | tBHQ | 40 μM | Paraquat | 100–300 μM | PC12 | + | ND | ↑ HO-1(P) |
| de Oliveira et al. (2017b) | Pinocembrin | 25 μM | Paraquat | 100 μM | SH-SY5Y | + | ERK1/2 | ↑ HO-1, GCLC, and GCLM(P) |
| Kobatake et al. (2017) | LG2055 | 1–100 μg/ml | Paraquat | 0.5 mM | NIH-3T3 cells | + | JNK | ↑HO-1, GCLC, GCLM, SOD, NQO1, and Txn1 |
| de Oliveira et al. (2017c) | Tanshinone I | 2.5 μM | Paraquat | 100 μM | SH-SY5Y | + | ND | ↑GPx, SOD, and γ-GCL(P) |
| de Oliveira et al. (2016) | Carnosic acid | 0.1–0.5 μM | Paraquat | 100 μM × 24 h | SH-SY5Y | + | PI3K/Akt | ↑HO-1, GCLC, GCLM,SOD, NQO1, GR, and GPX |
| Lee J. A. et al. (2015) | DHA | 25 μM | Paraquat | 400 μM × 24 h | SN4741 cells | + | ND | ↑GCLM and GR(M). ↑Activities of GSH |
| Minelli et al. (2009) | Cyclo (His-Pro) | 50 μM | Paraquat | 100 μM | PC12 | + | p38 MAPK | ↑HO-1, NQO1, GCLC, GCLM, GPX, GR, and Trx1(M) |
| Mizuno et al. (2011) | Sulforaphane | 1 μM | Paraquat | 200 μM × 24 h | Rat striatal cultures | + | ↑ HO-1; γ-GCS | |
| Mizuno et al. (2011) | 6-HITC | 1 μM | Paraquat | 200 μM × 24 h | Rat striatal cultures | + | ↑ HO-1; γ-GCS | |
| de Oliveira et al. (2018b) | Naringenin | 80 μM | Paraquat | 100 μM | SH-SY5Y | + | ND | ND |
| Alural et al. (2015) | Lithium | 2–5 mM | Paraquat | 0.5 mM | SH-SY5Y | + | ND | HO-1(M) |
| de Rus Jacquet et al. (2017a) | Allium sativum | 1–10 μg/ml | Paraquat | 2.5 μM | PMC | + | ND | ↑ HO-1(P + M) |
| de Rus Jacquet et al. (2017b) | Trifolium pratense | 1–10 μg/ml | Paraquat | 2.5 μM | PMC | + | ND | ↑ HO-1(P + M) |
| de Rus Jacquet et al. (2017c) | Amelanchier arborea | 1–10 μg/ml | Paraquat | 2.5 μM | PMC | + | ND | ↑ HO-1(P + M) |
6-HITC, 6-(methysulfinyl)hexyl isothiocyanate, which is a naturally occurring isothiocyanate; tBHQ, tert-butylhydroquinone; PMC, primary midbrain cultures; Txn1, thioredoxin 1; BME, Bacopa monnieri extract; P, protein; M, mRNA.
TABLE 6.
Summary of the experimental studies involving compounds able to modulate Nrf2 pathway in Rotenone-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | Nrf2 | Signaling | ARE gene |
|---|---|---|---|---|---|---|---|---|
| Arab et al. (2021) | Dapagliflozin | 1 mg/kg/day, po, every other day over 3 weeks | Rotenone | 1.5 mg/kg, s.c., every other day over 3 weeks | Adult male Wistar rats | ND | ↑Activities of HO-1 | |
| Thapa et al. (2021) | Suntamide A | 1–10 μM | Rotenone | 1 μM | SH-SY5Y | + | PI3K/AKT; ERK1/2 | ND |
| Kaji et al. (2020) | Sesaminol | 0.008% | Rotenone | 10 mg/kg p.o. × 29 d | Male C57BL6/J mice | + | ND | ↑Activities of NQO1 |
| Wei et al. (2020) | Ellagic acid | 100 mg/kg/days, p.o. × 35 d | Rotenone | 1 mg/kg, s.c. 6 times a week for consecutive 5 weeks | C57BL/6J male mice | + | ND | ↑HO-1 and NQO1(P) |
| El-Ghaiesh et al. (2020) | Metformin | 100 or 200 mg/kg, every 24 ± 2 h, volume = 4 ml/kg | Rotenone | 1 mg/kg, s.c. every 48 h, volume = 4 ml/kg | Male Swiss albino mice | + | ND | ↑HO-1 |
| Wang T. et al. (2020) | Danshensu | 15–60 mg/kg, p.o. × 15 d | Rotenone | 30 mg/kg | Male C57BL/6 mice | + | PI3K/AKT | ↑HO-1, GCLC, and GCLM(P) |
| Garabadu and Agrawal (2020) | Naringin | 80 mg/kg, i.p. × 14 d | Rotenone | 2 μl into the right SNpc at a flow rate of 0.2 μl/min | Male Wistar albino rats | + | ND | ↑Activities of Gr and GPx |
| Zhu L. et al. (2019) | SC79 | 10 µM | Rotenone | 300 nM | SH-SY5Y | + | Akt | ↑HO1 and NQO1(P + M) |
| Elmazoglu et al. (2020) | Luteolin | 1–10 μM | Rotenone | 20 μM × 12 h | BV2 cells | + | ND | ↑Trx1(M) |
| Zhang et al. (2018) | Fucoidan | 140 mg/kg/d × 38 d | Rotenone | 1.5 mg/kg/d, 5 times/w × 5 w | SD rat | + | ND | ND |
| González-Burgos et al. (2017) | Ginsenosides Rd | 0.5–50 μM | Rotenone | 50 μM × 24 h | SH-SY5Y | + | ND | ↑Activities of SOD |
| González-Burgos et al. (2017) | Ginsenosides Re | 0.5–50 μM | Rotenone | 50 μM × 24 h | SH-SY5Y | + | ND | ↑Activities of SOD |
| Fernández-Moriano et al. (2017) | Ginsenosides Rb1 | 2.5–50 μM | Rotenone | 50 μM × 24 h | SH-SY5Y | + | ND | ↑Activities of SOD and GSH |
| Fernández-Moriano et al. (2017) | Ginsenosides Rg1 | 2.5–50 μM | Rotenone | 50 μM × 24 h | SH-SY5Y | + | ND | ↑Activities of SOD and GSH |
| de Rus Jacquet et al. (2017a) | Allium sativum | 1–10 μg/ml | Rotenone | 20 nM | PMC | + | ND | ↑HO-1(P + M) |
| de Rus Jacquet et al. (2017b) | Trifolium pratense | 1–10 μg/ml | Rotenone | 20 nM | PMC | + | ND | ↑HO-1(P + M) |
| de Rus Jacquet et al. (2017c) | Amelanchier arborea | 1–10 μg/ml | Rotenone | 20 nM | PMC | + | ND | ↑HO-1(P + M) |
| Liu et al. (2016) | PF/β-Ecd | 4–3.2 μM/0.4–3.2 μM | Rotenone | 1 μM × 24 h | PC12 | + | Akt | ↑HO-1(P + M) |
| Michel et al. (2017) | TTMP | 2 mg/kg, i.p. × 4 w | Rotenone | 2 mg/kg, s.c. × 4 w | SD rat | + | ND | ↑HO-1(P) |
| Gaballah et al. (2016) | Resveratrol | 20 mg/kg/d, p.o. × 3 w | Rotenone | 1.5 mg/kg, s.c. × 3 w | Wistar albino rats | + | ND | ↑Activities of GPX |
| Cui et al. (2016) | Curcumin | 100 mg/kg, bid, i.g. × 50 d | Rotenone | 1 ml/kg/d, bid, i.g. × 50 d | Lewis rats | + | Akt | ↑HO-1; NQO1(P). ↑Activities of GSH |
| Minelli et al. (2009) | Cyclo (His-Pro) | 50 μM | Rotenone | 100 μM | PC12 | + | p38 MAPK | ↑HO-1, NQO1, GCLC, GCLM, GPX, GR, and Trx1(M) |
| Zakharova et al. (2018) | rhLF | 25 mg/kg | Rotenone | 2.75 mg/kg | Wistar rats | + | ND | ↑HO-1(M) |
| Engel et al. (2018) | Duloxetine | 2–5 μM | Rotenone | 10 μM | SH-SY5Y | + | PI3K/Akt | ↑HO-1(M) |
| Zhang C. et al. (2017) | 20C | 1–10 μM | Rotenone | 4 μM | SH-SY5Y | + | PI3K/Akt | ↑HO-1(P) |
| Zhang X. L. et al. (2017) | 20C | 1–10 μM | Rotenone | 4 μM | PC12 | + | PI3K/Akt; GSK3β | ↑HO-1(P) |
| Pan et al. (2016) | Safranal | 10–50 μg/ml | Rotenone | 100 nM | PDC | + | ND | ↑HO-1(P + M) |
| Zhou et al. (2016) | Sulforaphane | 50 mg/kg | Rotenone | 30 mg/kg | C57BL/6 mice | + | ND | ↑HO-1(P) |
| Huang et al. (2016) | 20C | 0.01–1 μM | Rotenone | 4 μM | PC12 | + | ND | ↑HO-1(P + M) |
| Cui et al. (2016) | Curcumin | 100 mg/kg, bid × 50 d | Rotenone | 1 mg/kg/d, bid × 46 d | Lewis rats | + | Akt | ↑HO-1(P) |
| Jo et al. (2018) | Gintonin | 50–100 mg/kg | Rotenone | 200–500 nM | SH-SY5Y | + | ND | ↑ HO-1(P) |
| Lin et al. (2012) | Desipramine | 10–20 μM | Rotenone | 3 μM | MDC | + | ERK; JNK | ↑HO-1(P + M) |
| Dal-Cim et al. (2012) | Guanosine | 1 mM | Rotenone/Oligo A | 30 μM/10 μM | SH-SY5Y | ND | PI3K/Akt; GSK-3β | ↑HO-1(P) |
| Parada et al. (2010) | PNU282987 | 1–10 μM | Rotenone/Oligo A | 30 μM/10 μM | SH-SY5Y | ND | PI3K/Akt; Jak2 | ↑ HO-1(P) |
| Romero et al. (2010) | Melatonin | 0.3–10 nm | Rotenone | 30 μM/10 μM | SH-SY5Y | ND | PKC; PI3K/Akt | ND |
| Quesada et al. (2009) | MGF24 | 0.1 μg/ml | Rotenone | 100 nM | SH-SY5Y | ND | PKC | ↑ HO-1(P) |
| Cañas et al. (2007) | Chondroitin sulfate | 0.3–100 μM | Rotenone/Oligo A | 10 μM/1 μM | SH-SY5Y | ND | PKC; PI3K/Akt | ↑ HO-1(P) |
| Egea et al. (2007) | Epibatidine | 30 nM–30 μM | Rotenone/Oligo A | 30 μM/10 μM | BCC | ND | ERK | ↑ HO-1(P) |
| Wu et al. (2006) | EGCG | 50–100 μM | Rotenone | 5 μM | Endothelial cells | ND | PI3K/Akt; ERK | ↑ HO-1(P + M) |
| Parada et al. (2015) | Curcumin | 10–20 μM | Rotenone/Oligo A | 30 μM/10 μM | MGC | ND | ND | ↑HO-1(P) |
| Lin et al. (2014) | Resveratrol | 10–20 μM | Rotenone | 20 μM | SH-SY5Y | ND | ND | ↑HO-1(P) |
rhLF, recombinant human lactoferrin; 20C, a bibenzyl compound isolated from Gastrodia elata; PDC, primary dopaminergic cells; TMP, tetramethylpyrazine; i.g., intragastrically; MGC, mixed glial cultures; MDC, Mes23.5 dopaminergic cells; Oligo A, oligomycin A; PNU282987, α7 nicotinic acetylcholine receptor (nAChR) agonist; 24-amino acid C-terminal peptide of mechano growth factor; CS, chondroitin sulfate; Epibatidine, nicotinic acetylcholine receptors (nAChR) agonist; BCC, bovine chromaffin cells; EGCG, epigallocatechin-3-gallate; PF/β-Ecd, paeoniflorin/β-ecdysterone; TMP, tetramethylpyrazine; GR, glutathione reductase; P, protein; M, mRNA.
Neuroprotective Role of the Induction of HO-1 in PD
The list of genes regulated by Nrf2/ARE includes over 250 genes, which encode proteins and enzymes involved in antioxidant defense and detoxification (Cores et al., 2020). These genes include classical phase II detoxification enzymes like NQO1, GSTs, etc., and the enzymes involved in GSH biosynthesis, antioxidant defense (e.g., GSH-Px and HO-1), and inflammation (e.g., COX-2 and HO-1) (van Muiswinkel and Kuiperij, 2005; Tebay et al., 2015).
Heme oxygenase-1 (HO-1), a potent antioxidant enzyme regulated by Nrf2, degrades heme to carbon monoxide, free iron, and biliverdin (Consoli et al., 2021). HO-1 has been found at higher concentrations in serum in patients with PD (Sun et al., 2021). HO-1 participates in neuroprotection against OS-dependent injury and has been speculated as a new therapeutic target for PD (Jazwa and Cuadrado, 2010). Tyrrell and others first revealed the cytoprotective effect of HO-1, demonstrating that induction of HO-1 expression mediates an adaptive cytoprotective response to OS in cultured human fibroblasts (Vile et al., 1994; Reeve and Tyrrell, 1999). Particularly interesting is the role played by HO-1 in PD (Schipper et al., 2019). HO-1 induction has been seen to implicate a neuroprotective role on exposure to a variety of PD-associated neurotoxins, both in animal models and in tissue culture (Kwon et al., 2019; Inose et al., 2020). Pharmacological induction of HO-1 by administration of bioactive compounds can exert therapeutic effects against 6-OHDA (Table 7), MPP+ (Table 8), MPTP (Table 9), paraquat (Table 10), and rotenone-induced (Table 11) neurotoxicity in vitro or in vivo PD models.
TABLE 7.
Summary of the experimental studies involving HO-1 inducer against 6-OHDA-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | HO-1 protein | HO-1 mRNA | Signaling | Nrf2 |
|---|---|---|---|---|---|---|---|---|---|
| Ji et al. (2021) | Piperlongumine | 5–20 µM | 6-OHDA | 150 µM | PC12 | ↑ | ND | ND | + |
| Chen et al. (2020) | T-006 | 3–30 µM | 6-OHDA | 30 µM | DA neuron | ↑ | ND | Akt/GSK3β | + |
| Zhang et al. (2021) | Ginnalin A | 10–20 µM | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ↑ | ND | + |
| Sano et al. (2021) | Fluprostenol | 100–500 mM | 6-OHDA | 50 µM | SH-SY5Y | ND | ↑ | ERK | + |
| Ma et al. (2020) | Isoorientin | 5–20 µM | 6-OHDA | 300 µM | SH-SY5Y | ↑ | ND | AMPK and PI3K/AKT | + |
| Kwon et al. (2019) | Hyperoside | 0.5–2 µM | 6-OHDA | 200 µM | SH-SY5Y | ↑ | ↑ | ND | + |
| Sheng et al. (2021) | SDA | 20–30% | 6-OHDA | 60 µM | PC12 | ↑ | ND | ND | + |
| Wu et al. (2021) | Fucoxanthin | 1–5 µM | 6-OHDA | 250 µM | PC12 | ↑ | ND | ND | ↓Nrf2-Keap1 binding |
| Kwon et al. (2019) | Hyperoside | 0.5–2 µM | 6-OHDA | 200 µM | SH-SY5Y | ↑ | ↑ | ND | + |
| Ren et al. (2019) | Tricetin | 20–80 µM | 6-OHDA | 200 µM | SH-SY5Y | ↑ | ND | ND | + |
| Funakohi-Tago et al. (2018) | Hydroxytyrosol butyrate | 5–10 µM | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ↑ | ND | + |
| Hou et al. (2018) | Honokiol | 5–10 µM | 6-OHDA | 200 µM | PC12 | ↑ | ND | ND | + |
| Lee et al. (2018) | Sesquiterpenoid | 5–10 µM | 6-OHDA | 250 µM | PC12 | ↑ | ↑ | ND | + |
| Tong et al. (2018) | Simvastatin | 1 µM | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ND | ND | ND |
| Moon et al. (2018) | Carbon monoxide | 100 µM | 6-OHDA | 150 µM | C6 glioma cells | ↑ | ↑ | ND | + |
| Izumi et al. (2018) | TPNA10168 | 10 µM | 6-OHDA | 250 µM | PC12 | ↑ | ↑ | Akt | + |
| Inoue et al. (2018) | HPO-DAEE | 10 µM | 6-OHDA | 70 µM | SH-SY5Y | ↑ | ↑ | ND | + |
| Kao et al. (2017) | 1T3O | 0.001∼1 µM | 6-OHDA | 20 µM | SH-SY5Y | ↑ | ↑ | Akt | + |
| Baluchnejadmojarad et al. (2017) | Ellagic acid | 50 mg/kg | 6-OHDA | 2.5 μg/μM | Wistar rats | ↑(ELISA) | ND | ↑(ELISA) | |
| Masaki et al. (2017) | DDC | 1 nmol | 6-OHDA | 3 μg | C57BL/6N male mice | ↑ | ND | ND | ND |
| Kim et al. (2017) | Capillarisin | 10–50 µM | 6-OHDA | 150 µM | SH-SY5Y | ↑ | ↑ | JNK | + |
| Tseng et al. (2016) | DFC | 5–10 µM | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ND | Akt | ND |
| Tseng et al. (2016) | DMA | 5–10 µM | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ND | Akt | ND |
| Jing et al. (2016) | Tanshinone I | 2.5–5 µM | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ND | ND | + |
| Yang et al. (2015) | PACA | 5–50 µM | 6-OHDA | 200 µM | PC12 | ↑ | ND | ND | + |
| Zhang X. S. et al. (2015) | Tanshinone IIA | 5–80 μg/ml | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ↑ | ND | + |
| Zhang X. S. et al. (2015) | PCA | 0.5–1 µM | 6-OHDA | 100 µM | PC12 | ↑ | ↑ | ND | + |
| Zhang Z. et al. (2015) | Chrysin | 12 µM | 6-OHDA | 100 µM | PC12 | ↑ | ↑ | ND | + |
| Jin et al. (2015) | Pinocembrin | 5–25 µM | 6-OHDA | 50 µM | SH-SY5Y | ↑ | ND | ND | + |
| Zhang et al. (2014) | Urate | 200–400 µM | 6-OHDA | 50 µM | SH-SY5Y | ↑ | ↑ | ND | + |
| Wang X. L. et al. (2014) | Carvedilol | 10–20 µM | 6-OHDA | 100 µM | PC12 | ↑ | ↑ | Akt | + |
| Gunjima et al. (2014) | DBL | 10–20 µM | 6-OHDA | 30 µM | SH-SY5Y | ↑ | ↑ | PI3K/Akt | + |
| Li et al. (2013) | Puerarin | 10–40 mg/kg | 6-OHDA | 2.0 g/L | Wistar rats | ND | ↑ | ND | ND |
| Chong et al. (2013) | Danshensu | 200–400 µM | 6-OHDA | 250 µM | PC12 | ↑ | ND | PI3K/Akt | + |
| Bae et al. (2013) | Berberine | 10 µM | 6-OHDA | 60 µM | SH-SY5Y | ↑ | ND | PI3K/Akt; p38 | + |
| Zhang X. L. et al. (2017) | Berberine | 0.25–2 µM | 6-OHDA | 250 µM | PC12 | ↑ | ND | PI3K/Akt | + |
| Lin et al. (2012) | Desipramine | 10–20 µM | 6-OHDA | 50 µM | MDC | ↑ | ↑ | ERK; JNK | + |
| Oh et al. (2013) | SRE | 10–50 µM | 6-OHDA | 200 µM | SH-SY5Y | ↑ | ND | ND | + |
| Lu et al. (2013) | Resistin | 5–10 ng/ml | 6-OHDA | 75 µM | MDC | ↑ | ND | ND | ND |
| Izumi et al. (2012) | DDC | 3–30 µM | 6-OHDA | 200 µM | PC12 | ↑ | ND | PI3K/Akt; p38 | + |
| Kim S. S. et al. (2012) | IGF-1 | 1–100 nM | 6-OHDA | 25 µM | PC12 | ↑ | ND | ND | + |
| Kim Y. et al. (2012) | Licochalcone E | 5 µM | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ↑ | ND | + |
| Deng et al. (2012b) | Sulforaphane | 5 µM | 6-OHDA | 80 µM | PC12 | ↑ | ND | PI3K/Akt | + |
| Tseng et al. (2012) | Paeonol | 0.75–1.5 µM | 6-OHDA | 40 µM | PCN | ↑ | ND | ND | ND |
| Quesada et al. (2011) | MGF24 | 0.1 μg/ml | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ND | PKC | ND |
| Hara et al. (2011) | Thapsigargin | 0.3–30 µM | 6-OHDA | 80 µM | SH-SY5Y | ND | ↑ | ND | + |
| Yamamoto et al. (2010) | Lactacystin | 0.3–1 µM | 6-OHDA | 50 µM | PMC | ↑ | ↑ | ND | ND |
| Yamamoto et al. (2010) | MG-132 | 30–100 nM | 6-OHDA | 50 µM | PMC | ↑ | ↑ | ND | ND |
| Yamamoto et al. (2010) | PSI | 3–10 nM | 6-OHDA | 50 µM | PMC | ↑ | ↑ | ND | ND |
| Hwang and Jeong (2010) | Ginsenoside Rb1 | 30–100 μg/ml | 6-OHDA | 50 µM | SH-SY5Y | ↑ | ↑ | PI3K/Akt | + |
| Quesada et al. (2009) | MGF24 | 5–10 μg/ml | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ND | Akt | ND |
| Hwang and Jeong (2008) | kahweol | 5–10 μM | 6-OHDA | 50 µM | SH-SY5Y | ↑ | ↑ | PI3K; p38 | + |
| Hwang et al. (2008) | Metallothionein-III | 25–50 ng/ml | 6-OHDA | 50 µM | SH-SY5Y | ↑ | ↑ | PI3K; ERK | + |
| Li et al. (2007) | tBHQ | 40 μM | 6-OHDA | 100 µM | PC12 | ↑ | ↑ | ND | + |
| Lee et al. (2006) | Ondamtanggamibang | 800 μg/ml | 6-OHDA | 100 µM | PC12 | ↑ | ND | ND | ND |
| Lin et al. (2007) | GLNVA | 10–100 µM | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ND | ND | ND |
| Hara et al. (2006) | Apomorphine | 20–30 µM | 6-OHDA | 50 µM | SH-SY5Y | ND | ↑ | ND | + |
| Muñoz et al. (2004) | N-acetylcysteine | 240 mM | 6-OHDA | 3 μg/μM | Rat | ↑ | ND | ND | ND |
| Salinas et al. (2003) | NGF | 20 ng/ml | 6-OHDA | 40 µM | PC12 | ↑ | ↑ | ND | ND |
| Zhang et al. (2012) | Baicalein | 50–200 μM | 6-OHDA | 100 µM | PC12 | ↑ | ↑ | PKCα; PI3K/AKT | + |
| Wu C. R. et al. (2018) | Davallia mariesii | 10–250 μg/ml | 6-OHDA | 50 µM | B35 cells | ↑ | ND | PI3K/AKT/GSK-3β | ND |
| Kurauchi et al. (2012) | CAPE | 10–30 mg/kg | 6-OHDA | 2 μg/μM | Mouse | ↑ | ND | p38 MAPK | + |
| Hu et al. (2014) | Luteolin | 20 μM | 6-OHDA | 100 µM | PC12 | ND | ↑ | ND | + |
| Shih et al. (2011) | SHXT | 50–200 μg/ml | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ND | ND | ND |
| Kuo et al. (2014) | DFE | 25–250 μg/ml | 6-OHDA | 50 µM | BNC | ↑ | ND | PI3K/Akt | ND |
| Park et al. (2014) | α-Iso-cubebene | 20–80 μM | 6-OHDA | 200 µM | SH-SY5Y | ↑ | ND | PKA/PKB/CREB | ND |
| Kim et al. (2015) | DHC | 0.4–10 μM | 6-OHDA | 100 µM | SH-SY5Y | ↑ | ND | ND | + |
| Luo et al. (2017) | L-F001 | 1–10 μM | 6-OHDA | 200 µM | PC12 | ↑ | ND | Akt/GSK-3beta | + |
HPO-DAEE, 4-hydroperoxy-2-decenoic acid ethyl ester; 1T3O, 1-tosylpentan-3-one; DDC, 2′,3′-dihydroxy-4′,6′-dimethoxychalcone; DFC, deferricoprogen; DMA. PACA, dimerumic acid, N-propargyl caffeate amide; PCA, protocatechuic acid; DBL, 3,4-dihydroxybenzalacetone; MDC, Mes23.5 dopaminergic cells; SRE, Sanguisorbae Radix extract; IGF-1, insulin-like growth factor -1; PCN, primary cortical neuron cultures; MGF24, 24-amino acid C-terminal peptide of mechano growth factor; lactacystin, a proteasome inhibitor; PMC, primary mesencephalic cultures; PSI, benzyloxycarbonyl-Ile-Glu(O-t-butyl)-Ala-leucinal; MG-132, benzyloxycarbonyl-Leu-Leu-leucinal; tBHQ, tert-butylhydroquinone; GLNVA, glyceryl nonivamide; NGF, nerve growth factor; CAPE, caffeic acid phenethyl ester; SHXT, San-Huang-Xie-Xin-Tang; BNC, B35 neuroblastoma cells; DFE, Drynaria fortunei extract; DHC, 5,7-dihydroxychromone; P, protein; M, mRNA.
TABLE 8.
Summary of the experimental studies involving HO-1 inducer against MPP+-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | HO-1 protein | HO-1 mRNA | Signaling | Nrf2 |
|---|---|---|---|---|---|---|---|---|---|
| Wang T. et al. (2020) | Ghrelin | 1–10 µM | MPP+ | 1 mM | SH-SY5Y | ↑ | ND | ERK1/2 | + |
| Zheng et al. (2020) | CBR-470-1 | 10 µM | MPP+ | 3 mM | SH-SY5Y | ↑ | ↑ | ND | + |
| Li C. H. et al. (2020) | Ferulic acid | 3–10 µM | MPP+ | 250 µM | SH-SY5Y | ↑ | ↑ | ERK1/2 | + |
| Zhu J. L. et al. (2019) | SC79 | 10 µM | MPP+ | 3 mM | SH-SY5Y | ↑ | ↑ | Akt | + |
| Dong et al. (2020) | Thymoquinone | 0.5–0.75 µM | MPP+ | 1 mM | SH-SY5Y | ↑ | ND | ND | + |
| Bao et al. (2019) | Sulforaphane | 1–10 µM | MPP+ | 500 µM | PC12 | ↑ | ND | ND | + |
| Yan et al. (2018) | Simvastatin | 1–1.5 µM | MPP+ | 100 µM | SH-SY5Y | ↑ | ND | ERK1/2 | + |
| Li C. et al. (2018) | Pinostrobin | 1–25 µM | MPP+ | 150 µM | SH-SY5Y | ↑ | ND | PI3K/AKT; ERK | + |
| Li M. et al. (2018) | FG-4592 | 50 µM | MPP+ | 350 µM | SH-SY5Y | ↑ | ND | ND | + |
| Wang H. et al. (2018) | BCP | 1–2.5 µM | MPP+ | 50 µM | SH-SY5Y | ↑ | ND | JNK | ND |
| Jiang et al. (2014) | Gastrodin | 1–25 µM | MPP+ | 100 µM | SH-SY5Y | ↑ | ↑ | P38MAPK | + |
| Jo et al. (2018) | Gintonin | 50–100 mg/kg | MPP+ | 250 µM | SH-SY5Y | ↑ | ND | ND | + |
| Lee J. A. et al. (2016) | PLE | 20–200 μg/ml | MPP+ | 100–200 µM | SH-SY5Y | ND | ↑ | ND | ND |
| Liu et al. (2017) | MT-20R | 10–100 µM | MPP+ | 150 µM | CGNs | ↑ | ND | AKT | + |
| Zou Y. M. et al. (2015) | β-Ecdysterone | 1–100 µM | MPP+ | 500 µM | PC12 | ↑ | ND | PI3K | ND |
| Ye et al. (2012) | Astaxanthin | 5–20 µM | MPP+ | 500 µM | PC12 | ↑ | ND | ND | + |
| Chen et al. (2012) | β-PGG | 20–100 µM | MPP+ | 500 µM | PC12 | ↑ | ↑ | AKT; ERK | + |
| Moreira et al. (2017) | TUDCA | 100 µM | MPP+ | 100 µM | SH-SY5Y | ↑ | ND | ND | + |
| Tran et al. (2017) | Amitriptyline | 5 µM | MPP+ | 50–200 µM | NNCs | ↑ | ↑ | ERK | ND |
| More and Choi (2017a) | Atractylenolide-I | 5–25 µM | MPP+ | 200 µM | SH-SY5Y | ↑ | ↑ | ND | ND |
| Wang et al. (2016) | Pinocembrin | 10–30 µM | MPP+ | 200 µM | SH-SY5Y | ↑ | ↑ | ERK | + |
| Huang and Chuang (2010), Chuang et al. (2015) | FGF-9 | 10–100 ng/ml | MPP+ | 100 µM | PCN | ↑ | ↑ | AKT; ERK | + |
| Cheng et al. (2014) | Edaravone | 50–100 µM | MPP+ | 100 µM | PC12 | ↑ | ND | ND | ND |
| Quesada et al. (2009) | MGF24 | 0.1 μg/ml | MPP+ | 500 µM | SH-SY5Y | ↑ | ND | PKC | ND |
| Wruck et al. (2007) | Luteolin | 20 μM | MPP+ | 100 µM | PC12 | ND | ↑ | ERK | + |
| Liu et al. (2018) | MANF | 400 ng/ml | MPP+ | 200 µM | SH-SY5Y | ND | ↑ | ND | ND |
| Tiwari et al. (2013) | PLGA | 50–400 µM | MPP+ | 100 µM | DNC | ↑ | ND | ND | ND |
CBR-470-1, PGK1 inhibitor; FG-4592, prolyl hydroxylase inhibitor; BCP, β-caryophyllene; PLE, Paeonia lactiflora extract; CGNs, cerebellar granule neurons; β-PGG, 1,2,3,4,6-penta-O-galloyl-β-D-glucose; TUDCA, tauroursodeoxycholic acid; NNCs, neocortical neuronal cells; FGF-9, fibroblast growth factor 9; PCN, primary cortical neuron cultures; MGF24, 24-amino acid C-terminal peptide of mechano growth factor; MANF, mesencephalic astrocyte-derived neurotrophic factor; PLE, Paeonia lactiflora extract; DNC, dopaminergic neuron cultures.
TABLE 9.
Summary of the experimental studies involving HO-1 inducer against MPTP-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | HO-1 protein | HO-1 mRNA | Signaling | Nrf2 |
|---|---|---|---|---|---|---|---|---|---|
| Sheng et al. (2021) | SDA | 100–900 mg/kg, p.o. × 4 weeks | MPTP | 30 mg/kg/day i.p. for 5 days | Male C57BL/6J mice | ↑ | ND | ND | + |
| Dong et al. (2020) | Thymoquinone | 10 mg/kg/day, i.p. × 7 d | MPTP | 25 mg/kg/day, i.p. × 5 days | C57/BL6 mice | ↑ | ND | ND | + |
| Huang et al. (2021) | PSP | 30 mg/kg/day, p.o. × 4 weeks | MPTP | 30 mg/kg/day, i.p. × 5 days | Male C57BL/6J mice | ↑ | ND | Akt | + |
| Choi et al. (2021) | Vinyl sulfones 9d | 30 mg/kg/day, p.o. × 3 d | MPTP | 20 mg/kg, i.p. four times at 2 h intervals | Male C57BL/6 mice | ↑ | ↑ | ND | + |
| Mohamed et al. (2021) | Tiron | 140 and 280 mg/kg, i.p. × 10 days starting 5 days before MPTP injection | MPTP | 30 mg/kg/day, i.p. × 5 days | Male albino mice | ↑HO-1(ICH) | ND | ND | + |
| Lin O. et al. (2020) | Trehalose | 2% in drinking water | MPTP | 30 mg/kg/day, i.p. × 15 times | Male C57BL/6 mice | ↑ | ND | ND | + |
| Chen et al. (2020) | T-006 | 3–10 mg/kg/day, p.o. × 14 d | MPTP | 30 mg/kg/day, i.p. × 5 d | Female C57BL/6 mice | ↑ | ND | Akt/GSK3β | + |
| Lee J. E. et al. (2020) | KKC080106 | 30 mg/kg, tid, p.o. | MPTP | 20 mg/kg, i.p. four times at 2 h intervals | Male C57BL/6 mice | ↑ | ↑ | ND | + |
| Wang T. et al. (2020) | Piperine analogues-3b | 50–100 mg/kg/day, p.o. × 7 d | MPTP | 25 mg/kg/day, i.p. × 7 d | Male C57BL/6 mice | ↑ | ND | ND | + |
| Li et al. (2020b) | Ferulic acid | 50 mg/kg/day, p.o. × 15 d | MPP+ | 25 mg/kg/day, i.p. × 5 d | C57BL/6J mice | ↑ | ↑ | ERK1/2 | + |
| Kim et al. (2020) | KKPA4026 | 30 mg/kg/day, p.o. × 3 d | MPTP | 20 mg/kg, i.p. four times at 2 h intervals | Male C57BL/6 mice | ↑ | ND | ND | + |
| Qu et al. (2019) | Rosmarinic acid | 20 mg/kg, i.g. | MPTP | 30 mg/kg, i.p. | C57BL/6 mice | ↑ | ND | ND | + |
| Wang Y. et al. (2018) | Pramipexole | 0.07–0.15 cm2 (TP) | MPTP | 30 mg/kg, i.p. | C57BL/6 mice | ↑ | ND | ND | + |
| Li M. et al. (2018) | Pinostrobin | 0.2–125 µM | MPTP | 360 μM | Zebrafish | ↑ | ND | PI3K/AKT; ERK | + |
| Li X. et al. (2018) | FG-4592 | 10 mg/kg/day, i.p. | MPTP | 30 mg/kg/day, i.p. | C57BL/6 mice | ↑ | ND | ND | + |
| Begum M and Sen (2018) | SNC-80 | 10 mg/kg | MPTP | 30 mg/kg/day, i.p. | Swiss albino mice | ↑ | ND | ND | + |
| Jo et al. (2018) | Gintonin | 50–100 mg/kg | MPTP | 30 mg/kg/day, i.p. × 5 d | C57BL/6N mice | ↑ | ND | ND | + |
| Kabel et al. (2018) | Linagliptin | 3–10 mg/kg/day | MPTP | * | 80 Balb/c mice | ↑(ELISA) | ND | +(ELISA) | |
| Huang et al. (2017) | Uric acid | 25 mg/kg/day × 13 d | MPTP | 25 mg/kg/day, i.p. × 7 d | C57BL/6 mice | ND | ↑ | ND | + |
| Moreira et al. (2017) | TUDCA | 50 mg/kg × 3 d | MPTP | 40 mg/kg | C57BL/6 mice | ↑ | ND | ND | + |
| More and Choi (2017b) | Atractylenolide-I | 30 mg/kg/10 ml | MPTP | 10 mg/kg/10 ml | C57BL6/J mice | ↑ | ↑ | PI3K/AKT | ND |
| Liu et al. (2017) | MT-20R | 60–180 mg/kg × 7 d | MPTP | 30 mg/kg/day, i.p. × 5 d | C57BL/6 Mouse | ↑ | ND | AKT | + |
| Luo et al. (2017) | L-F001 | 35–70 mg/kg × 7 d | MPTP | 40 mg/kg | C57BL/6 mice | ↑ | ND | Akt/GSK-3beta | + |
| Ozkan et al. (2016) | DHA | 36 mg/kg/day | MPTP | 20 mg/kg | C57BL/6 mice | ↑ | ND | ND | + |
| Lee J. A. et al. (2016) | ITC-57 | 30 mg/kg × 3 d | MPTP | 20 mg/kg/2 h, i.p. × 4 | C57BL/6J mice | ↑ | ↑ | ND | + |
| Lee J. A. et al. (2015) | VSC2 | 10 mg/kg/day × 3 d | MPTP | 20 mg/kg, i.p. × 4 | C57BL/6 mice | ↑ | ↑ | ND | + |
| Woo et al. (2014) | Vinyl sulfones | 10 mg/kg | MPTP | 20 mg/kg/2 h, i.p. × 4 | C57BL/6 mice | ↑ | ↑ | ND | + |
| García et al. (2014) | S-Allyl cysteine | 120 mg/kg, i.p. × 5 d | MPTP | 30 mg/kg/day, i.p. × 5 d | C57BL/6 mice | ↑ | ND | ND | + |
| Tiwari et al. (2013) | PLGA | 1 mg/kg/day, i.p. × 7 d | MPTP | 20 mg/kg/2 h, i.p. × 4 | Swiss albino mice | ↑ | ND | ND | ND |
| Chinta et al. (2012) | DHB | 100 mg/kg, i.p. | MPTP | 2 × 20 mg/kg, 12 h apart | C57BL/6 mice | ↑ | ND | p38MAPK; JNK | ND |
| Jazwa et al. (2011) | Sulforaphane | 50 mg/kg | MPTP | 30 mg/kg | mice | ↑ | ND | ND | + |
| Lee et al. (2009) | DHB | 100 mg/kg, i.p. | MPTP | 2 × 20 mg/kg, 12 h apart | C57BL/6 mice | ↑ | ND | ND | +HIF |
TP, transdermal patch; SNC-80, DOR agonist; L-F001, a multifunction ROCK inhibitor; DHA, docosahexaenoic acid; ITC-57, novel synthetic isothiocyanate; VSC2, (E)-1-(2-((2-methoxyphenyl)sulfonyl)vinyl)-2-chlorobenzene); PLGA, poly(lactic-co-glycolic) acid; DHB, the prolyl hydroxylase inhibitor 3,4-dihydroxybenzoate; HIF, hypoxia-inducible factor.
TABLE 10.
Summary of the experimental studies involving HO-1 inducer against paraquat-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | HO-1 protein | HO-1 mRNA | Signaling | Nrf2 |
|---|---|---|---|---|---|---|---|---|---|
| de Oliveira et al. (2017a) (2018a) | Carnosic acid | 1 μM | Paraquat | 100 μM | SH-SY5Y | ND | ND | ND | + |
| Rasheed et al. (2020) | Resveratrol | Paraquat | mouse | ↑ | ND | ND | + | ||
| Li et al. (2012) | tBHQ | Oral feeding | Paraquat | 7 mg/kg | C57BL/6 mice | ↑ | ND | ND | + |
| Li et al. (2012) | tBHQ | 40 μM | Paraquat | 100–300 μM | PC12 | ↑ | ND | ND | + |
| de Oliveira et al. (2018b) | Naringenin | 80 μM | Paraquat | 100 μM | SH-SY5Y | ND | ND | ND | + |
| Alural et al. (2015) | Lithium | 2–5 mM | Paraquat | 0.5 mM | SH-SY5Y | ND | ↑ | ND | + |
| de Rus Jacquet et al. (2017) | Allium sativum | 1–10 μg/ml | Paraquat | 2.5 μM | PMC | ↑ | ↑ | ND | + |
| de Rus Jacquet et al. (2017) | Trifolium pratense | 1–10 μg/ml | Paraquat | 2.5 μM | PMC | ↑ | ↑ | ND | + |
| de Rus Jacquet et al. (2017) | Amelanchier arborea | 1–10 μg/ml | Paraquat | 2.5 μM | PMC | ↑ | ↑ | ND | + |
6-HITC, 6-(methylsulfinyl)hexyl isothiocyanate, which is a naturally occurring isothiocyanate; tBHQ, tert-butylhydroquinone; PMC, primary midbrain cultures.
TABLE 11.
Summary of the experimental studies involving HO-1 inducer against rotenone-induced PD models.
| References | Compound | Compound dose | Toxin | Toxin dose | Model | HO-1 protein | HO-1 mRNA | Signaling | Nrf2 |
|---|---|---|---|---|---|---|---|---|---|
| Terada et al. (2020) | Ziprasidone | 0.1–1 µM | Rotenone | 1 µM | PC12 | ND | ↑ | ND | + |
| Duvigneau et al. (2020) | Cannabidiol | 10 µM | Rotenone | 80 nM | PMC | ND | ↑ | ND | ND |
| Lin O. et al. (2020) | Monascin | 100–400 mg/kg/day, p.o., for 28 days | Rotenone | 2–3 mg/kg, i.p. for 42 days | Male SD rats | ↑ | ND | ND | + |
| Arab et al. (2021) | Dapagliflozin | 1 mg/kg//kg/2day, p.o., over 3 weeks | Rotenone | 1.5 mg/kg, s.c., every other day over 3 weeks | Adult male Wistar rats | ↑Activities of HO-1 | ND | ND | + |
| Wei et al. (2020) | Ellagic acid | 100 mg/kg/days, p.o. × 35 d | Rotenone | 1 mg/kg, s.c. 6 times a week for consecutive 5 weeks | C57BL/6J male mice | ↑ | ND | ND | + |
| El-Ghaiesh et al. (2020) | Metformin | 100 or 200 mg/kg, every 24 ± 2 h, volume = 4 ml/kg | Rotenone | 1 mg/kg, s.c. every 48 h, volume = 4 ml/kg | Male Swiss albino mice | ↑ | ND | ND | + |
| Wang T. et al. (2020) | Danshensu | 15–60 mg/kg, p.o. × 15 d | Rotenone | 30 mg/kg | Male C57BL/6 mice | ↑ | ND | PI3K/AKT | + |
| Zhu L. et al. (2019) | SC79 | 10 µM | Rotenone | 300 nM | SH-SY5Y | ↑ | ↑ | Akt | + |
| de Rus Jacquet et al. (2017) | Allium sativum | 1–10 μg/ml | Rotenone | 20 nM | PMC | ↑ | ↑ | ND | + |
| de Rus Jacquet et al. (2017) | Trifolium pratense | 1–10 μg/ml | Rotenone | 20 nM | PMC | ↑ | ↑ | ND | + |
| de Rus Jacquet et al. (2017) | Amelanchier arborea | 1–10 μg/ml | Rotenone | 20 nM | PMC | ↑ | ↑ | ND | + |
| Liu et al. (2016) | PF/β-Ecd | 4–3.2 μM–/0.4–3.2 μM | Rotenone | 1 μM × 24 h | PC12 | ↑ | ↑ | Akt | + |
| Michel et al. (2017) | TTMP | 2 mg/kg, i.p. × 4 w | Rotenone | 2 mg/kg, s.c. × 4 w | SD rat | ↑ | ND | ND | + |
| Cui et al. (2016) | Curcumin | 100 mg/kg, bid, i.g. × 50 d | Rotenone | 1 ml/kg/d, bid, i.g. × 50 d | Lewis rats | ↑ | ND | Akt | + |
| Minelli et al. (2009) | Cyclo (His-Pro) | 50 μM | Rotenone | 100 μM | PC12 | ↑ | ND | p38 MAPK | + |
| Zakharova et al. (2018) | rhLF | 25 mg/kg | Rotenone | 2.75 mg/kg | Wistar rats | + | ↑ | ↑HO-1(M) | + |
| Engel et al. (2018) | Duloxetine | 2–5 μM | Rotenone | 10 μM | SH-SY5Y | + | ↑ | PI3K/Akt | + |
| Zhang C. et al. (2017) | 20C | 1–10 μM | Rotenone | 4 μM | SH-SY5Y | ↑ | ND | PI3K/Akt | + |
| Zhang C. et al. (2017) | 20C | 1–10 μM | Rotenone | 4 μM | PC12 | ↑ | ND | PI3K/Akt; GSK3β | + |
| Zakharova et al. (2018) | rhLF | 25 mg/kg | Rotenone | 2.75 mg/kg | Wistar rats | ND | ↑ | ND | + |
| Engel et al. (2018) | Duloxetine | 2–5 μM | Rotenone | 10 μM | SH-SY5Y | ND | ↑ | PI3K/Akt | + |
| Zhang X. L. et al. (2017) | 20C | 1–10 μM | Rotenone | 4 μM | SH-SY5Y | ↑ | ND | PI3K/Akt | + |
| Zhang X. L. et al. (2017) | 20C | 1–10 μM | Rotenone | 4 μM | PC12 | ↑ | ND | PI3K/Akt; GSK3β | + |
| Pan et al. (2016) | Safranal | 10–50 μg/ml | Rotenone | 100 nM | PDC | ↑ | ↑ | ND | + |
| Zhou et al. (2016) | Sulforaphane | 50 mg/kg | Rotenone | 30 mg/kg | C57BL/6 mice | ↑ | ND | ND | + |
| Huang et al. (2016) | 20C | 0.01–1 μM | Rotenone | 4 μM | PC12 | ↑ | ↑ | ND | + |
| Cui et al. (2016) | Curcumin | 100 mg/kg, bid × 50 d | Rotenone | 1 mg/kg/d, bid × 46 d | Lewis rats | ↑ | ND | Akt | + |
| Parada et al. (2015) | Curcumin | 10–20 μM | Rotenone/Oligo A | 30 μM/10 μM | MGC | ↑ | ND | ND | ND |
| Lin et al. (2014) | Resveratrol | 10–20 μM | Rotenone | 20 μM | SH-SY5Y | ↑ | ND | ND | ND |
| Lin et al. (2012) | Desipramine | 10–20 μM | Rotenone | 3 μM | MDC | ↑ | ↑ | ERK; JNK | + |
| Dal-Cim et al. (2012) | Guanosine | 1 mM | Rotenone/Oligo A | 30 μM/10 μM | SH-SY5Y | ↑ | ND | PI3K/Akt; GSK-3β | ND |
| Parada et al. (2010) | PNU282987 | 1–10 μM | Rotenone/Oligo A | 30 μM/10 μM | SH-SY5Y | ↑ | ND | PI3K/Akt; Jak2 | ND |
| Romero et al. (2010) | Melatonin | 0.3–10 nm | Rotenone | 30 μM/10 μM | SH-SY5Y | ND | ND | PKC; PI3K/Akt | ND |
| Quesada et al. (2009) | MGF24 | 0.1 μg/ml | Rotenone | 100 nM | SH-SY5Y | ↑ | ND | PKC | ND |
| Cañas et al. (2007) | CS | 0.3–100 μM | Rotenone/Oligo A | 10 μM/1 μM | SH-SY5Y | ↑ | ND | PKC; PI3K/Akt | ND |
| Egea et al. (2007) | Epibatidine | 30 nM–30 μM | Rotenone/Oligo A | 30 μM/10 μM | BCC | ↑ | ND | ERK | ND |
| Wu et al. (2006) | EGCG | 50–100 μM | Rotenone | 5 μM | Endothelial cells | ↑ | ↑ | PI3K/Akt; ERK | ND |
| Jo et al. (2018) | Gintonin | 50–100 mg/kg | Rotenone | 200–500 nM | SH-SY5Y | ↑ | ND | ND | + |
rhLF, recombinant human lactoferrin; 20C, a bibenzyl compound isolated from Gastrodia elata; PDC, primary dopaminergic cells; TMP, tetramethylpyrazine; i.g., intragastrically; MGC, mixed glial cultures; MDC, Mes23.5 dopaminergic cells; Oligo A, oligomycin A; PNU282987, α7 nicotinic acetylcholine receptor (nAChR) agonist; MGF24, 24-amino acid C-terminal peptide of mechano growth factor; CS, chondroitin sulfate; Epibatidine, nicotinic acetylcholine receptors (nAChR) agonist; BCC, bovine chromaffin cells; EGCG, epigallocatechin-3-gallate.
Future Perspectives
In the last decade, many research groups have developed induced pluripotent stem cell-based protocols to generate three-dimensional, multicellular, neural organoids to study the pathophysiology of PD (Lázaro et al., 2017; Rai and Singh, 2020; Costamagna et al., 2021; Outeiro et al., 2021). Organoids provide almost full features of PD pathology and physiology. The main advantage of using organoids as a PD model is that it shows very close association with in vivo conditions; thus, organoids are very easy to recapitulate all the features of PD. As compared to the conventional two-dimensional culture model, these new three-dimensional organoids provide new hope for drug screening. Recently, Outeiro and others developed microfluidic platforms to investigate specific molecular mechanisms associated with PD (Fernandes et al., 2016). Microfluidic platforms have shown PD-relevant phenotypes, including ROS production and mitochondrial dysfunction. Fernandes et al. designed a microfluidic device to understand their cell-cell and biochemical communication. The connected chambers allowed rapid diffusion of molecules from one camber to another. The device was integrated with pneumatic valves, which helped in controlling the fluid routing and cellular microenvironment and simulating the paracrine signaling. The authors studied the spreading of α-Syn and mutual communication between different cell types (neurons and glia). They observed diffusion of ROS from a chamber containing activated microglia to the other chamber that contained healthy neuroglioma cells indicating the role of ROS for neuronal functional impairment (Fernandes et al., 2016). The microfluidic device was used to study the transport of mitochondria along dopaminergic axons isolated from mice (Lu et al., 2012). A recent study used a microfluidic platform to dissect the mitochondrial dysfunctions associated with a genetic form of PD with dynamin-related GTPase optic atrophy type 1 (OPA1) mutations (Iannielli et al., 2019), revealing that axons of OPA1 mutant dopaminergic neurons exhibit a significant reduction of mitochondrial mass. This defect causes a significant loss of dopaminergic synapses, which worsens in long-term cultures. Therefore, PD-associated depletion of mitochondria at synapses might precede loss of neuronal connectivity and neurodegeneration. Seidi and others used microfluidic platforms to study the effect of 6-OHDA that induces neuronal apoptosis in PC12 cells. This represented an in vitro model of PD, which revealed that low and high concentrations of 6-ODHA decreased the viability of neuronal cells due to apoptosis and necrosis, respectively. Thus, these concentration gradient studies were considered as useful information for creating an in vitro model of PD to induce the highest level of apoptosis in cells (Seidi et al., 2011). They may provide a useful approach for generating in vitro models of disease for drug discovery applications.
Microfluidics is a rising star in the development of innovative approaches in drug discovery and screening, particularly in screening natural product drugs based on chemical properties, pharmacological effects, and drug cytotoxicity. But in the present stage, these newly developed in vitro models of PD and microfluidic platforms were not used to study the effect of the Nrf2/HO-1 activator (Lee J. A. et al., 2020). Future research is expected to elucidate the detailed molecular mechanism of Nrf2/HO-1 activator which regulates Nrf2 activation and HO-1 induction in these newly developed in vitro models of PD leading to the development of novel drugs that target Nrf2/ARE/HO-1.
Conclusion
Emerging evidence has suggested that the Nrf2/ARE pathway plays a crucial role in cellular adaption by controlling orchestrated cytoprotective proteins, including HO-1, to counteract OS in PD, thereby providing a promising optimal therapeutic target against PD (Figure 7). By using various PD-related neurotoxin-induced in vitro and in vivo models, recent preclinical studies provide direct compelling evidence that the contribution of the pharmacological modulation of the Nrf2/ARE/HO-1 pathway exerts neuroprotection in PD.
FIGURE 7.
Schematic representation of bioactive compounds-mediated neuroprotective against PD through activating Nrf2/ARE/HO-1 pathway.
Author Contributions
YUW and HW: Conceptualization, Writing—original draft, Visualization. LG, JC, QL, LH, and YAW: Writing—original draft (table). YUM and HW: Conceptualization, Writing—review and, editing, Supervision. JD: review and editing, Supervision.
Funding
This work was supported in part by the National Natural Science Foundation of China (61971011, 71704053, 81260196, and 81450036), Natural Science Foundation of Inner Mongolia Autonomous Region (IMAR) (2021MS08131, 2020MS08175, and 2021LHMS08024), Science Foundation of AMHT (2020YK02), Science Foundation of CASIC (2020-LCYL-009), Science Foundation of ASCH (YN202104), Cultivation Plan of Scientific Research Committee for Health Development of Haidian District of Beijing (HP2021-19-50701), Science Foundation of Universities of IMAR (NJZY19218), and Program for Young Talents of Science and Technology in Universities of IMAR (NJYT-17-B23).
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s Note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
- Aarsland D., Creese B., Politis M., Chaudhuri K. R., Ffytche D. H., Weintraub D. (2017). Cognitive Decline in Parkinson Disease. Nat. Rev. Neurol. 13, 217–231. 10.1038/nrneurol.2017.27 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmad M. H., Fatima M., Ali M., Rizvi M. A., Chandra Mondal A. (2021). Naringenin Alleviates Paraquat-Induced Dopaminergic Neuronal Loss in SH-Sy5y Cells and a Rat Model of Parkinson's Disease. Neuropharmacology 21, 108831. 10.1016/j.neuropharm.2021.108831 [DOI] [PubMed] [Google Scholar]
- Ahuja M., Ammal Kaidery N., Yang L., Calingasan N., Smirnova N., Gaisin A., et al. (2016). Distinct Nrf2 Signaling Mechanisms of Fumaric Acid Esters and Their Role in Neuroprotection against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Experimental Parkinson's-like Disease. J. Neurosci. 36, 6332–6351. 10.1523/JNEUROSCI.0426-16.2016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alam Z. I., Daniel S. E., Lees A. J., Marsden D. C., Jenner P., Halliwell B. (1997a). A Generalised Increase in Protein Carbonyls in the Brain in Parkinson's but Not Incidental Lewy Body Disease. J. Neurochem. 69, 1326–1329. 10.1046/j.1471-4159.1997.69031326.x [DOI] [PubMed] [Google Scholar]
- Alam Z. I., Jenner A., Daniel S. E., Lees A. J., Cairns N., Marsden C. D., et al. (1997b). Oxidative DNA Damage in the Parkinsonian Brain: an Apparent Selective Increase in 8-hydroxyguanine Levels in Substantia Nigra. J. Neurochem. 69, 1196–1203. 10.1046/j.1471-4159.1997.69031196.x [DOI] [PubMed] [Google Scholar]
- Alarcón-Aguilar A., Luna-López A., Ventura-Gallegos J. L., Lazzarini R., Galván-Arzate S., González-Puertos V. Y., et al. (2014). Primary Cultured Astrocytes from Old Rats Are Capable to Activate the Nrf2 Response against MPP+ Toxicity after tBHQ Pretreatment. Neurobiol. Aging 35, 1901–1912. 10.1016/j.neurobiolaging.2014.01.143 [DOI] [PubMed] [Google Scholar]
- Alural B., Ozerdem A., Allmer J., Genc K., Genc S. (2015). Lithium Protects against Paraquat Neurotoxicity by NRF2 Activation and miR-34a Inhibition in SH-Sy5y Cells. Front. Cell. Neurosci. 9, 209. 10.3389/fncel.2015.00209 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anis E., Zafeer M. F., Firdaus F., Islam S. N., Khan A. A., Hossain M. M. (2020). Perillyl Alcohol Mitigates Behavioural Changes and Limits Cell Death and Mitochondrial Changes in Unilateral 6-OHDA Lesion Model of Parkinson's Disease through Alleviation of Oxidative Stress. Neurotoxicity Res. 38, 461–477. 10.1007/s12640-020-00213-0 [DOI] [PubMed] [Google Scholar]
- Arab H. H., Safar M. M., Shahin N. N. (2021). Targeting ROS-dependent AKT/GSK-3β/nf-Κb and DJ-1/Nrf2 Pathways by Dapagliflozin Attenuates Neuronal Injury and Motor Dysfunction in Rotenone-Induced Parkinson's Disease Rat Model. ACS Chem. Neurosci. 12, 689–703. 10.1021/acschemneuro.0c00722 [DOI] [PubMed] [Google Scholar]
- Ba Q., Cui C., Wen L., Feng S., Zhou J., Yang K. (2015). Schisandrin B Shows Neuroprotective Effect in 6-OHDA-Induced Parkinson's Disease via Inhibiting the Negative Modulation of miR-34a on Nrf2 Pathway. Biomed. Pharmacother. = Biomédecine pharmacothérapie 75, 165–172. 10.1016/j.biopha.2015.07.034 [DOI] [PubMed] [Google Scholar]
- Babior B. M., Curnutte J. T., Kipnes B. S. (1975). Pyridine Nucleotide-dependent Superoxide Production by a Cell-free System from Human Granulocytes. J. Clin. Invest. 56, 1035–1042. 10.1172/JCI108150 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Babior B. M., Kipnes R. S., Curnutte J. T. (1973). Biological Defense Mechanisms. The Production by Leukocytes of Superoxide, a Potential Bactericidal Agent. J. Clin. Invest. 52, 741–744. 10.1172/JCI107236 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bae J., Lee D., Kim Y. K., Gil M., Lee J. Y., Lee K. J. (2013). Berberine Protects 6-Hydroxydopamine-Induced Human Dopaminergic Neuronal Cell Death through the Induction of Heme Oxygenase-1. Mol. Cell 35, 151–157. 10.1007/s10059-013-2298-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baluchnejadmojarad T., Rabiee N., Zabihnejad S., Roghani M. (2017). Ellagic Acid Exerts Protective Effect in Intrastriatal 6-hydroxydopamine Rat Model of Parkinson's Disease: Possible Involvement of ERβ/Nrf2/HO-1 Signaling. Brain Res. 1662, 23–30. 10.1016/j.brainres.2017.02.021 [DOI] [PubMed] [Google Scholar]
- Bao B., Zhang M. Q., Chen Z. Y., Wu X. B., Xia Z. B., Chai J. Y., et al. (2019). Sulforaphane Prevents PC12 Cells from Oxidative Damage via the Nrf2 Pathway. Mol. Med. Rep. 19, 4890–4896. 10.3892/mmr.2019.10148 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bedard K., Krause K. H. (2007). The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 87, 245–313. 10.1152/physrev.00044.2005 [DOI] [PubMed] [Google Scholar]
- Begum M E. T., Sen D. (2018). DOR Agonist (SNC-80) Exhibits Anti-parkinsonian Effect via Downregulating UPR/oxidative Stress Signals and Inflammatory Response In Vivo . Neurosci. Lett. 678, 29–36. 10.1016/j.neulet.2018.04.055 [DOI] [PubMed] [Google Scholar]
- Belaidi A. A., Bush A. I. (2016). Iron Neurochemistry in Alzheimer's Disease and Parkinson's Disease: Targets for Therapeutics. J. Neurochem. 139 (Suppl. 1), 179–197. 10.1111/jnc.13425 [DOI] [PubMed] [Google Scholar]
- Bento-Pereira C., Dinkova-Kostova A. T. (2021). Activation of Transcription Factor Nrf2 to Counteract Mitochondrial Dysfunction in Parkinson's Disease. Med. Res. Rev. 41, 785–802. 10.1002/med.21714 [DOI] [PubMed] [Google Scholar]
- Berendes H., Bridges R. A., Good R. A. (1957). A Fatal Granulomatosus of Childhood: the Clinical Study of a New Syndrome. Minn. Med. 40, 309–312. [PubMed] [Google Scholar]
- Betharia S., Rondόn-Ortiz A. N., Brown D. A. (2019). Disubstituted Dithiolethione ACDT Exerts Neuroprotective Effects against 6-Hydroxydopamine-Induced Oxidative Stress in SH-Sy5y Cells. Neurochem. Res. 44, 1878–1892. 10.1007/s11064-019-02823-3 [DOI] [PubMed] [Google Scholar]
- Blesa J., Trigo-Damas I., Quiroga-Varela A., Jackson-Lewis V. R. (2015). Oxidative Stress and Parkinson's Disease. Front. Neuroanat. 9, 91. 10.3389/fnana.2015.00091 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum D., Torch S., Lambeng N., Nissou M., Benabid A. L., Sadoul R., et al. (2001). Molecular Pathways Involved in the Neurotoxicity of 6-OHDA, Dopamine and MPTP: Contribution to the Apoptotic Theory in Parkinson's Disease. Prog. Neurobiol. 65, 135–172. 10.1016/s0301-0082(01)00003-x [DOI] [PubMed] [Google Scholar]
- Bonifati V., Rizzu P., van Baren M. J., Schaap O., Breedveld G. J., Krieger E., et al. (2003). Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science 299, 256–259. 10.1126/science.1077209 [DOI] [PubMed] [Google Scholar]
- Boveris A., Chance B. (1973). The Mitochondrial Generation of Hydrogen Peroxide. General Properties and Effect of Hyperbaric Oxygen. Biochem. J. 134, 707–716. 10.1042/bj1340707 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brás I. C., Outeiro T. F. (2021). Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells 10, 375. 10.3390/cells10020375 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryan H. K., Olayanju A., Goldring C. E., Park B. K. (2013). The Nrf2 Cell Defence Pathway: Keap1-dependent and -independent Mechanisms of Regulation. Biochem. Pharmacol. 85, 705–717. 10.1016/j.bcp.2012.11.016 [DOI] [PubMed] [Google Scholar]
- Buendia I., Michalska P., Navarro E., Gameiro I., Egea J., León R. (2016). Nrf2-ARE Pathway: An Emerging Target against Oxidative Stress and Neuroinflammation in Neurodegenerative Diseases. Pharmacol. Ther. 157, 84–104. 10.1016/j.pharmthera.2015.11.003 [DOI] [PubMed] [Google Scholar]
- Calkins M. J., Jakel R. J., Johnson D. A., Chan K., Kan Y. W., Johnson J. A. (2005). Protection from Mitochondrial Complex II Inhibition In Vitro and In Vivo by Nrf2-Mediated Transcription. Proc. Natl. Acad. Sci. United States America 102, 244–249. 10.1073/pnas.0408487101 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calkins M. J., Johnson D. A., Townsend J. A., Vargas M. R., Dowell J. A., Williamson T. P., et al. (2009). The Nrf2/ARE Pathway as a Potential Therapeutic Target in Neurodegenerative Disease. Antioxid. Redox signaling 11, 497–508. 10.1089/ars.2008.2242 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cañas N., Valero T., Villarroya M., Montell E., Vergés J., García A. G., et al. (2007). Chondroitin Sulfate Protects SH-Sy5y Cells from Oxidative Stress by Inducing Heme Oxygenase-1 via Phosphatidylinositol 3-kinase/Akt. J. Pharmacol. Exp. Ther. 323, 946–953. 10.1124/jpet.107.123505 [DOI] [PubMed] [Google Scholar]
- Chandrasekhar Y., Phani Kumar G., Ramya E. M., Anilakumar K. R. (2018). Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line. Neurochem. Res. 43, 1150–1160. 10.1007/s11064-018-2530-y [DOI] [PubMed] [Google Scholar]
- Chaturvedi R. K., Beal M. F. (2008). Mitochondrial Approaches for Neuroprotection. Ann. N.Y Acad. Sci. 1147, 395–412. 10.1196/annals.1427.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen H., Cao J., Zha L., Wang P., Liu Z., Guo B., et al. (2020). Neuroprotective and Neurogenic Effects of Novel Tetramethylpyrazine Derivative T-006 in Parkinson's Disease Models through Activating the MEF2-Pgc1α and BDNF/CREB Pathways. Aging 12, 14897–14917. 10.18632/aging.103551 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen H., Li H., Cao F., Zhen L., Bai J., Yuan S., et al. (2012). 1,2,3,4,6-penta-O-galloyl-β-D-glucose Protects PC12 Cells from MPP(+)-mediated Cell Death by Inducing Heme Oxygenase-1 in an ERK- and Akt-dependent Manner. J. Huazhong Univ. Sci. Technolog Med. Sci. 32, 737–745. 10.1007/s11596-012-1027-1 [DOI] [PubMed] [Google Scholar]
- Chen L. L., Huang Y. J., Cui J. T., Song N., Xie J. (2019). Iron Dysregulation in Parkinson's Disease: Focused on the Autophagy-Lysosome Pathway. ACS Chem. Neurosci. 10, 863–871. 10.1021/acschemneuro.8b00390 [DOI] [PubMed] [Google Scholar]
- Chen P. C., Vargas M. R., Pani A. K., Smeyne R. J., Johnson D. A., Kan Y. W., et al. (2009). Nrf2-mediated Neuroprotection in the MPTP Mouse Model of Parkinson's Disease: Critical Role for the Astrocyte. Proc. Natl. Acad. Sci. United States America 106, 2933–2938. 10.1073/pnas.0813361106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng B., Guo Y., Li C., Ji B., Pan Y., Chen J., et al. (2014). Edaravone Protected PC12 Cells against MPP(+)-cytoxicity via Inhibiting Oxidative Stress and Up-Regulating Heme Oxygenase-1 Expression. J. Neurol. Sci. 343, 115–119. 10.1016/j.jns.2014.05.051 [DOI] [PubMed] [Google Scholar]
- Chidambaram S. B., Bhat A., Ray B., Sugumar M., Muthukumar S. P., Manivasagam T., et al. (2018). Cocoa Beans Improve Mitochondrial Biogenesis via PPARγ/PGC1α Dependent Signalling Pathway in MPP+ Intoxicated Human Neuroblastoma Cells (SH-Sy5y). Nutr. Neurosci. 23, 471. 10.1080/1028415X.2018.1521088 [DOI] [PubMed] [Google Scholar]
- Chinta S. J., Andersen J. K. (2008). Redox Imbalance in Parkinson's Disease. Biochim. Biophys. Acta 1780, 1362–1367. 10.1016/j.bbagen.2008.02.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chinta S. J., Rajagopalan S., Ganesan A., Andersen J. K. (2012). A Possible Novel Anti-inflammatory Mechanism for the Pharmacological Prolyl Hydroxylase Inhibitor 3,4-dihydroxybenzoate: Implications for Use as a Therapeutic for Parkinson's Disease. Parkinson's Dis. 2012, 364684. 10.1155/2012/364684 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi J. H., Jang M., Lee J. I., Chung W. S., Cho I. H. (2018). Neuroprotective Effects of a Traditional Multi-Herbal Medicine Kyung-Ok-Ko in an Animal Model of Parkinson's Disease: Inhibition of MAPKs and NF-Κb Pathways and Activation of Keap1-Nrf2 Pathway. Front. Pharmacol. 9, 1444. 10.3389/fphar.2018.01444 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi J. W., Kim S., Yoo J. S., Kim H. J., Kim H. J., Kim B. E., et al. (2021). Development and Optimization of Halogenated Vinyl Sulfones as Nrf2 Activators for the Treatment of Parkinson's Disease. Eur. J. Med. Chem. 212, 113103. 10.1016/j.ejmech.2020.113103 [DOI] [PubMed] [Google Scholar]
- Choi J. W., Shin S. J., Kim H. J., Park J. H., Kim H. J., Lee E. H., et al. (2019). Antioxidant, Anti-inflammatory, and Neuroprotective Effects of Novel Vinyl Sulfonate Compounds as Nrf2 Activator. ACS Med. Chem. Lett. 10, 1061–1067. 10.1021/acsmedchemlett.9b00163 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chong C. M., Zhou Z. Y., Razmovski-Naumovski V., Cui G. Z., Zhang L. Q., Sa F., et al. (2013). Danshensu Protects against 6-Hydroxydopamine-Induced Damage of PC12 Cells In Vitro and Dopaminergic Neurons in Zebrafish. Neurosci. Lett. 543, 121–125. 10.1016/j.neulet.2013.02.069 [DOI] [PubMed] [Google Scholar]
- Chuang J. I., Huang J. Y., Tsai S. J., Sun H. S., Yang S. H., Chuang P. C., et al. (2015). FGF9-induced Changes in Cellular Redox Status and HO-1 Upregulation Are FGFR-dependent and Proceed through Both ERK and AKT to Induce CREB and Nrf2 Activation. Free Radic. Biol. Med. 89, 274–286. 10.1016/j.freeradbiomed.2015.08.011 [DOI] [PubMed] [Google Scholar]
- Colonnello A., Aguilera-Portillo G., Rubio-López L. C., Robles-Bañuelos B., Rangel-López E., Cortez-Núñez S., et al. (2020). Comparing the Neuroprotective Effects of Caffeic Acid in Rat Cortical Slices and Caenorhabditis elegans: Involvement of Nrf2 and SKN-1 Signaling Pathways. Neurotoxicity Res. 37, 326–337. 10.1007/s12640-019-00133-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Consoli V., Sorrenti V., Grosso S., Vanella L. (2021). Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 11, 589. 10.3390/biom11040589 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cores Á., Piquero M., Villacampa M., León R., Menéndez J. C. (2020). NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 10, 904. 10.3390/biom10060904 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costamagna G., Comi G. P., Corti S. (2021). Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. Int. J. Mol. Sci. 22, 2659. 10.3390/ijms22052659 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuadrado A., Manda G., Hassan A., Alcaraz M. J., Barbas C., Daiber A., et al. (2018). Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol. Rev. 70, 348–383. 10.1124/pr.117.014753 [DOI] [PubMed] [Google Scholar]
- Cuadrado A., Rojo A. I., Wells G., Hayes J. D., Cousin S. P., Rumsey W. L., et al. (2019). Therapeutic Targeting of the NRF2 and KEAP1 Partnership in Chronic Diseases. Nat. Rev. Drug Discov. 18, 295–317. 10.1038/s41573-018-0008-x [DOI] [PubMed] [Google Scholar]
- Cuenca L., Gil-Martinez A. L., Cano-Fernandez L., Sanchez-Rodrigo C., Estrada C., Fernandez-Villalba E., et al. (2018). Parkinson's Disease: a Short story of 200 Years. Histology and histopathology 34, 573. 10.14670/HH-18-073 [DOI] [PubMed] [Google Scholar]
- Cui Q., Li X., Zhu H. (2016). Curcumin Ameliorates Dopaminergic Neuronal Oxidative Damage via Activation of the Akt/Nrf2 Pathway. Mol. Med. Rep. 13, 1381–1388. 10.3892/mmr.2015.4657 [DOI] [PubMed] [Google Scholar]
- D'Autréaux B., Toledano M. B. (2007). ROS as Signalling Molecules: Mechanisms that Generate Specificity in ROS Homeostasis. Nat. Rev. Mol. Cel. Biol. 8, 813–824. 10.1038/nrm2256 [DOI] [PubMed] [Google Scholar]
- Dal-Cim T., Molz S., Egea J., Parada E., Romero A., Budni J., et al. (2012). Guanosine Protects Human Neuroblastoma SH-Sy5y Cells against Mitochondrial Oxidative Stress by Inducing Heme Oxigenase-1 via PI3K/Akt/GSK-3β Pathway. Neurochem. Int. 61, 397–404. 10.1016/j.neuint.2012.05.021 [DOI] [PubMed] [Google Scholar]
- Danielson S. R., Andersen J. K. (2008). Oxidative and Nitrative Protein Modifications in Parkinson's Disease. Free Radic. Biol. Med. 44, 1787–1794. 10.1016/j.freeradbiomed.2008.03.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darabi S., Noori-Zadeh A., Abbaszadeh H. A., Rajaei F., Bakhtiyari S. (2019). Trehalose Neuroprotective Effects on the Substantia Nigra Dopaminergic Cells by Activating Autophagy and Non-canonical Nrf2 Pathways. Iranian J. Pharm. Res. 18, 1419–1428. 10.22037/ijpr.2019.2387 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darabi S., Noori-Zadeh A., Rajaei F., Abbaszadeh H. A., Bakhtiyari S., Roozbahany N. A. (2018). SMER28 Attenuates Dopaminergic Toxicity Mediated by 6-Hydroxydopamine in the Rats via Modulating Oxidative Burdens and Autophagy-Related Parameters. Neurochem. Res. 43, 2313–2323. 10.1007/s11064-018-2652-2 [DOI] [PubMed] [Google Scholar]
- de Oliveira M. R., Andrade C., Fürstenau C. R. (2018a). Naringenin Exerts Anti-inflammatory Effects in Paraquat-Treated SH-Sy5y Cells through a Mechanism Associated with the Nrf2/HO-1 Axis. Neurochem. Res. 43, 894–903. 10.1007/s11064-018-2495-x [DOI] [PubMed] [Google Scholar]
- de Oliveira M. R., de Souza I., Fürstenau C. R. (2018b). Carnosic Acid Induces Anti-inflammatory Effects in Paraquat-Treated SH-Sy5y Cells through a Mechanism Involving a Crosstalk between the Nrf2/HO-1 Axis and NF-Κb. Mol. Neurobiol. 55, 890–897. 10.1007/s12035-017-0389-6 [DOI] [PubMed] [Google Scholar]
- de Oliveira M. R., Ferreira G. C., Schuck P. F. (2016). Protective Effect of Carnosic Acid against Paraquat-Induced Redox Impairment and Mitochondrial Dysfunction in SH-Sy5y Cells: Role for PI3K/Akt/Nrf2 Pathway. Toxicol. vitro 32, 41–54. 10.1016/j.tiv.2015.12.005 [DOI] [PubMed] [Google Scholar]
- de Oliveira M. R., Peres A., Ferreira G. C., Schuck P. F., Gama C. S., Bosco S. (2017a). Carnosic Acid Protects Mitochondria of Human Neuroblastoma SH-Sy5y Cells Exposed to Paraquat through Activation of the Nrf2/HO-1Axis. Mol. Neurobiol. 54, 5961–5972. 10.1007/s12035-016-0100-3 [DOI] [PubMed] [Google Scholar]
- de Oliveira M. R., Peres A., Gama C. S., Bosco S. (2017b). Pinocembrin Provides Mitochondrial Protection by the Activation of the Erk1/2-Nrf2 Signaling Pathway in SH-Sy5y Neuroblastoma Cells Exposed to Paraquat. Mol. Neurobiol. 54, 6018–6031. 10.1007/s12035-016-0135-5 [DOI] [PubMed] [Google Scholar]
- de Oliveira M. R., Schuck P. F., Bosco S. (2017c). Tanshinone I Induces Mitochondrial Protection through an Nrf2-dependent Mechanism in Paraquat-TreatedHuman Neuroblastoma SH-Sy5y Cells. Mol. Neurobiol. 54, 4597–4608. 10.1007/s12035-016-0009-x [DOI] [PubMed] [Google Scholar]
- de Rus Jacquet A., Tambe M. A., Ma S. Y., McCabe G. P., Vest J., Rochet J. C. (2017). Pikuni-Blackfeet Traditional Medicine: Neuroprotective Activities of Medicinal Plants Used to Treat Parkinson's Disease-Related Symptoms. J. ethnopharmacology 206, 393–407. 10.1016/j.jep.2017.01.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng C., Tao R., Yu S. Z., Jin H. (2012a). Inhibition of 6-Hydroxydopamine-Induced Endoplasmic Reticulum Stress by Sulforaphane through the Activation of Nrf2 Nuclear Translocation. Mol. Med. Rep. 6, 215–219. 10.3892/mmr.2012.894 [DOI] [PubMed] [Google Scholar]
- Deng C., Tao R., Yu S. Z., Jin H. (2012b). Sulforaphane Protects against 6-Hydroxydopamine-Induced Cytotoxicity by Increasing Expression of Heme Oxygenase-1 in a PI3K/Akt-dependent Manner. Mol. Med. Rep. 5, 847–851. 10.3892/mmr.2011.731 [DOI] [PubMed] [Google Scholar]
- Deng H., Wang P., Jankovic J. (2018). The Genetics of Parkinson Disease. Ageing Res. Rev. 42, 72–85. 10.1016/j.arr.2017.12.007 [DOI] [PubMed] [Google Scholar]
- Deshmukh P., Unni S., Krishnappa G., Padmanabhan B. (2017). The Keap1-Nrf2 Pathway: Promising Therapeutic Target to Counteract ROS-Mediated Damage in Cancers and Neurodegenerative Diseases. Biophysical Rev. 9, 41–56. 10.1007/s12551-016-0244-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dexter D. T., Carter C. J., Wells F. R., Javoy-Agid F., Agid Y., Lees A., et al. (1989). Basal Lipid Peroxidation in Substantia Nigra Is Increased in Parkinson's Disease. J. Neurochem. 52, 381–389. 10.1111/j.1471-4159.1989.tb09133.x [DOI] [PubMed] [Google Scholar]
- Di Fonzo A., Rohé C. F., Ferreira J., Chien H. F., Vacca L., Stocchi F., et al. (2005). A Frequent LRRK2 Gene Mutation Associated with Autosomal Dominant Parkinson's Disease. Lancet 365, 412–415. 10.1016/S0140-6736(05)17829-5 [DOI] [PubMed] [Google Scholar]
- Dias V., Junn E., Mouradian M. M. (2013). The Role of Oxidative Stress in Parkinson's Disease. J. Parkinson's Dis. 3, 461–491. 10.3233/JPD-130230 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinkova-Kostova A. T., Talalay P. (2008). Direct and Indirect Antioxidant Properties of Inducers of Cytoprotective Proteins. Mol. Nutr. Food Res. 52 (Suppl. 1), S128–S138. 10.1002/mnfr.200700195 [DOI] [PubMed] [Google Scholar]
- Domingo A., Klein C. (2018). Genetics of Parkinson Disease. Handbook Clin. Neurol. 147, 211–227. 10.1016/B978-0-444-63233-3.00014-2 [DOI] [PubMed] [Google Scholar]
- Dong H., Zhang J., Rong H., Zhang X., Dong M. (2021). Paeoniflorin and Plycyrrhetinic Acid Synergistically Alleviate MPP(+)/MPTP-Induced Oxidative Stress through Nrf2-dependent Glutathione Biosynthesis Mechanisms. ACS Chem. Neurosci. 12, 1100–1111. 10.1021/acschemneuro.0c00544 [DOI] [PubMed] [Google Scholar]
- Dong J., Zhang X., Wang S., Xu C., Gao M., Liu S., et al. (2020). Thymoquinone Prevents Dopaminergic Neurodegeneration by Attenuating Oxidative Stress via the Nrf2/ARE Pathway. Front. Pharmacol. 11, 615598. 10.3389/fphar.2020.615598 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dos Santos Nunes R. G., Pereira P. S., Elekofehinti O. O., Fidelis K. R., da Silva C. S., Ibrahim M., et al. (2019). Possible Involvement of Transcriptional Activation of Nuclear Factor Erythroid 2-related Factor 2 (Nrf2) in the Protective Effect of Caffeic Acid on Paraquat-Induced Oxidative Damage in Drosophila melanogaster . Pestic. Biochem. Physiol. 157, 161–168. 10.1016/j.pestbp.2019.03.017 [DOI] [PubMed] [Google Scholar]
- Dutta N., Ghosh S., Nelson V. K., Sareng H. R., Majumder C., Mandal S. C., et al. (2021). Andrographolide Upregulates Protein Quality Control Mechanisms in Cell and Mouse through Upregulation of mTORC1 Function. Biochim. Biophys. Acta Gen. subjects 1865, 129885. 10.1016/j.bbagen.2021.129885 [DOI] [PubMed] [Google Scholar]
- Duvigneau J. C., Trovato A., Müllebner A., Miller I., Krewenka C., Krenn K., et al. (2020). Cannabidiol Protects Dopaminergic Neurons in Mesencephalic Cultures against the Complex I Inhibitor Rotenone via Modulation of Heme Oxygenase Activity and Bilirubin. Antioxidants 9. 10.3390/antiox9020135 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egea J., Rosa A. O., Cuadrado A., García A. G., López M. G. (2007). Nicotinic Receptor Activation by Epibatidine Induces Heme Oxygenase-1 and Protects Chromaffin Cells against Oxidative Stress. J. Neurochem. 102, 1842–1852. 10.1111/j.1471-4159.2007.04665.x [DOI] [PubMed] [Google Scholar]
- El-Ghaiesh S. H., Bahr H. I., Ibrahiem A. T., Ghorab D., Alomar S. Y., Farag N. E., et al. (2020). Metformin Protects from Rotenone-Induced Nigrostriatal Neuronal Death in Adult Mice by Activating AMPK-FOXO3 Signaling and Mitigation of Angiogenesis. Front. Mol. Neurosci. 13, 84. 10.3389/fnmol.2020.00084 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elfawy H. A., Das B. (2019). Crosstalk between Mitochondrial Dysfunction, Oxidative Stress, and Age Related Neurodegenerative Disease: Etiologies and Therapeutic Strategies. Life Sci. 218, 165–184. 10.1016/j.lfs.2018.12.029 [DOI] [PubMed] [Google Scholar]
- Elmazoglu Z., Yar Saglam A. S., Sonmez C., Karasu C. (2020). Luteolin Protects Microglia against Rotenone-Induced Toxicity in a Hormetic Manner through Targeting Oxidative Stress Response, Genes Associated with Parkinson's Disease and Inflammatory Pathways. Drug Chem. Toxicol. 43, 96–103. 10.1080/01480545.2018.1504961 [DOI] [PubMed] [Google Scholar]
- Engel D. F., de Oliveira J., Lieberknecht V., Rodrigues A., de Bem A. F., Gabilan N. H. (2018). Duloxetine Protects Human Neuroblastoma Cells from Oxidative Stress-Induced Cell Death through Akt/Nrf-2/HO-1 Pathway. Neurochem. Res. 43, 387–396. 10.1007/s11064-017-2433-3 [DOI] [PubMed] [Google Scholar]
- Eo H., Huh E., Sim Y., Oh M. S. (2019). Ukgansan Protects Dopaminergic Neurons from 6-hydroxydopamine Neurotoxicity via Activation of the Nuclear Factor (Erythroid-derived 2)-like 2 Factor Signaling Pathway. Neurochem. Int. 122, 208–215. 10.1016/j.neuint.2018.11.021 [DOI] [PubMed] [Google Scholar]
- Fahn S., Cohen G. (1992). The Oxidant Stress Hypothesis in Parkinson's Disease: Evidence Supporting it. Ann. Neurol. 32, 804–812. 10.1002/ana.410320616 [DOI] [PubMed] [Google Scholar]
- Farrer M., Gwinn-Hardy K., Muenter M., DeVrieze F. W., Crook R., Perez-Tur J., et al. (1999). A Chromosome 4p Haplotype Segregating with Parkinson's Disease and Postural Tremor. Hum. Mol. Genet. 8, 81–85. 10.1093/hmg/8.1.81 [DOI] [PubMed] [Google Scholar]
- Feng C. W., Chen N. F., Wen Z. H., Yang W. Y., Kuo H. M., Sung P. J., et al. (2019). In Vitro and In Vivo Neuroprotective Effects of Stellettin B through Anti-apoptosis and the Nrf2/HO-1 Pathway. Mar. Drugs 17. 10.3390/md17060315 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng C. W., Hung H. C., Huang S. Y., Chen C. H., Chen Y. R., Chen C. Y., et al. (2016). Neuroprotective Effect of the Marine-Derived Compound 11-Dehydrosinulariolide through DJ-1-Related Pathway in In Vitro and In Vivo Models of Parkinson's Disease. Mar. Drugs 14, 187. 10.3390/md14100187 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandes J. T., Chutna O., Chu V., Conde J. P., Outeiro T. F. (2016). A Novel Microfluidic Cell Co-culture Platform for the Study of the Molecular Mechanisms of Parkinson's Disease and Other Synucleinopathies. Front. Neurosci. 10, 511. 10.3389/fnins.2016.00511 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Moriano C., González-Burgos E., Iglesias I., Lozano R., Gómez-Serranillos M. P. (2017). Evaluation of the Adaptogenic Potential Exerted by Ginsenosides Rb1 and Rg1 against Oxidative Stress-Mediated Neurotoxicity in an In Vitro Neuronal Model. PloS one 12, e0182933. 10.1371/journal.pone.0182933 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Figueira T. R., Barros M. H., Camargo A. A., Castilho R. F., Ferreira J. C., Kowaltowski A. J., et al. (2013). Mitochondria as a Source of Reactive Oxygen and Nitrogen Species: from Molecular Mechanisms to Human Health. Antioxid. Redox signaling 18, 2029–2074. 10.1089/ars.2012.4729 [DOI] [PubMed] [Google Scholar]
- Fujita H., Shiosaka M., Ogino T., Okimura Y., Utsumi T., Sato E. F., et al. (2008). Alpha-lipoic Acid Suppresses 6-Hydroxydopamine-Induced ROS Generation and Apoptosis through the Stimulation of Glutathione Synthesis but Not by the Expression of Heme Oxygenase-1. Brain Res. 1206, 1–12. 10.1016/j.brainres.2008.01.081 [DOI] [PubMed] [Google Scholar]
- Funakohi-Tago M., Sakata T., Fujiwara S., Sakakura A., Sugai T., Tago K., et al. (2018). Hydroxytyrosol Butyrate Inhibits 6-OHDA-Induced Apoptosis through Activation of the Nrf2/HO-1 axis in SH-Sy5y Cells. Eur. J. Pharmacol. 834, 246–256. 10.1016/j.ejphar.2018.07.043 [DOI] [PubMed] [Google Scholar]
- Gaballah H. H., Zakaria S. S., Elbatsh M. M., Tahoon N. M. (2016). Modulatory Effects of Resveratrol on Endoplasmic Reticulum Stress-Associated Apoptosis and Oxido-Inflammatory Markers in a Rat Model of Rotenone-Induced Parkinson's Disease. Chemico-biological interactions 251, 10–16. 10.1016/j.cbi.2016.03.023 [DOI] [PubMed] [Google Scholar]
- Galuppo M., Iori R., De Nicola G. R., Bramanti P., Mazzon E. (2013). Anti-inflammatory and Anti-apoptotic Effects of (RS)-Glucoraphanin Bioactivated with Myrosinase in Murine Sub-acute and Acute MPTP-Induced Parkinson's Disease. Bioorg. Med. Chem. 21, 5532–5547. 10.1016/j.bmc.2013.05.065 [DOI] [PubMed] [Google Scholar]
- Gan L., Vargas M. R., Johnson D. A., Johnson J. A. (2012). Astrocyte-specific Overexpression of Nrf2 Delays Motor Pathology and Synuclein Aggregation throughout the CNS in the Alpha-Synuclein Mutant (A53T) Mouse Model. J. Neurosci. 32, 17775–17787. 10.1523/JNEUROSCI.3049-12.2012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao H. M., Hong J. S., Zhang W., Liu B. (2002). Distinct Role for Microglia in Rotenone-Induced Degeneration of Dopaminergic Neurons. J. Neurosci. 22, 782–790. 10.1523/jneurosci.22-03-00782.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao H. M., Liu B., Hong J. S. (2003a). Critical Role for Microglial NADPH Oxidase in Rotenone-Induced Degeneration of Dopaminergic Neurons. J. Neurosci. 23, 6181–6187. 10.1523/jneurosci.23-15-06181.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao H. M., Liu B., Zhang W., Hong J. S. (2003b). Critical Role of Microglial NADPH Oxidase-Derived Free Radicals in the In Vitro MPTP Model of Parkinson's Disease. FASEB J. 17, 1954–1956. 10.1096/fj.03-0109fje [DOI] [PubMed] [Google Scholar]
- Gao H. M., Liu B., Zhang W., Hong J. S. (2003c). Synergistic Dopaminergic Neurotoxicity of MPTP and Inflammogen Lipopolysaccharide: Relevance to the Etiology of Parkinson's Disease. FASEB J. 17, 1957–1959. 10.1096/fj.03-0203fje [DOI] [PubMed] [Google Scholar]
- Gao H. M., Zhou H., Hong J. S. (2012). NADPH Oxidases: Novel Therapeutic Targets for Neurodegenerative Diseases. Trends Pharmacological Sciences 33, 295–303. 10.1016/j.tips.2012.03.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garabadu D., Agrawal N. (2020). Naringin Exhibits Neuroprotection against Rotenone-Induced Neurotoxicity in Experimental Rodents. Neuromolecular Med. 22, 314–330. 10.1007/s12017-019-08590-2 [DOI] [PubMed] [Google Scholar]
- García E., Santana-Martínez R., Silva-Islas C. A., Colín-González A. L., Galván-Arzate S., Heras Y., et al. (2014). S-allyl Cysteine Protects against MPTP-Induced Striatal and Nigral Oxidative Neurotoxicity in Mice: Participation of Nrf2. Free Radic. Res. 48, 159–167. 10.3109/10715762.2013.857019 [DOI] [PubMed] [Google Scholar]
- Gatto E. M., Riobó N. A., Carreras M. C., Cherñavsky A., Rubio A., Satz M. L., et al. (2000). Overexpression of Neutrophil Neuronal Nitric Oxide Synthase in Parkinson's Disease. Nitric oxide 4, 534–539. 10.1006/niox.2000.0288 [DOI] [PubMed] [Google Scholar]
- Gilgun-Sherki Y., Melamed E., Offen D. (2001). Oxidative Stress Induced-Neurodegenerative Diseases: the Need for Antioxidants that Penetrate the Blood Brain Barrier. Neuropharmacology 40, 959–975. 10.1016/s0028-3908(01)00019-3 [DOI] [PubMed] [Google Scholar]
- González-Burgos E., Fernández-Moriano C., Lozano R., Iglesias I., Gómez-Serranillos M. P. (2017). Ginsenosides Rd and Re Co-treatments Improve Rotenone-Induced Oxidative Stress and Mitochondrial Impairment in SH-Sy5y Neuroblastoma Cells. Food Chem. Toxicol. 109, 38–47. 10.1016/j.fct.2017.08.013 [DOI] [PubMed] [Google Scholar]
- Good P. F., Hsu A., Werner P., Perl D. P., Olanow C. W. (1998). Protein Nitration in Parkinson's Disease. J. Neuropathol. Exp. Neurol. 57, 338–342. 10.1097/00005072-199804000-00006 [DOI] [PubMed] [Google Scholar]
- Guemez-Gamboa A., Estrada-Sánchez A. M., Montiel T., Páramo B., Massieu L., Morán J. (2011). Activation of NOX2 by the Stimulation of Ionotropic and Metabotropic Glutamate Receptors Contributes to Glutamate Neurotoxicity In Vivo through the Production of Reactive Oxygen Species and Calpain Activation. J. Neuropathol. Exp. Neurol. 70, 1020–1035. 10.1097/NEN.0b013e3182358e4e [DOI] [PubMed] [Google Scholar]
- Gunjima K., Tomiyama R., Takakura K., Yamada T., Hashida K., Nakamura Y., et al. (2014). 3,4-dihydroxybenzalacetone Protects against Parkinson's Disease-Related Neurotoxin 6-OHDA through Akt/Nrf2/glutathione Pathway. J. Cell. Biochem. 115, 151–160. 10.1002/jcb.24643 [DOI] [PubMed] [Google Scholar]
- Guo C., Zhu J., Wang J., Duan J., Ma S., Yin Y., et al. (2019). Neuroprotective Effects of Protocatechuic Aldehyde through PLK2/p-GSK3β/Nrf2 Signaling Pathway in Both In Vivo and In Vitro Models of Parkinson's Disease. Aging 11, 9424–9441. 10.18632/aging.102394 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo F., Wang X., Liu X. (2021). Protective Effects of Irigenin against 1-Methyl-4-Phenylpyridinium-Induced Neurotoxicity through Regulating the Keap1/Nrf2 Pathway. Phytotherapy Res. 35, 1585–1596. 10.1002/ptr.6926 [DOI] [PubMed] [Google Scholar]
- Guo J. D., Zhao X., Li Y., Li G. R., Liu X. L. (2018). Damage to Dopaminergic Neurons by Oxidative Stress in Parkinson's Disease (Review). Int. J. Mol. Med. 41, 1817–1825. 10.3892/ijmm.2018.3406 [DOI] [PubMed] [Google Scholar]
- Guo X., Han C., Ma K., Xia Y., Wan F., Yin S., et al. (2019). Hydralazine Protects Nigrostriatal Dopaminergic Neurons from MPP(+) and MPTP Induced Neurotoxicity: Roles of Nrf2-ARE Signaling Pathway. Front. Neurol. 10, 271. 10.3389/fneur.2019.00271 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutowski M., Kowalczyk S. (2013). A Study of Free Radical Chemistry: Their Role and Pathophysiological Significance. Acta Biochim. Pol. 60, 1–16. 10.18388/abp.2013_1944 [DOI] [PubMed] [Google Scholar]
- Hara H., Kamiya T., Adachi T. (2011). Endoplasmic Reticulum Stress Inducers Provide protection against 6-Hydroxydopamine-Induced Cytotoxicity. Neurochem. Int. 58, 35–43. 10.1016/j.neuint.2010.10.006 [DOI] [PubMed] [Google Scholar]
- Hara H., Ohta M., Adachi T. (2006). Apomorphine Protects against 6-Hydroxydopamine-Induced Neuronal Cell Death through Activation of the Nrf2-ARE Pathway. J. Neurosci. Res. 84, 860–866. 10.1002/jnr.20974 [DOI] [PubMed] [Google Scholar]
- Hastings T. G. (2009). The Role of Dopamine Oxidation in Mitochondrial Dysfunction: Implications for Parkinson's Disease. J. Bioenerg. biomembranes 41, 469–472. 10.1007/s10863-009-9257-z [DOI] [PubMed] [Google Scholar]
- Hauser D. N., Hastings T. G. (2013). Mitochondrial Dysfunction and Oxidative Stress in Parkinson's Disease and Monogenic Parkinsonism. Neurobiol. Dis. 51, 35–42. 10.1016/j.nbd.2012.10.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hernandes M. S., Café-Mendes C. C., Britto L. R. (2013a). NADPH Oxidase and the Degeneration of Dopaminergic Neurons in Parkinsonian Mice. Oxidative Med. Cell. longevity 2013, 157857. 10.1155/2013/157857 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hernandes M. S., Santos G. D., Café-Mendes C. C., Lima L. S., Scavone C., Munhoz C. D., et al. (2013b). Microglial Cells Are Involved in the Susceptibility of NADPH Oxidase Knockout Mice to 6-Hydroxy-Dopamine-Induced Neurodegeneration. PloS one 8, e75532. 10.1371/journal.pone.0075532 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrera A., Muñoz P., Steinbusch H., Segura-Aguilar J. (2017). Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease. ACS Chem. Neurosci. 8, 702–711. 10.1021/acschemneuro.7b00034 [DOI] [PubMed] [Google Scholar]
- Hirsch L., Jette N., Frolkis A., Steeves T., Pringsheim T. (2016). The Incidence of Parkinson's Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology 46, 292–300. 10.1159/000445751 [DOI] [PubMed] [Google Scholar]
- Hou Y., Peng S., Li X., Yao J., Xu J., Fang J. (2018). Honokiol Alleviates Oxidative Stress-Induced Neurotoxicity via Activation of Nrf2. ACS Chem. Neurosci. 9, 3108–3116. 10.1021/acschemneuro.8b00290 [DOI] [PubMed] [Google Scholar]
- Hu L. W., Yen J. H., Shen Y. T., Wu K. Y., Wu M. J. (2014). Luteolin Modulates 6-Hydroxydopamine-Induced Transcriptional Changes of Stress Response Pathways in PC12 Cells. PloS one 9, e97880. 10.1371/journal.pone.0097880 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang J. Y., Chuang J. I. (2010). Fibroblast Growth Factor 9 Upregulates Heme Oxygenase-1 and Gamma-Glutamylcysteine Synthetase Expression to Protect Neurons from 1-Methyl-4-Phenylpyridinium Toxicity. Free Radic. Biol. Med. 49, 1099–1108. 10.1016/j.freeradbiomed.2010.06.026 [DOI] [PubMed] [Google Scholar]
- Huang J. Y., Yuan Y. H., Yan J. Q., Wang Y. N., Chu S. F., Zhu C. G., et al. (2016). 20C, a Bibenzyl Compound Isolated from Gastrodia Elata, Protects PC12 Cells against Rotenone-Induced Apoptosis via Activation of the Nrf2/ARE/HO-1 Signaling Pathway. Acta pharmacologica Sinica 37, 731–740. 10.1038/aps.2015.154 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang S., Yuan H., Li W., Liu X., Zhang X., Xiang D., et al. (2021). Polygonatum Sibiricum Polysaccharides Protect against MPP-Induced Neurotoxicity via the Akt/mTOR and Nrf2 Pathways. Oxidative Med. Cell. longevity 2021, 8843899. 10.1155/2021/8843899 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang T. T., Hao D. L., Wu B. N., Mao L. L., Zhang J. (2017). Uric Acid Demonstrates Neuroprotective Effect on Parkinson's Disease Mice through Nrf2-ARE Signaling Pathway. Biochem. biophysical Res. Commun. 493, 1443–1449. 10.1016/j.bbrc.2017.10.004 [DOI] [PubMed] [Google Scholar]
- Hwang Y. P., Jeong H. G. (2010). Ginsenoside Rb1 Protects against 6-Hydroxydopamine-Induced Oxidative Stress by Increasing Heme Oxygenase-1 Expression through an Estrogen Receptor-Related PI3K/Akt/Nrf2-dependent Pathway in Human Dopaminergic Cells. Toxicol. Appl. Pharmacol. 242, 18–28. 10.1016/j.taap.2009.09.009 [DOI] [PubMed] [Google Scholar]
- Hwang Y. P., Jeong H. G. (2008). The Coffee Diterpene Kahweol Induces Heme Oxygenase-1 via the PI3K and p38/Nrf2 Pathway to Protect Human Dopaminergic Neurons from 6-Hydroxydopamine-Derived Oxidative Stress. FEBS Lett. 582, 2655–2662. 10.1016/j.febslet.2008.06.045 [DOI] [PubMed] [Google Scholar]
- Hwang Y. P., Kim H. G., Han E. H., Jeong H. G. (2008). Metallothionein-III Protects against 6-Hydroxydopamine-Induced Oxidative Stress by Increasing Expression of Heme Oxygenase-1 in a PI3K and ERK/Nrf2-dependent Manner. Toxicol. Appl. Pharmacol. 231, 318–327. 10.1016/j.taap.2008.04.019 [DOI] [PubMed] [Google Scholar]
- Iannielli A., Ugolini G. S., Cordiglieri C., Bido S., Rubio A., Colasante G., et al. (2019). Reconstitution of the Human Nigro-Striatal Pathway On-A-Chip Reveals OPA1-dependent Mitochondrial Defects and Loss of Dopaminergic Synapses. Cel Rep. 29, 4646–4656.e4. 10.1016/j.celrep.2019.11.111 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inose Y., Izumi Y., Takada-Takatori Y., Akaike A., Koyama Y., Kaneko S., et al. (2020). Protective Effects of Nrf2-ARE Activator on Dopaminergic Neuronal Loss in Parkinson Disease Model Mice: Possible Involvement of Heme Oxygenase-1. Neurosci. Lett. 736, 135268. 10.1016/j.neulet.2020.135268 [DOI] [PubMed] [Google Scholar]
- Inoue Y., Hara H., Mitsugi Y., Yamaguchi E., Kamiya T., Itoh A., et al. (2018). 4-Hydroperoxy-2-decenoic Acid Ethyl Ester Protects against 6-Hydroxydopamine-Induced Cell Death via Activation of Nrf2-ARE and eIF2α-ATF4 Pathways. Neurochem. Int. 112, 288–296. 10.1016/j.neuint.2017.08.011 [DOI] [PubMed] [Google Scholar]
- Inyushin M. Y., Huertas A., Kucheryavykh Y. V., Kucheryavykh L. Y., Tsydzik V., Sanabria P., et al. (2012). L-DOPA Uptake in Astrocytic Endfeet Enwrapping Blood Vessels in Rat Brain. Parkinson's Dis. 2012, 321406. 10.1155/2012/321406 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isobe C., Abe T., Terayama Y. (2010). Levels of Reduced and Oxidized Coenzyme Q-10 and 8-Hydroxy-2'-Deoxyguanosine in the Cerebrospinal Fluid of Patients with Living Parkinson's Disease Demonstrate that Mitochondrial Oxidative Damage And/or Oxidative DNA Damage Contributes to the Neurodegenerative Process. Neurosci. Lett. 469, 159–163. 10.1016/j.neulet.2009.11.065 [DOI] [PubMed] [Google Scholar]
- Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J. D., et al. (1999). Keap1 Represses Nuclear Activation of Antioxidant Responsive Elements by Nrf2 through Binding to the Amino-Terminal Neh2 Domain. Genes Dev. 13, 76–86. 10.1101/gad.13.1.76 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izumi Y., Kataoka H., Inose Y., Akaike A., Koyama Y., Kume T. (2018). Neuroprotective Effect of an Nrf2-ARE Activator Identified from a Chemical Library on Dopaminergic Neurons. Eur. J. Pharmacol. 818, 470–479. 10.1016/j.ejphar.2017.11.023 [DOI] [PubMed] [Google Scholar]
- Izumi Y., Matsumura A., Wakita S., Akagi K., Fukuda H., Kume T., et al. (2012). Isolation, Identification, and Biological Evaluation of Nrf2-ARE Activator from the Leaves of green Perilla (Perilla Frutescens Var. Crispa F. Viridis). Free Radic. Biol. Med. 53, 669–679. 10.1016/j.freeradbiomed.2012.06.021 [DOI] [PubMed] [Google Scholar]
- Jakel R. J., Townsend J. A., Kraft A. D., Johnson J. A. (2007). Nrf2-mediated protection against 6-hydroxydopamine. Brain Res. 1144, 192–201. 10.1016/j.brainres.2007.01.131 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jazwa A., Cuadrado A. (2010). Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in Neurodegenerative Diseases. Curr. Drug Targets 11, 1517–1531. 10.2174/1389450111009011517 [DOI] [PubMed] [Google Scholar]
- Jazwa A., Rojo A. I., Innamorato N. G., Hesse M., Fernández-Ruiz J., Cuadrado A. (2011). Pharmacological Targeting of the Transcription Factor Nrf2 at the Basal Ganglia Provides Disease Modifying Therapy for Experimental Parkinsonism. Antioxid. Redox signaling 14, 2347–2360. 10.1089/ars.2010.3731 [DOI] [PubMed] [Google Scholar]
- Jenner P. (2003). Oxidative Stress in Parkinson's Disease. Ann. Neurol. 53 (Suppl. 3), S26–S36. discussion S36–38. 10.1002/ana.10483 [DOI] [PubMed] [Google Scholar]
- Ji L. L., Yeo D. (2021). Oxidative Stress: an Evolving Definition. Fac. Rev. 10, 13. 10.12703/r/10-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ji L., Qu L., Wang C., Peng W., Li S., Yang H., et al. (2021). Identification and Optimization of Piperlongumine Analogues as Potential Antioxidant and Anti-inflammatory Agents via Activation of Nrf2. Eur. J. Med. Chem. 210, 112965. 10.1016/j.ejmech.2020.112965 [DOI] [PubMed] [Google Scholar]
- Jiang G., Hu Y., Liu L., Cai J., Peng C., Li Q. (2014). Gastrodin Protects against MPP(+)-induced Oxidative Stress by up Regulates Heme Oxygenase-1 Expression through P38 MAPK/Nrf2 Pathway in Human Dopaminergic Cells. Neurochem. Int. 75, 79–88. 10.1016/j.neuint.2014.06.003 [DOI] [PubMed] [Google Scholar]
- Jiang L., Wu X., Wang S., Chen S. H., Zhou H., Wilson B., et al. (2016). Clozapine Metabolites Protect Dopaminergic Neurons through Inhibition of Microglial NADPH Oxidase. J. neuroinflammation 13, 110. 10.1186/s12974-016-0573-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang T., Sun Q., Chen S. (2016). Oxidative Stress: A Major Pathogenesis and Potential Therapeutic Target of Antioxidative Agents in Parkinson's Disease and Alzheimer's Disease. Prog. Neurobiol. 147, 1–19. 10.1016/j.pneurobio.2016.07.005 [DOI] [PubMed] [Google Scholar]
- Jin X., Liu Q., Jia L., Li M., Wang X. (2015). Pinocembrin Attenuates 6-OHDA-Induced Neuronal Cell Death through Nrf2/ARE Pathway in SH-Sy5y Cells. Cell Mol. Neurobiol. 35, 323–333. 10.1007/s10571-014-0128-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jing X., Shi H., Zhang C., Ren M., Han M., Wei X., et al. (2015). Dimethyl Fumarate Attenuates 6-OHDA-Induced Neurotoxicity in SH-Sy5y Cells and in Animal Model of Parkinson's Disease by Enhancing Nrf2 Activity. Neuroscience 286, 131–140. 10.1016/j.neuroscience.2014.11.047 [DOI] [PubMed] [Google Scholar]
- Jing X., Wei X., Ren M., Wang L., Zhang X., Lou H. (2016). Neuroprotective Effects of Tanshinone I against 6-OHDA-Induced Oxidative Stress in Cellular and Mouse Model of Parkinson's Disease through Upregulating Nrf2. Neurochem. Res. 41, 779–786. 10.1007/s11064-015-1751-6 [DOI] [PubMed] [Google Scholar]
- Jo M. G., Ikram M., Jo M. H., Yoo L., Chung K. C., Nah S. Y., et al. (2018). Gintonin Mitigates MPTP-Induced Loss of Nigrostriatal Dopaminergic Neurons and Accumulation of α-Synuclein via the Nrf2/HO-1 Pathway. Mol. Neurobiol. 56, 39. 10.1007/s12035-018-1020-1 [DOI] [PubMed] [Google Scholar]
- Johnson J. A., Johnson D. A., Kraft A. D., Calkins M. J., Jakel R. J., Vargas M. R., et al. (2008). The Nrf2-ARE Pathway: an Indicator and Modulator of Oxidative Stress in Neurodegeneration. Ann. N.Y Acad. Sci. 1147, 61–69. 10.1196/annals.1427.036 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ju C., Hou L., Sun F., Zhang L., Zhang Z., Gao H., et al. (2015). Anti-oxidation and Antiapoptotic Effects of Chondroitin Sulfate on 6-Hydroxydopamine-Induced Injury through the Up-Regulation of Nrf2 and Inhibition of Mitochondria-Mediated Pathway. Neurochem. Res. 40, 1509–1519. 10.1007/s11064-015-1628-8 [DOI] [PubMed] [Google Scholar]
- Jung K. A., Kwak M. K. (2010). The Nrf2 System as a Potential Target for the Development of Indirect Antioxidants. Molecules 15, 7266–7291. 10.3390/molecules15107266 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabel A. M., Omar M. S., Alhadhrami A., Alharthi S. S., Alrobaian M. M. (2018). Linagliptin Potentiates the Effect of L-Dopa on the Behavioural, Biochemical and Immunohistochemical Changes in Experimentally-Induced Parkinsonism: Role of Toll-like Receptor 4, TGF-Β1, NF-κB and Glucagon-like Peptide 1. Physiol. Behav. 188, 108–118. 10.1016/j.physbeh.2018.01.028 [DOI] [PubMed] [Google Scholar]
- Kaidery N. A., Banerjee R., Yang L., Smirnova N. A., Hushpulian D. M., Liby K. T., et al. (2013). Targeting Nrf2-Mediated Gene Transcription by Extremely Potent Synthetic Triterpenoids Attenuate Dopaminergic Neurotoxicity in the MPTP Mouse Model of Parkinson's Disease. Antioxid. Redox signaling 18, 139–157. 10.1089/ars.2011.4491 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaji H., Matsui-Yuasa I., Matsumoto K., Omura A., Kiyomoto K., Kojima-Yuasa A. (2020). Sesaminol Prevents Parkinson's Disease by Activating the Nrf2-ARE Signaling Pathway. Heliyon 6, e05342. 10.1016/j.heliyon.2020.e05342 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao C. J., Chen W. F., Guo B. L., Feng C. W., Hung H. C., Yang W. Y., et al. (2017). The 1-Tosylpentan-3-One Protects against 6-Hydroxydopamine-Induced Neurotoxicity. Int. J. Mol. Sci. 18. 10.3390/ijms18051096 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ke Y., Qian Z. M. (2007). Brain Iron Metabolism: Neurobiology and Neurochemistry. Prog. Neurobiol. 83, 149–173. 10.1016/j.pneurobio.2007.07.009 [DOI] [PubMed] [Google Scholar]
- Kehrer J. P. (2000). The Haber-Weiss Reaction and Mechanisms of Toxicity. Toxicology 149, 43–50. 10.1016/s0300-483x(00)00231-6 [DOI] [PubMed] [Google Scholar]
- Kikuchi A., Takeda A., Onodera H., Kimpara T., Hisanaga K., Sato N., et al. (2002). Systemic Increase of Oxidative Nucleic Acid Damage in Parkinson's Disease and Multiple System Atrophy. Neurobiol. Dis. 9, 244–248. 10.1006/nbdi.2002.0466 [DOI] [PubMed] [Google Scholar]
- Kim D. W., Lee K. T., Kwon J., Lee H. J., Lee D., Mar W. (2015). Neuroprotection against 6-OHDA-Induced Oxidative Stress and Apoptosis in SH-Sy5y Cells by 5,7-Dihydroxychromone: Activation of the Nrf2/ARE Pathway. Life Sci. 130, 25–30. 10.1016/j.lfs.2015.02.026 [DOI] [PubMed] [Google Scholar]
- Kim J., Lim J., Kang B. Y., Jung K., Choi H. J. (2017). Capillarisin Augments Anti-oxidative and Anti-inflammatory Responses by Activating Nrf2/HO-1 Signaling. Neurochem. Int. 105, 11–20. 10.1016/j.neuint.2017.01.018 [DOI] [PubMed] [Google Scholar]
- Kim S., Indu Viswanath A. N., Park J. H., Lee H. E., Park A. Y., Choi J. W., et al. (2020). Nrf2 Activator via Interference of Nrf2-Keap1 Interaction Has Antioxidant and Anti-inflammatory Properties in Parkinson's Disease Animal Model. Neuropharmacology 167, 107989. 10.1016/j.neuropharm.2020.107989 [DOI] [PubMed] [Google Scholar]
- Kim S. S., Lim J., Bang Y., Gal J., Lee S. U., Cho Y. C., et al. (2012). Licochalcone E Activates Nrf2/antioxidant Response Element Signaling Pathway in Both Neuronal and Microglial Cells: Therapeutic Relevance to Neurodegenerative Disease. J. Nutr. Biochem. 23, 1314–1323. 10.1016/j.jnutbio.2011.07.012 [DOI] [PubMed] [Google Scholar]
- Kim Y., Li E., Park S. (2012). Insulin-like Growth Factor-1 Inhibits 6-Hydroxydopamine-Mediated Endoplasmic Reticulum Stress-Induced Apoptosis via Regulation of Heme Oxygenase-1 and Nrf2 Expression in PC12 Cells. Int. J. Neurosci. 122, 641–649. 10.3109/00207454.2012.702821 [DOI] [PubMed] [Google Scholar]
- Kim Y. S., Choi D. H., Block M. L., Lorenzl S., Yang L., Kim Y. J., et al. (2007). A Pivotal Role of Matrix Metalloproteinase-3 Activity in Dopaminergic Neuronal Degeneration via Microglial Activation. FASEB J. 21, 179–187. 10.1096/fj.06-5865com [DOI] [PubMed] [Google Scholar]
- Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., et al. (1998). Mutations in the Parkin Gene Cause Autosomal Recessive Juvenile Parkinsonism. Nature 392, 605–608. 10.1038/33416 [DOI] [PubMed] [Google Scholar]
- Kobatake E., Nakagawa H., Seki T., Miyazaki T. (2017). Protective Effects and Functional Mechanisms of Lactobacillus Gasseri SBT2055 against Oxidative Stress. PloS one 12, e0177106. 10.1371/journal.pone.0177106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraft A. D., Johnson D. A., Johnson J. A. (2004). Nuclear Factor E2-Related Factor 2-dependent Antioxidant Response Element Activation by Tert-Butylhydroquinone and Sulforaphane Occurring Preferentially in Astrocytes Conditions Neurons against Oxidative Insult. J. Neurosci. 24, 1101–1112. 10.1523/JNEUROSCI.3817-03.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo H. C., Chang H. C., Lan W. C., Tsai F. H., Liao J. C., Wu C. R. (2014). Protective Effects of Drynaria Fortunei against 6-Hydroxydopamine-Induced Oxidative Damage in B35 Cells via the PI3K/AKT Pathway. Food Funct. 5, 1956–1965. 10.1039/c4fo00219a [DOI] [PubMed] [Google Scholar]
- Kurauchi Y., Hisatsune A., Isohama Y., Mishima S., Katsuki H. (2012). Caffeic Acid Phenethyl Ester Protects Nigral Dopaminergic Neurons via Dual Mechanisms Involving Haem Oxygenase-1 and Brain-Derived Neurotrophic Factor. Br. J. Pharmacol. 166, 1151–1168. 10.1111/j.1476-5381.2012.01833.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kussmaul L., Hirst J. (2006). The Mechanism of Superoxide Production by NADH:ubiquinone Oxidoreductase (Complex I) from Bovine Heart Mitochondria. Proc. Natl. Acad. Sci. United States America 103, 7607–7612. 10.1073/pnas.0510977103 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon S. H., Lee S. R., Park Y. J., Ra M., Lee Y., Pang C., et al. (2019). Suppression of 6-Hydroxydopamine-Induced Oxidative Stress by Hyperoside via Activation of Nrf2/HO-1 Signaling in Dopaminergic Neurons. Int. J. Mol. Sci. 20, 5832. 10.3390/ijms20235832 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langston J. W., Ballard P., Tetrud J. W., Irwin I. (1983). Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis. Science 219, 979–980. 10.1126/science.6823561 [DOI] [PubMed] [Google Scholar]
- Lázaro D. F., Pavlou M., Outeiro T. F. (2017). Cellular Models as Tools for the Study of the Role of Alpha-Synuclein in Parkinson's Disease. Exp. Neurol. 298, 162–171. 10.1016/j.expneurol.2017.05.007 [DOI] [PubMed] [Google Scholar]
- Lee D. W., Rajagopalan S., Siddiq A., Gwiazda R., Yang L., Beal M. F., et al. (2009). Inhibition of Prolyl Hydroxylase Protects against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity: Model for the Potential Involvement of the Hypoxia-Inducible Factor Pathway in Parkinson Disease. J. Biol. Chem. 284, 29065–29076. 10.1074/jbc.M109.000638 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee G., Joo J. C., Choi B. Y., Lindroth A. M., Park S. J., Park Y. J. (2016). Neuroprotective Effects of Paeonia Lactiflora Extract against Cell Death of Dopaminergic SH-Sy5y Cells Is Mediated by Epigenetic Modulation. BMC Complement. Altern. Med. 16, 208. 10.1186/s12906-016-1205-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H. J., Han J., Jang Y., Kim S. J., Park J. H., Seo K. S., et al. (2015). Docosahexaenoic Acid Prevents Paraquat-Induced Reactive Oxygen Species Production in Dopaminergic Neurons via Enhancement of Glutathione Homeostasis. Biochem. biophysical Res. Commun. 457, 95–100. 10.1016/j.bbrc.2014.12.085 [DOI] [PubMed] [Google Scholar]
- Lee J. A. J. A., Son H. J., Kim J. H., Park K. D., Shin N., Kim H. R., et al. (2016). A Novel Synthetic Isothiocyanate ITC-57 Displays Antioxidant, Anti-inflammatory, and Neuroprotective Properties in a Mouse Parkinson's Disease Model. Free Radic. Res. 50, 1188–1199. 10.1080/10715762.2016.1223293 [DOI] [PubMed] [Google Scholar]
- Lee J. A., Kim H. R., Son H. J., Shin N., Han S. H., Cheong C. S., et al. (2020). A Novel Pyrazolo [3,4-d] Pyrimidine, KKC080106, Activates the Nrf2 Pathway and Protects Nigral Dopaminergic Neurons. Exp. Neurol. 332, 113387. 10.1016/j.expneurol.2020.113387 [DOI] [PubMed] [Google Scholar]
- Lee J. A., Kim J. H., Woo S. Y., Son H. J., Han S. H., Jang B. K., et al. (2015). A Novel Compound VSC2 Has Anti-inflammatory and Antioxidant Properties in Microglia and in Parkinson's Disease Animal Model. Br. J. Pharmacol. 172, 1087–1100. 10.1111/bph.12973 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. E., Sim H., Yoo H. M., Lee M., Baek A., Jeon Y. J., et al. (2020). Neuroprotective Effects of Cryptotanshinone in a Direct Reprogramming Model of Parkinson's Disease. Molecules 25, 3602. 10.3390/molecules25163602 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. M., Calkins M. J., Chan K., Kan Y. W., Johnson J. A. (2003a). Identification of the NF-E2-Related Factor-2-dependent Genes Conferring protection against Oxidative Stress in Primary Cortical Astrocytes Using Oligonucleotide Microarray Analysis. J. Biol. Chem. 278, 12029–12038. 10.1074/jbc.M211558200 [DOI] [PubMed] [Google Scholar]
- Lee J. M., Shih A. Y., Murphy T. H., Johnson J. A. (2003b). NF-E2-related Factor-2 Mediates Neuroprotection against Mitochondrial Complex I Inhibitors and Increased Concentrations of Intracellular Calcium in Primary Cortical Neurons. J. Biol. Chem. 278, 37948–37956. 10.1074/jbc.M305204200 [DOI] [PubMed] [Google Scholar]
- Lee J., Song K., Huh E., Oh M. S., Kim Y. S. (2018). Neuroprotection against 6-OHDA Toxicity in PC12 Cells and Mice through the Nrf2 Pathway by a Sesquiterpenoid from Tussilago Farfara. Redox Biol. 18, 6–15. 10.1016/j.redox.2018.05.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. S., Lee J., Kwon D. Y., Kim M. S. (2006). Ondamtanggamibang Protects Neurons from Oxidative Stress with Induction of Heme Oxygenase-1. J. ethnopharmacology 108, 294–298. 10.1016/j.jep.2006.05.012 [DOI] [PubMed] [Google Scholar]
- Lee Y., Heo G., Lee K. M., Kim A. H., Chung K. W., Im E., et al. (2017). Neuroprotective Effects of 2,4-dinitrophenol in an Acute Model of Parkinson's Disease. Brain Res. 1663, 184–193. 10.1016/j.brainres.2017.03.018 [DOI] [PubMed] [Google Scholar]
- Lhermitte J., Kraus W. M., McAlpine D. (1924). Original Papers: On the Occurrence of Abnomal Deposits of Iron in the Brain in Parkinsonism with Special Refeence to its Localisation. The J. Neurol. psychopathology 5, 195–208. 10.1136/jnnp.s1-5.19.195 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li C., Tang B., Feng Y., Tang F., Pui-Man Hoi M., Su Z., et al. (2018). Pinostrobin Exerts Neuroprotective Actions in Neurotoxin-Induced Parkinson's Disease Models through Nrf2 Induction. J. Agric. Food Chem. 66, 8307–8318. 10.1021/acs.jafc.8b02607 [DOI] [PubMed] [Google Scholar]
- Li H., Wu S., Wang Z., Lin W., Zhang C., Huang B. (2012). Neuroprotective Effects of Tert-Butylhydroquinone on Paraquat-Induced Dopaminergic Cell Degeneration in C57BL/6 Mice and in PC12 Cells. Arch. Toxicol. 86, 1729–1740. 10.1007/s00204-012-0935-y [DOI] [PubMed] [Google Scholar]
- Li H. Y., Zhong Y. F., Wu S. Y., Shi N. (2007). NF-E2 Related Factor 2 Activation and Heme Oxygenase-1 Induction by Tert-Butylhydroquinone Protect against Deltamethrin-Mediated Oxidative Stress in PC12 Cells. Chem. Res. Toxicol. 20, 1242–1251. 10.1021/tx700076q [DOI] [PubMed] [Google Scholar]
- Li M., Zhou F., Xu T., Song H., Lu B. (2018). Acteoside Protects against 6-OHDA-Induced Dopaminergic Neuron Damage via Nrf2-ARE Signaling Pathway. Food Chem. Toxicol. 119, 6–13. 10.1016/j.fct.2018.06.018 [DOI] [PubMed] [Google Scholar]
- Li R., Wang S., Li T., Wu L., Fang Y., Feng Y., et al. (2019). Salidroside Protects Dopaminergic Neurons by Preserving Complex I Activity via DJ-1/Nrf2-Mediated Antioxidant Pathway. Parkinson's Dis. 2019, 6073496. 10.1155/2019/6073496 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li R., Zheng N., Liang T., He Q., Xu L. (2013). Puerarin Attenuates Neuronal Degeneration and Blocks Oxidative Stress to Elicit a Neuroprotective Effect on Substantia Nigra Injury in 6-OHDA-Lesioned Rats. Brain Res. 1517, 28–35. 10.1016/j.brainres.2013.04.013 [DOI] [PubMed] [Google Scholar]
- Li X., Cui X. X., Chen Y. J., Wu T. T., Xu H., Yin H., et al. (2018). Therapeutic Potential of a Prolyl Hydroxylase Inhibitor FG-4592 for Parkinson's Diseases In Vitro and In Vivo: Regulation of Redox Biology and Mitochondrial Function. Front. Aging Neurosci. 10, 121. 10.3389/fnagi.2018.00121 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X., Zhang J., Rong H., Zhang X., Dong M. (2020a). Ferulic Acid Ameliorates MPP(+)/MPTP-Induced Oxidative Stress via ERK1/2-dependent Nrf2 Activation: Translational Implications for Parkinson Disease Treatment. Mol. Neurobiol. 57, 2981–2995. 10.1007/s12035-020-01934-1 [DOI] [PubMed] [Google Scholar]
- Li X., Zhang J., Zhang X., Dong M. (2020b). Puerarin Suppresses MPP(+)/MPTP-induced Oxidative Stress through an Nrf2-dependent Mechanism. Food Chem. Toxicol. 144, 111644. 10.1016/j.fct.2020.111644 [DOI] [PubMed] [Google Scholar]
- Lin C. H., Wei P. C., Chen C. M., Huang Y. T., Lin J. L., Lo Y. S., et al. (2020). Lactulose and Melibiose Attenuate MPTP-Induced Parkinson's Disease in Mice by Inhibition of Oxidative Stress, Reduction of Neuroinflammation and Up-Regulation of Autophagy. Front. Aging Neurosci. 12, 226. 10.3389/fnagi.2020.00226 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin H. Y., Yeh W. L., Huang B. R., Lin C., Lai C. H., Lin H., et al. (2012). Desipramine Protects Neuronal Cell Death and Induces Heme Oxygenase-1 Expression in Mes23.5 Dopaminergic Neurons. PloS one 7, e50138. 10.1371/journal.pone.0050138 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Q., Hou S., Dai Y., Jiang N., Lin Y. (2020). Monascin Exhibits Neuroprotective Effects in Rotenone Model of Parkinson's Disease via Antioxidation and Anti-neuroinflammation. Neuroreport 31, 637–643. 10.1097/WNR.0000000000001467 [DOI] [PubMed] [Google Scholar]
- Lin T. K., Chen S. D., Chuang Y. C., Lin H. Y., Huang C. R., Chuang J. H., et al. (2014). Resveratrol Partially Prevents Rotenone-Induced Neurotoxicity in Dopaminergic SH-Sy5y Cells through Induction of Heme Oxygenase-1 Dependent Autophagy. Int. J. Mol. Sci. 15, 1625–1646. 10.3390/ijms15011625 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Y. C., Uang H. W., Lin R. J., Chen I. J., Lo Y. C. (2007). Neuroprotective Effects of Glyceryl Nonivamide against Microglia-like Cells and 6-Hydroxydopamine-Induced Neurotoxicity in SH-Sy5y Human Dopaminergic Neuroblastoma Cells. J. Pharmacol. Exp. Ther. 323, 877–887. 10.1124/jpet.107.125955 [DOI] [PubMed] [Google Scholar]
- Liu H., Yu C., Xu T., Zhang X., Dong M. (2016). Synergistic Protective Effect of Paeoniflorin and β-ecdysterone against Rotenone-Induced Neurotoxicity in PC12 Cells. Apoptosis 21, 1354–1365. 10.1007/s10495-016-1293-7 [DOI] [PubMed] [Google Scholar]
- Liu L., Yang S., Wang H. (2021). α-Lipoic Acid Alleviates Ferroptosis in the MPP+ -induced PC12 Cells via Activating the PI3K/Akt/Nrf2 Pathway. Cel Biol. Int. 45, 422–431. 10.1002/cbin.11505 [DOI] [PubMed] [Google Scholar]
- Liu Y., Zhang J., Jiang M., Cai Q., Fang J., Jin L. (2018). MANF Improves the MPP+/MPTP-Induced Parkinson's Disease via Improvement of Mitochondrial Function and Inhibition of Oxidative Stress. Am. J. translational Res. 10, 1284–1294. [PMC free article] [PubMed] [Google Scholar]
- Liu Z., Cai W., Lang M., Yan R., Li Z., Zhang G., et al. (2017). Neuroprotective Effects and Mechanisms of Action of Multifunctional Agents Targeting Free Radicals, Monoamine Oxidase B and Cholinesterase in Parkinson's Disease Model. J. Mol. Neurosci. 61, 498–510. 10.1007/s12031-017-0891-3 [DOI] [PubMed] [Google Scholar]
- Lou H., Jing X., Wei X., Shi H., Ren D., Zhang X. (2014). Naringenin Protects against 6-OHDA-Induced Neurotoxicity via Activation of the Nrf2/ARE Signaling Pathway. Neuropharmacology 79, 380–388. 10.1016/j.neuropharm.2013.11.026 [DOI] [PubMed] [Google Scholar]
- Lu D. Y., Chen J. H., Tan T. W., Huang C. Y., Yeh W. L., Hsu H. C. (2013). Resistin Protects against 6-Hydroxydopamine-Induced Cell Death in Dopaminergic-like MES23.5 Cells. J. Cell. Physiol. 228, 563–571. 10.1002/jcp.24163 [DOI] [PubMed] [Google Scholar]
- Lu X., Kim-Han J. S., O'Malley K. L., Sakiyama-Elbert S. E. (2012). A Microdevice Platform for Visualizing Mitochondrial Transport in Aligned Dopaminergic Axons. J. Neurosci. Methods 209, 35–39. 10.1016/j.jneumeth.2012.05.021 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo L., Chen J., Su D., Chen M., Luo B., Pi R., et al. (2017). L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice. Neurochem. Res. 42, 615–624. 10.1007/s11064-016-2117-4 [DOI] [PubMed] [Google Scholar]
- Lushchak V. I., Storey K. B. (2021). Oxidative Stress Concept Updated: Definitions, Classifications, and Regulatory Pathways Implicated. EXCLI J. 20, 956–967. 10.17179/excli2021-3596 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma L., Zhang B., Liu J., Qiao C., Liu Y., Li S., et al. (2020). Isoorientin Exerts a Protective Effect against 6-OHDA-Induced Neurotoxicity by Activating the AMPK/AKT/Nrf2 Signalling Pathway. Food Funct. 11, 10774–10785. 10.1039/d0fo02165b [DOI] [PubMed] [Google Scholar]
- Ma M. W., Wang J., Zhang Q., Wang R., Dhandapani K. M., Vadlamudi R. K., et al. (2017). NADPH Oxidase in Brain Injury and Neurodegenerative Disorders. Mol. neurodegeneration 12, 7. 10.1186/s13024-017-0150-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magesh S., Chen Y., Hu L. (2012). Small Molecule Modulators of Keap1-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents. Med. Res. Rev. 32, 687–726. 10.1002/med.21257 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann V. M., Cooper J. M., Krige D., Daniel S. E., Schapira A. H., Marsden C. D. (1992). Brain, Skeletal Muscle and Platelet Homogenate Mitochondrial Function in Parkinson's Disease. Brain 115 (Pt 2), 333–342. 10.1093/brain/115.2.333 [DOI] [PubMed] [Google Scholar]
- Marrali G., Casale F., Salamone P., Fuda G., Ilardi A., Manera U., et al. (2018). NADPH Oxidases 2 Activation in Patients with Parkinson's Disease. Parkinsonism Relat. Disord. 49, 110–111. 10.1016/j.parkreldis.2018.01.003 [DOI] [PubMed] [Google Scholar]
- Masaki Y., Izumi Y., Matsumura A., Akaike A., Kume T. (2017). Protective Effect of Nrf2-ARE Activator Isolated from green Perilla Leaves on Dopaminergic Neuronal Loss in a Parkinson's Disease Model. Eur. J. Pharmacol. 798, 26–34. 10.1016/j.ejphar.2017.02.005 [DOI] [PubMed] [Google Scholar]
- McCann S. K., Dusting G. J., Roulston C. L. (2008). Early Increase of Nox4 NADPH Oxidase and Superoxide Generation Following Endothelin-1-Induced Stroke in Conscious Rats. J. Neurosci. Res. 86, 2524–2534. 10.1002/jnr.21700 [DOI] [PubMed] [Google Scholar]
- Meng F., Wang J., Ding F., Xie Y., Zhang Y., Zhu J. (2017). Neuroprotective Effect of Matrine on MPTP-Induced Parkinson's Disease and on Nrf2 Expression. Oncol. Lett. 13, 296–300. 10.3892/ol.2016.5383 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meng X. B., Sun G. B., Wang M., Sun J., Qin M., Sun X. B. (2013). P90RSK and Nrf2 Activation via MEK1/2-Erk1/2 Pathways Mediated by Notoginsenoside R2 to Prevent 6-Hydroxydopamine-Induced Apoptotic Death in SH-Sy5y Cells. Evid Based. Complement. Altern. Med. 2013, 971712. 10.1155/2013/971712 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michel H. E., Tadros M. G., Esmat A., Khalifa A. E., Abdel-Tawab A. M. (2017). Tetramethylpyrazine Ameliorates Rotenone-Induced Parkinson's Disease in Rats: Involvement of its Anti-inflammatory and Anti-apoptotic Actions. Mol. Neurobiol. 54, 4866–4878. 10.1007/s12035-016-0028-7 [DOI] [PubMed] [Google Scholar]
- Miesenböck G., De Angelis D. A., Rothman J. E. (1998). Visualizing Secretion and Synaptic Transmission with pH-Sensitive green Fluorescent Proteins. Nature 394, 192–195. 10.1038/28190 [DOI] [PubMed] [Google Scholar]
- Minelli A., Conte C., Cacciatore I., Cornacchia C., Pinnen F. (2012). Molecular Mechanism Underlying the Cerebral Effect of Gly-Pro-Glu Tripeptide Bound to L-Dopa in a Parkinson's Animal Model. Amino acids 43, 1359–1367. 10.1007/s00726-011-1210-x [DOI] [PubMed] [Google Scholar]
- Minelli A., Conte C., Grottelli S., Bellezza I., Cacciatore I., Bolaños J. P. (2009). Cyclo(His-Pro) Promotes Cytoprotection by Activating Nrf2-Mediated Up-Regulation of Antioxidant Defence. J. Cell. Mol. Med. 13, 1149–1161. 10.1111/j.1582-4934.2008.00326.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizuno K., Kume T., Muto C., Takada-Takatori Y., Izumi Y., Sugimoto H., et al. (2011). Glutathione Biosynthesis via Activation of the Nuclear Factor E2-Related Factor 2 (Nrf2)–Antioxidant-Response Element (ARE) Pathway Is Essential for Neuroprotective Effects of Sulforaphane and 6-(methylsulfinyl) Hexyl Isothiocyanate. J. Pharmacol. Sci. 115, 320–328. 10.1254/jphs.10257fp [DOI] [PubMed] [Google Scholar]
- Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., et al. (1989). Deficiencies in Complex I Subunits of the Respiratory Chain in Parkinson's Disease. Biochem. biophysical Res. Commun. 163, 1450–1455. 10.1016/0006-291x(89)91141-8 [DOI] [PubMed] [Google Scholar]
- Mohamed S. A., El-Kashef D. H., Nader M. A. (2021). Tiron Alleviates MPTP-Induced Parkinsonism in Mice via Activation of Keap-1/Nrf2 Pathway. J. Biochem. Mol. Toxicol. 35, e22685. 10.1002/jbt.22685 [DOI] [PubMed] [Google Scholar]
- Moi P., Chan K., Asunis I., Cao A., Kan Y. W. (1994). Isolation of NF-E2-Related Factor 2 (Nrf2), a NF-E2-like Basic Leucine Zipper Transcriptional Activator that Binds to the Tandem NF-E2/ap1 Repeat of the Beta-Globin Locus Control Region. Proc. Natl. Acad. Sci. United States America 91, 9926–9930. 10.1073/pnas.91.21.9926 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moon H., Jang J. H., Jang T. C., Park G. H. (2018). Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells. Biomolecules Ther. 26, 175–181. 10.4062/biomolther.2018.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- More S., Choi D. K. (2017a). Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson's Disease. Nutrients 9, 451. 10.3390/nu9050451 [DOI] [PMC free article] [PubMed] [Google Scholar]
- More S. V., Choi D. K. (2017b). Atractylenolide-I Protects Human SH-Sy5y Cells from 1-Methyl-4-Phenylpyridinium-Induced Apoptotic Cell Death. Int. J. Mol. Sci. 18, 1012. 10.3390/ijms18051012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreira S., Fonseca I., Nunes M. J., Rosa A., Lemos L., Rodrigues E., et al. (2017). Nrf2 Activation by Tauroursodeoxycholic Acid in Experimental Models of Parkinson's Disease. Exp. Neurol. 295, 77–87. 10.1016/j.expneurol.2017.05.009 [DOI] [PubMed] [Google Scholar]
- Morris C. M., Edwardson J. A. (1994). Iron Histochemistry of the Substantia Nigra in Parkinson's Disease. Neurodegeneration 3, 277–282. [PubMed] [Google Scholar]
- Morroni F., Sita G., Djemil A., D'Amico M., Pruccoli L., Cantelli-Forti G., et al. (2018). Comparison of Adaptive Neuroprotective Mechanisms of Sulforaphane and its Interconversion Product Erucin in In Vitro and In Vivo Models of Parkinson's Disease. J. Agric. Food Chem. 66, 856–865. 10.1021/acs.jafc.7b04641 [DOI] [PubMed] [Google Scholar]
- Muñoz A. M., Rey P., Soto-Otero R., Guerra M. J., Labandeira-Garcia J. L. (2004). Systemic Administration of N-Acetylcysteine Protects Dopaminergic Neurons against 6-Hydroxydopamine-Induced Degeneration. J. Neurosci. Res. 76, 551–562. 10.1002/jnr.20107 [DOI] [PubMed] [Google Scholar]
- Murakami S., Miyazaki I., Asanuma M. (2018). Neuroprotective Effect of Fermented Papaya Preparation by Activation of Nrf2 Pathway in Astrocytes. Nutr. Neurosci. 21, 176–184. 10.1080/1028415X.2016.1253171 [DOI] [PubMed] [Google Scholar]
- Mythri R. B., Venkateshappa C., Harish G., Mahadevan A., Muthane U. B., Yasha T. C., et al. (2011). Evaluation of Markers of Oxidative Stress, Antioxidant Function and Astrocytic Proliferation in the Striatum and Frontal Cortex of Parkinson's Disease Brains. Neurochem. Res. 36, 1452–1463. 10.1007/s11064-011-0471-9 [DOI] [PubMed] [Google Scholar]
- Napolitano A., Manini P., d'Ischia M. (2011). Oxidation Chemistry of Catecholamines and Neuronal Degeneration: an Update. Curr. Med. Chem. 18, 1832–1845. 10.2174/092986711795496863 [DOI] [PubMed] [Google Scholar]
- Nichols W. C., Pankratz N., Hernandez D., Paisán-Ruíz C., Jain S., Halter C. A., et al. (2005). Genetic Screening for a Single Common LRRK2 Mutation in Familial Parkinson's Disease. Lancet 365, 410–412. 10.1016/S0140-6736(05)17828-3 [DOI] [PubMed] [Google Scholar]
- Oh H., Hur J., Park G., Kim H. G., Kim Y. O., Oh M. S. (2013). Sanguisorbae Radix Protects against 6-Hydroxydopamine-Induced Neurotoxicity by Regulating NADPH Oxidase and NF-E2-Related Factor-2/heme Oxygenase-1 Expressions. Phytotherapy Res. 27, 1012–1017. 10.1002/ptr.4802 [DOI] [PubMed] [Google Scholar]
- Oliveira L., Gasser T., Edwards R., Zweckstetter M., Melki R., Stefanis L., et al. (2021). Alpha-synuclein Research: Defining Strategic Moves in the Battle against Parkinson's Disease. NPJ Parkinson's Dis. 7, 65. 10.1038/s41531-021-00203-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onyango I. G. (2008). Mitochondrial Dysfunction and Oxidative Stress in Parkinson's Disease. Neurochem. Res. 33, 589–597. 10.1007/s11064-007-9482-y [DOI] [PubMed] [Google Scholar]
- Outeiro T. F., Heutink P., Bezard E., Cenci A. M. (2021). From iPS Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Move. Disord. 36, 832–841. 10.1002/mds.28387 [DOI] [PubMed] [Google Scholar]
- Ozkan A., Parlak H., Tanriover G., Dilmac S., Ulker S. N., Birsen I., et al. (2016). The Protective Mechanism of Docosahexaenoic Acid in Mouse Model of Parkinson: The Role of Hemeoxygenase. Neurochem. Int. 101, 110. 10.1016/j.neuint.2016.10.012 [DOI] [PubMed] [Google Scholar]
- Paisán-Ruíz C., Jain S., Evans E. W., Gilks W. P., Simón J., van der Brug M., et al. (2004). Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease. Neuron 44, 595–600. 10.1016/j.neuron.2004.10.023 [DOI] [PubMed] [Google Scholar]
- Pan P. K., Qiao L. Y., Wen X. N. (2016). Safranal Prevents Rotenone-Induced Oxidative Stress and Apoptosis in an In Vitro Model of Parkinson's Disease through Regulating Keap1/Nrf2 Signaling Pathway. Cell Mol. Biol. 62, 11–17. 10.14715/cmb/2016.62.14.2 [DOI] [PubMed] [Google Scholar]
- Parada E., Buendia I., Navarro E., Avendaño C., Egea J., López M. G. (2015). Microglial HO-1 Induction by Curcumin Provides Antioxidant, Antineuroinflammatory, and Glioprotective Effects. Mol. Nutr. Food Res. 59, 1690–1700. 10.1002/mnfr.201500279 [DOI] [PubMed] [Google Scholar]
- Parada E., Egea J., Romero A., del Barrio L., García A. G., López M. G. (2010). Poststress Treatment with PNU282987 Can rescue SH-Sy5y Cells Undergoing Apoptosis via α7 Nicotinic Receptors Linked to a Jak2/Akt/HO-1 Signaling Pathway. Free Radic. Biol. Med. 49, 1815–1821. 10.1016/j.freeradbiomed.2010.09.017 [DOI] [PubMed] [Google Scholar]
- Park J. S., Leem Y. H., Park J. E., Kim D. Y., Kim H. S. (2019). Neuroprotective Effect of β-Lapachone in MPTP-Induced Parkinson's Disease Mouse Model: Involvement of Astroglial P-AMPK/Nrf2/HO-1 Signaling Pathways. Biomolecules Ther. 27, 178–184. 10.4062/biomolther.2018.234 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park S. Y., Son B. G., Park Y. H., Kim C. M., Park G., Choi Y. W. (2014). The Neuroprotective Effects of α-iso-cubebene on Dopaminergic Cell Death: Involvement of CREB/Nrf2 Signaling. Neurochem. Res. 39, 1759–1766. 10.1007/s11064-014-1371-6 [DOI] [PubMed] [Google Scholar]
- Parker W. D., Boyson S. J., Parks J. K. (1989). Abnormalities of the Electron Transport Chain in Idiopathic Parkinson's Disease. Ann. Neurol. 26, 719–723. 10.1002/ana.410260606 [DOI] [PubMed] [Google Scholar]
- Pasban-Aliabadi H., Esmaeili-Mahani S., Abbasnejad M. (2017). Orexin-A Protects Human Neuroblastoma SH-Sy5y Cells against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways. Rejuvenation Res. 20, 125–133. 10.1089/rej.2016.1836 [DOI] [PubMed] [Google Scholar]
- Pearce R. K., Owen A., Daniel S., Jenner P., Marsden C. D. (1997). Alterations in the Distribution of Glutathione in the Substantia Nigra in Parkinson's Disease. J. Neural Transm. 104, 661–677. 10.1007/BF01291884 [DOI] [PubMed] [Google Scholar]
- Peng S., Hou Y., Yao J., Fang J. (2017). Activation of Nrf2-Driven Antioxidant Enzymes by Cardamonin Confers Neuroprotection of PC12 Cells against Oxidative Damage. Food Funct. 8, 997–1007. 10.1039/c7fo00054e [DOI] [PubMed] [Google Scholar]
- Peng S., Zhang B., Meng X., Yao J., Fang J. (2015a). Synthesis of Piperlongumine Analogues and Discovery of Nuclear Factor Erythroid 2-related Factor 2 (Nrf2) Activators as Potential Neuroprotective Agents. J. Med. Chem. 58, 5242–5255. 10.1021/acs.jmedchem.5b00410 [DOI] [PubMed] [Google Scholar]
- Peng S., Zhang B., Yao J., Duan D., Fang J. (2015b). Dual protection of Hydroxytyrosol, an Olive Oil Polyphenol, against Oxidative Damage in PC12 Cells. Food Funct. 6, 2091–2100. 10.1039/c5fo00097a [DOI] [PubMed] [Google Scholar]
- Perry T. L., Godin D. V., Hansen S. (1982). Parkinson's Disease: a Disorder Due to Nigral Glutathione Deficiency. Neurosci. Lett. 33, 305–310. 10.1016/0304-3940(82)90390-1 [DOI] [PubMed] [Google Scholar]
- Perry T. L., Yong V. W., Ito M., Foulks J. G., Wall R. A., Godin D. V., et al. (1984). Nigrostriatal Dopaminergic Neurons Remain Undamaged in Rats Given High Doses of L-DOPA and Carbidopa Chronically. J. Neurochem. 43, 990–993. 10.1111/j.1471-4159.1984.tb12834.x [DOI] [PubMed] [Google Scholar]
- Pisoschi A. M., Pop A., Iordache F., Stanca L., Predoi G., Serban A. I. (2021). Oxidative Stress Mitigation by Antioxidants - an Overview on Their Chemistry and Influences on Health Status. Eur. J. Med. Chem. 209, 112891. 10.1016/j.ejmech.2020.112891 [DOI] [PubMed] [Google Scholar]
- Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., et al. (1997). Mutation in the Alpha-Synuclein Gene Identified in Families with Parkinson's Disease. Science 276, 2045–2047. 10.1126/science.276.5321.2045 [DOI] [PubMed] [Google Scholar]
- Prasuhn J., Davis R. L., Kumar K. R. (2020). Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front. Cel. Dev. Biol. 8, 615461. 10.3389/fcell.2020.615461 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Przedborski S. (2017). The Two-century Journey of Parkinson Disease Research. Nat. Rev. Neurosci. 18, 251–259. 10.1038/nrn.2017.25 [DOI] [PubMed] [Google Scholar]
- Purisai M. G., McCormack A. L., Cumine S., Li J., Isla M. Z., Monte Di. (2007). Microglial Activation as a Priming Event Leading to Paraquat-Induced Dopaminergic Cell Degeneration. Neurobiol. Dis. 25, 392–400. 10.1016/j.nbd.2006.10.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puspita L., Chung S. Y., Shim J. W. (2017). Oxidative Stress and Cellular Pathologies in Parkinson's Disease. Mol. Brain 10, 53. 10.1186/s13041-017-0340-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qin L., Liu Y., Hong J. S., Crews F. T. (2013). NADPH Oxidase and Aging Drive Microglial Activation, Oxidative Stress, and Dopaminergic Neurodegeneration Following Systemic LPS Administration. Glia 61, 855–868. 10.1002/glia.22479 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qin L., Liu Y., Wang T., Wei S. J., Block M. L., Wilson B., et al. (2004). NADPH Oxidase Mediates Lipopolysaccharide-Induced Neurotoxicity and Proinflammatory Gene Expression in Activated Microglia. J. Biol. Chem. 279, 1415–1421. 10.1074/jbc.M307657200 [DOI] [PubMed] [Google Scholar]
- Qu L., Xu H., Jia W., Jiang H., Xie J. (2019). Rosmarinic Acid Protects against MPTP-Induced Toxicity and Inhibits Iron-Induced α-synuclein Aggregation. Neuropharmacology 144, 291–300. 10.1016/j.neuropharm.2018.09.042 [DOI] [PubMed] [Google Scholar]
- Quesada A., Micevych P., Handforth A. (2009). C-terminal Mechano Growth Factor Protects Dopamine Neurons: a Novel Peptide that Induces Heme Oxygenase-1. Exp. Neurol. 220, 255–266. 10.1016/j.expneurol.2009.08.029 [DOI] [PubMed] [Google Scholar]
- Quesada A., Ogi J., Schultz J., Handforth A. (2011). C-terminal Mechano-Growth Factor Induces Heme Oxygenase-1-Mediated Neuroprotection of SH-Sy5y Cells via the Protein Kinase Cϵ/Nrf2 Pathway. J. Neurosci. Res. 89, 394–405. 10.1002/jnr.22543 [DOI] [PubMed] [Google Scholar]
- Rai S. N., Birla H., Singh S. S., Zahra W., Patil R. R., Jadhav J. P., et al. (2017). Mucuna Pruriens Protects against MPTP Intoxicated Neuroinflammation in Parkinson's Disease through NF-κB/pAKT Signaling Pathways. Front. Aging Neurosci. 9, 421. 10.3389/fnagi.2017.00421 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rai S. N., Chaturvedi V. K., Singh P., Singh B. K., Singh M. P. (2020). Mucuna Pruriens in Parkinson's and in Some Other Diseases: Recent Advancement and Future Prospective. 3 Biotech. 10, 522. 10.1007/s13205-020-02532-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rai S. N., Dilnashin H., Birla H., Singh S. S., Zahra W., Rathore A. S., et al. (2019a). The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotoxicity Res. 35, 775–795. 10.1007/s12640-019-0003-y [DOI] [PubMed] [Google Scholar]
- Rai S. N., Singh P. (2020). Advancement in the Modelling and Therapeutics of Parkinson's Disease. J. Chem. Neuroanat. 104, 101752. 10.1016/j.jchemneu.2020.101752 [DOI] [PubMed] [Google Scholar]
- Rai S. N., Singh P., Varshney R., Chaturvedi V. K., Vamanu E., Singh M. P., et al. (2021). Promising Drug Targets and Associated Therapeutic Interventions in Parkinson's Disease. Neural Regen. Res. 16, 1730–1739. 10.4103/1673-5374.306066 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rai S. N., Zahra W., Singh S. S., Birla H., Keswani C., Dilnashin H., et al. (2019b). Anti-inflammatory Activity of Ursolic Acid in MPTP-Induced Parkinsonian Mouse Model. Neurotoxicity Res. 36, 452–462. 10.1007/s12640-019-00038-6 [DOI] [PubMed] [Google Scholar]
- Rasheed M., Tripathi M. K., Patel D. K., Singh M. P. (2020). Resveratrol Regulates Nrf2-Mediated Expression of Antioxidant and Xenobiotic Metabolizing Enzymes in Pesticides-Induced Parkinsonism. Protein Pept. Lett. 27, 1038–1045. 10.2174/0929866527666200403110036 [DOI] [PubMed] [Google Scholar]
- Reeve V. E., Tyrrell R. M. (1999). Heme Oxygenase Induction Mediates the Photoimmunoprotective Activity of UVA Radiation in the Mouse. Proc. Natl. Acad. Sci. United States America 96, 9317–9321. 10.1073/pnas.96.16.9317 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ren J., Yuan L., Wang W., Zhang M., Wang Q., Li S., et al. (2019). Tricetin Protects against 6-OHDA-Induced Neurotoxicity in Parkinson's Disease Model by Activating Nrf2/HO-1 Signaling Pathway and Preventing Mitochondria-dependent Apoptosis Pathway. Toxicol. Appl. Pharmacol. 378, 114617. 10.1016/j.taap.2019.114617 [DOI] [PubMed] [Google Scholar]
- Riederer P., Sofic E., Rausch W. D., Schmidt B., Reynolds G. P., Jellinger K., et al. (1989). Transition Metals, Ferritin, Glutathione, and Ascorbic Acid in Parkinsonian Brains. J. Neurochem. 52, 515–520. 10.1111/j.1471-4159.1989.tb09150.x [DOI] [PubMed] [Google Scholar]
- Rodriguez-Pallares J., Parga J. A., Muñoz A., Rey P., Guerra M. J., Labandeira-Garcia J. L. (2007). Mechanism of 6-hydroxydopamine Neurotoxicity: the Role of NADPH Oxidase and Microglial Activation in 6-Hydroxydopamine-Induced Degeneration of Dopaminergic Neurons. J. Neurochem. 103, 145–156. 10.1111/j.1471-4159.2007.04699.x [DOI] [PubMed] [Google Scholar]
- Romero A., Egea J., García A. G., López M. G. (2010). Synergistic Neuroprotective Effect of Combined Low Concentrations of Galantamine and Melatonin against Oxidative Stress in SH-Sy5y Neuroblastoma Cells. J. pineal Res. 49, 141–148. 10.1111/j.1600-079X.2010.00778.x [DOI] [PubMed] [Google Scholar]
- Rossi F., Zatti M. (1964). Biochemical Aspects of Phagocytosis in Polymorphonuclear Leucocytes. NADH and NADPH Oxidation by the Granules of Resting and Phagocytizing Cells. Experientia 20, 21–23. 10.1007/BF02146019 [DOI] [PubMed] [Google Scholar]
- Royer-Pokora B., Kunkel L. M., Monaco A. P., Goff S. C., Newburger P. E., Baehner R. L., et al. (1986). Cloning the Gene for an Inherited Human Disorder–Chronic Granulomatous Disease–On the Basis of its Chromosomal Location. Nature 322, 32–38. 10.1038/322032a0 [DOI] [PubMed] [Google Scholar]
- Ryu J., Zhang R., Hong B. H., Yang E. J., Kang K. A., Choi M., et al. (2013). Phloroglucinol Attenuates Motor Functional Deficits in an Animal Model of Parkinson's Disease by Enhancing Nrf2 Activity. PloS one 8, e71178. 10.1371/journal.pone.0071178 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachdev S., Ansari S. A., Ansari M. I., Fujita M., Hasanuzzaman M. (2021). Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 10, 277. 10.3390/antiox10020277 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salinas M., Diaz R., Abraham N. G., Ruiz de Galarreta C. M., Cuadrado A. (2003). Nerve Growth Factor Protects against 6-Hydroxydopamine-Induced Oxidative Stress by Increasing Expression of Heme Oxygenase-1 in a Phosphatidylinositol 3-kinase-dependent Manner. J. Biol. Chem. 278, 13898–13904. 10.1074/jbc.M209164200 [DOI] [PubMed] [Google Scholar]
- Sano A., Maehara T., Fujimori K. (2021). Protection of 6-OHDA Neurotoxicity by PGF(2α) through FP-ERK-Nrf2 Signaling in SH-Sy5y Cells. Toxicology 450, 152686. 10.1016/j.tox.2021.152686 [DOI] [PubMed] [Google Scholar]
- Sarrafchi A., Bahmani M., Shirzad H., Rafieian-Kopaei M. (2016). Oxidative Stress and Parkinson's Disease: New Hopes in Treatment with Herbal Antioxidants. Curr. Pharm. Des. 22, 238–246. 10.2174/1381612822666151112151653 [DOI] [PubMed] [Google Scholar]
- Savica R., Grossardt B. R., Bower J. H., Ahlskog J. E., Rocca W. A. (2016). Time Trends in the Incidence of Parkinson Disease. JAMA Neurol. 73, 981–989. 10.1001/jamaneurol.2016.0947 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sbarra A. J., Karnovsky M. L. (1959). The Biochemical Basis of Phagocytosis. I. Metabolic Changes during the Ingestion of Particles by Polymorphonuclear Leukocytes. J. Biol. Chem. 234, 1355–1362. 10.1016/s0021-9258(18)70011-2 [DOI] [PubMed] [Google Scholar]
- Schapira A. H., Cooper J. M., Dexter D., Clark J. B., Jenner P., Marsden C. D. (1990). Mitochondrial Complex I Deficiency in Parkinson's Disease. J. Neurochem. 54, 823–827. 10.1111/j.1471-4159.1990.tb02325.x [DOI] [PubMed] [Google Scholar]
- Schapira A. H., Cooper J. M., Dexter D., Jenner P., Clark J. B., Marsden C. D. (1989). Mitochondrial Complex I Deficiency in Parkinson's Disease. Lancet 1, 1269. 10.1016/s0140-6736(89)92366-0 [DOI] [PubMed] [Google Scholar]
- Schipper H. M., Song W., Tavitian A., Cressatti M. (2019). The Sinister Face of Heme Oxygenase-1 in Brain Aging and Disease. Prog. Neurobiol. 172, 40–70. 10.1016/j.pneurobio.2018.06.008 [DOI] [PubMed] [Google Scholar]
- Segal A. W., Jones O. T. (1978). Novel Cytochrome B System in Phagocytic Vacuoles of Human Granulocytes. Nature 276, 515–517. 10.1038/276515a0 [DOI] [PubMed] [Google Scholar]
- Segal A. W., Jones O. T., Webster D., Allison A. C. (1978). Absence of a Newly Described Cytochrome B from Neutrophils of Patients with Chronic Granulomatous Disease. Lancet 2, 446–449. 10.1016/s0140-6736(78)91445-9 [DOI] [PubMed] [Google Scholar]
- Segura-Aguilar J., Muñoz P., Paris I. (2016). Aminochrome as New Preclinical Model to Find New Pharmacological Treatment that Stop the Development of Parkinson's Disease. Curr. Med. Chem. 23, 346–359. 10.2174/0929867323666151223094103 [DOI] [PubMed] [Google Scholar]
- Segura-Aguilar J., Paris I., Muñoz P., Ferrari E., Zecca L., Zucca F. A. (2014). Protective and Toxic Roles of Dopamine in Parkinson's Disease. J. Neurochem. 129, 898–915. 10.1111/jnc.12686 [DOI] [PubMed] [Google Scholar]
- Seidi A., Kaji H., Annabi N., Ostrovidov S., Ramalingam M., Khademhosseini A. (2011). A Microfluidic-Based Neurotoxin Concentration Gradient for the Generation of an In Vitro Model of Parkinson's Disease. Biomicrofluidics 5, 22214. 10.1063/1.3580756 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma N., Khurana N., Muthuraman A., Utreja P. (2021). Pharmacological Evaluation of Vanillic Acid in Rotenone-Induced Parkinson's Disease Rat Model. Eur. J. Pharmacol. 903, 174112. 10.1016/j.ejphar.2021.174112 [DOI] [PubMed] [Google Scholar]
- Sheng X., Yang S., Wen X., Zhang X., Ye Y., Zhao P., et al. (2021). Neuroprotective Effects of Shende'an Tablet in the Parkinson's Disease Model. Chin. Med. 16, 18. 10.1186/s13020-021-00429-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih A. Y., Johnson D. A., Wong G., Kraft A. D., Jiang L., Erb H., et al. (2003). Coordinate Regulation of Glutathione Biosynthesis and Release by Nrf2-Expressing Glia Potently Protects Neurons from Oxidative Stress. J. Neurosci. 23, 3394–3406. 10.1523/JNEUROSCI.23-08-03394.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih Y. T., Chen I. J., Wu Y. C., Lo Y. C. (2011). San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-Sy5y Cells. Evid Based. Complement. Altern. Med. 2011, 429384. 10.1093/ecam/nep025 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sian J., Dexter D. T., Lees A. J., Daniel S., Agid Y., Javoy-Agid F., et al. (1994). Alterations in Glutathione Levels in Parkinson's Disease and Other Neurodegenerative Disorders Affecting Basal Ganglia. Ann. Neurol. 36, 348–355. 10.1002/ana.410360305 [DOI] [PubMed] [Google Scholar]
- Siebert A., Desai V., Chandrasekaran K., Fiskum G., Jafri M. S. (2009). Nrf2 Activators Provide Neuroprotection against 6-hydroxydopamine Toxicity in Rat Organotypic Nigrostriatal Cocultures. J. Neurosci. Res. 87, 1659–1669. 10.1002/jnr.21975 [DOI] [PubMed] [Google Scholar]
- Sies H. (2020a). Findings in Redox Biology: From H(2)O(2) to Oxidative Stress. J. Biol. Chem. 295, 13458–13473. 10.1074/jbc.X120.015651 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sies H. (2020b). Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 9, 852. 10.3390/antiox9090852 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smirnova N. A., Kaidery N. A., Hushpulian D. M., Rakhman I. I., Poloznikov A. A., Tishkov V. I., et al. (2016). Bioactive Flavonoids and Catechols as Hif1 and Nrf2 Protein Stabilizers - Implications for Parkinson's Disease. Aging Dis. 7, 745–762. 10.14336/AD.2016.0505 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Son H. J., Choi J. H., Lee J. A., Kim D. J., Shin K. J., Hwang O. (2015). Induction of NQO1 and Neuroprotection by a Novel Compound KMS04014 in Parkinson's Disease Models. J. Mol. Neurosci. 56, 263–272. 10.1007/s12031-015-0516-7 [DOI] [PubMed] [Google Scholar]
- Son H. J., Han S. H., Lee J. A., Shin E. J., Hwang O. (2017). Potential Repositioning of Exemestane as a Neuroprotective Agent for Parkinson's Disease. Free Radic. Res. 51, 633–645. 10.1080/10715762.2017.1353688 [DOI] [PubMed] [Google Scholar]
- Spillantini M. G., Schmidt M. L., Lee V. M., Trojanowski J. Q., Jakes R., Goedert M. (1997). Alpha-synuclein in Lewy Bodies. Nature 388, 839–840. 10.1038/42166 [DOI] [PubMed] [Google Scholar]
- Srivastav S., Fatima M., Mondal A. C. (2018). Bacopa Monnieri Alleviates Paraquat Induced Toxicity in Drosophila by Inhibiting Jnk Mediated Apoptosis through Improved Mitochondrial Function and Redox Stabilization. Neurochem. Int. 121, 98–107. 10.1016/j.neuint.2018.10.001 [DOI] [PubMed] [Google Scholar]
- Staal R. G., Mosharov E. V., Sulzer D. (2004). Dopamine Neurons Release Transmitter via a Flickering Fusion Pore. Nat. Neurosci. 7, 341–346. 10.1038/nn1205 [DOI] [PubMed] [Google Scholar]
- Subramaniam S. R., Chesselet M. F. (2013). Mitochondrial Dysfunction and Oxidative Stress in Parkinson's Disease. Prog. Neurobiol. 106-107, 17–32. 10.1016/j.pneurobio.2013.04.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun W., Zheng J., Ma J., Wang Z., Shi X., Li M., et al. (2021). Increased Plasma Heme Oxygenase-1 Levels in Patients with Early-Stage Parkinson's Disease. Front. Aging Neurosci. 13, 621508. 10.3389/fnagi.2021.621508 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun X., Zhang H., Xie L., Qian C., Ye Y., Mao H., et al. (2020). Tristetraprolin Destabilizes NOX2 mRNA and Protects Dopaminergic Neurons from Oxidative Damage in Parkinson's Disease. FASEB J. 34, 15047–15061. 10.1096/fj.201902967R [DOI] [PubMed] [Google Scholar]
- Swanson C. R., Du E., Johnson D. A., Johnson J. A., Emborg M. E. (2013). Neuroprotective Properties of a Novel Non-thiazoledinedione Partial PPAR- γ Agonist against MPTP. PPAR Res. 2013, 582809. 10.1155/2013/582809 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talalay P. (2000). Chemoprotection against Cancer by Induction of Phase 2 Enzymes. BioFactors 12, 5–11. 10.1002/biof.5520120102 [DOI] [PubMed] [Google Scholar]
- Tarafdar A., Pula G. (2018). The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 19, 3824. 10.3390/ijms19123824 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teahan C., Rowe P., Parker P., Totty N., Segal A. W. (1987). The X-Linked Chronic Granulomatous Disease Gene Codes for the Beta-Chain of Cytochrome B-245. Nature 327, 720–721. 10.1038/327720a0 [DOI] [PubMed] [Google Scholar]
- Tebay L. E., Robertson H., Durant S. T., Vitale S. R., Penning T. M., Dinkova-Kostova A. T., et al. (2015). Mechanisms of Activation of the Transcription Factor Nrf2 by Redox Stressors, Nutrient Cues, and Energy Status and the Pathways through Which it Attenuates Degenerative Disease. Free Radic. Biol. Med. 88, 108–146. 10.1016/j.freeradbiomed.2015.06.021 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terada K., Murata A., Toki E., Goto S., Yamakawa H., Setoguchi S., et al. (2020). Atypical Antipsychotic Drug Ziprasidone Protects against Rotenone-Induced Neurotoxicity: An In Vitro Study. Molecules 25, 4206. 10.3390/molecules25184206 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thapa P., Katila N., Choi D. Y., Choi H., Nam J. W. (2021). Suntamide A, a Neuroprotective Cyclic Peptide from Cicadidae Periostracum. Bioorg. Chem. 106, 104493. 10.1016/j.bioorg.2020.104493 [DOI] [PubMed] [Google Scholar]
- Tiwari M. N., Agarwal S., Bhatnagar P., Singhal N. K., Tiwari S. K., Kumar P., et al. (2013). Nicotine-encapsulated Poly(lactic-Co-Glycolic) Acid Nanoparticles Improve Neuroprotective Efficacy against MPTP-Induced Parkinsonism. Free Radic. Biol. Med. 65, 704–718. 10.1016/j.freeradbiomed.2013.07.042 [DOI] [PubMed] [Google Scholar]
- Todorovic M., Wood S. A., Mellick G. D. (2016). Nrf2: a Modulator of Parkinson's Disease. J. Neural Transm. 123, 611–619. 10.1007/s00702-016-1563-0 [DOI] [PubMed] [Google Scholar]
- Tong H., Zhang X., Meng X., Lu L., Mai D., Qu S. (2018). Simvastatin Inhibits Activation of NADPH Oxidase/p38 MAPK Pathway and Enhances Expression of Antioxidant Protein in Parkinson Disease Models. Front. Mol. Neurosci. 11, 165. 10.3389/fnmol.2018.00165 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trachootham D., Lu W., Ogasawara M. A., Nilsa R. D., Huang P. (2008). Redox Regulation of Cell Survival. Antioxid. Redox signaling 10, 1343–1374. 10.1089/ars.2007.1957 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tran N., Nguyen A. N., Takabe K., Yamagata Z., Miyake K. (2017). Pre-treatment with Amitriptyline Causes Epigenetic Up-Regulation of Neuroprotection-Associated Genes and Has Anti-apoptotic Effects in Mouse Neuronal Cells. Neurotoxicology and teratology 62, 1–12. 10.1016/j.ntt.2017.05.002 [DOI] [PubMed] [Google Scholar]
- Tseng W. T., Hsu Y. W., Pan T. M. (2016). Dimerumic Acid and Deferricoprogen Activate Ak Mouse Strain Thymoma/Heme Oxygenase-1 Pathways and Prevent Apoptotic Cell Death in 6-Hydroxydopamine-Induced SH-Sy5y Cells. J. Agric. Food Chem. 64, 5995–6002. 10.1021/acs.jafc.6b01551 [DOI] [PubMed] [Google Scholar]
- Tseng Y. T., Hsu Y. Y., Shih Y. T., Lo Y. C. (2012). Paeonol Attenuates Microglia-Mediated Inflammation and Oxidative Stress-Induced Neurotoxicity in Rat Primary Microglia and Cortical Neurons. Shock 37, 312–318. 10.1097/SHK.0b013e31823fe939 [DOI] [PubMed] [Google Scholar]
- Turrens J. F. (2003). Mitochondrial Formation of Reactive Oxygen Species. J. Physiol. 552, 335–344. 10.1113/jphysiol.2003.049478 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M., Harvey K., Gispert S., et al. (2004). Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1. Science 304, 1158–1160. 10.1126/science.1096284 [DOI] [PubMed] [Google Scholar]
- Valente E. M., Bentivoglio A. R., Dixon P. H., Ferraris A., Ialongo T., Frontali M., et al. (2001). Localization of a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, PARK6, on Human Chromosome 1p35-P36. Am. J. Hum. Genet. 68, 895–900. 10.1086/319522 [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Duijn C. M., Dekker M. C., Bonifati V., Galjaard R. J., Houwing-Duistermaat J. J., Snijders P. J., et al. (2001). Park7, a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, on Chromosome 1p36. Am. J. Hum. Genet. 69, 629–634. 10.1086/322996 [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Muiswinkel F. L., Kuiperij H. B. (2005). The Nrf2-ARE Signalling Pathway: Promising Drug Target to Combat Oxidative Stress in Neurodegenerative Disorders. Curr. Drug Targets CNS Neurol. Disord. 4, 267–281. 10.2174/1568007054038238 [DOI] [PubMed] [Google Scholar]
- Vermot A., Petit-Härtlein I., Smith S., Fieschi F. (2021). NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 10, 890. 10.3390/antiox10060890 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vilariño-Güell C., Wider C., Ross O. A., Dachsel J. C., Kachergus J. M., Lincoln S. J., et al. (2011). VPS35 Mutations in Parkinson Disease. Am. J. Hum. Genet. 89, 162–167. 10.1016/j.ajhg.2011.06.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vile G. F., Basu-Modak S., Waltner C., Tyrrell R. M. (1994). Heme Oxygenase 1 Mediates an Adaptive Response to Oxidative Stress in Human Skin Fibroblasts. Proc. Natl. Acad. Sci. United States America 91, 2607–2610. 10.1073/pnas.91.7.2607 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vinish M., Anand A., Prabhakar S. (2011). Altered Oxidative Stress Levels in Indian Parkinson's Disease Patients with PARK2 Mutations. Acta Biochim. Pol. 58, 165–169. 10.18388/abp.2011_2260 [DOI] [PubMed] [Google Scholar]
- Wang G., Ma W., Du J. (2018). β-Caryophyllene (BCP) Ameliorates MPP+ Induced Cytotoxicity. Biomed. Pharmacother. = Biomédecine pharmacothérapie 103, 1086–1091. 10.1016/j.biopha.2018.03.168 [DOI] [PubMed] [Google Scholar]
- Wang H., Dou S., Zhu J., Shao Z., Wang C., Cheng B. (2020). Ghrelin Mitigates MPP(+)-induced Cytotoxicity: Involvement of ERK1/2-Mediated Nrf2/HO-1 and Endoplasmic Reticulum Stress PERK Signaling Pathway. Peptides 133, 170374. 10.1016/j.peptides.2020.170374 [DOI] [PubMed] [Google Scholar]
- Wang H., Wang Y., Zhao L., Cui Q., Wang Y., Du G. (2016). Pinocembrin Attenuates MPP(+)-induced Neurotoxicity by the Induction of Heme Oxygenase-1 through ERK1/2 Pathway. Neurosci. Lett. 612, 104–109. 10.1016/j.neulet.2015.11.048 [DOI] [PubMed] [Google Scholar]
- Wang L., Cai X., Shi M., Xue L., Kuang S., Xu R., et al. (2020). Identification and Optimization of Piperine Analogues as Neuroprotective Agents for the Treatment of Parkinson's Disease via the Activation of Nrf2/keap1 Pathway. Eur. J. Med. Chem. 199, 112385. 10.1016/j.ejmech.2020.112385 [DOI] [PubMed] [Google Scholar]
- Wang L. L., Wang R., Jin M., Huang Y., Liu A., Qin J., et al. (2014). Carvedilol Attenuates 6-Hydroxydopamine-Induced Cell Death in PC12 Cells: Involvement of Akt and Nrf2/ARE Pathways. Neurochem. Res. 39, 1733–1740. 10.1007/s11064-014-1367-2 [DOI] [PubMed] [Google Scholar]
- Wang T., Li C., Han B., Wang Z., Meng X., Zhang L., et al. (2020). Neuroprotective Effects of Danshensu on Rotenone-Induced Parkinson's Disease Models In Vitro and In Vivo . BMC Complement. Med. therapies 20, 20. 10.1186/s12906-019-2738-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X. L., Xing G. H., Hong B., Li X. M., Zou Y., Zhang X. J., et al. (2014). Gastrodin Prevents Motor Deficits and Oxidative Stress in the MPTP Mouse Model of Parkinson's Disease: Involvement of ERK1/2-Nrf2 Signaling Pathway. Life Sci. 114, 77–85. 10.1016/j.lfs.2014.08.004 [DOI] [PubMed] [Google Scholar]
- Wang Y., Yu X., Zhang P., Ma Y., Wang L., Xu H., et al. (2018). Neuroprotective Effects of Pramipexole Transdermal Patch in the MPTP-Induced Mouse Model of Parkinson's Disease. J. Pharmacol. Sci. 138, 31–37. 10.1016/j.jphs.2018.08.008 [DOI] [PubMed] [Google Scholar]
- Wang Y., Zhao W., Li G., Chen J., Guan X., Chen X., et al. (2017). Neuroprotective Effect and Mechanism of Thiazolidinedione on Dopaminergic Neurons In Vivo and In Vitro in Parkinson's Disease. PPAR Res. 2017, 4089214. 10.1155/2017/4089214 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei P. C., Lee-Chen G. J., Chen C. M., Wu Y. R., Chen Y. J., Lin J. L., et al. (2019). Neuroprotection of Indole-Derivative Compound NC001-8 by the Regulation of the NRF2 Pathway in Parkinson's Disease Cell Models. Oxidative Med. Cell. longevity 2019, 5074367. 10.1155/2019/5074367 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei Y. Z., Zhu G. F., Zheng C. Q., Li J. J., Sheng S., Li D. D., et al. (2020). Ellagic Acid Protects Dopamine Neurons from Rotenone-Induced Neurotoxicity via Activation of Nrf2 Signalling. J. Cell. Mol. Med. 24, 9446–9456. 10.1111/jcmm.15616 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinreb O., Mandel S., Youdim M., Amit T. (2013). Targeting Dysregulation of Brain Iron Homeostasis in Parkinson's Disease by Iron Chelators. Free Radic. Biol. Med. 62, 52–64. 10.1016/j.freeradbiomed.2013.01.017 [DOI] [PubMed] [Google Scholar]
- Werkman T. R., Glennon J. C., Wadman W. J., McCreary A. C. (2006). Dopamine Receptor Pharmacology: Interactions with Serotonin Receptors and Significance for the Aetiology and Treatment of Schizophrenia. CNS Neurol. Disord. Drug Targets 5, 3–23. 10.2174/187152706784111614 [DOI] [PubMed] [Google Scholar]
- Williamson T. P., Johnson D. A., Johnson J. A. (2012). Activation of the Nrf2-ARE Pathway by siRNA Knockdown of Keap1 Reduces Oxidative Stress and Provides Partial protection from MPTP-Mediated Neurotoxicity. Neurotoxicology 33, 272–279. 10.1016/j.neuro.2012.01.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woo S. Y., Kim J. H., Moon M. K., Han S. H., Yeon S. K., Choi J. W., et al. (2014). Discovery of Vinyl Sulfones as a Novel Class of Neuroprotective Agents toward Parkinson's Disease Therapy. J. Med. Chem. 57, 1473–1487. 10.1021/jm401788m [DOI] [PubMed] [Google Scholar]
- Wruck C. J., Claussen M., Fuhrmann G., Römer L., Schulz A., Pufe T., et al. (2007). Luteolin Protects Rat PC12 and C6 Cells against MPP+ Induced Toxicity via an ERK Dependent Keap1-Nrf2-ARE Pathway. J. Neural Transm. Supplementum 72, 57–67. 10.1007/978-3-211-73574-9_9 [DOI] [PubMed] [Google Scholar]
- Wu C. C., Hsu M. C., Hsieh C. W., Lin J. B., Lai P. H., Wung B. S. (2006). Upregulation of Heme Oxygenase-1 by Epigallocatechin-3-Gallate via the Phosphatidylinositol 3-kinase/Akt and ERK Pathways. Life Sci. 78, 2889–2897. 10.1016/j.lfs.2005.11.013 [DOI] [PubMed] [Google Scholar]
- Wu C. R., Chang H. C., Cheng Y. D., Lan W. C., Yang S. E., Ching H. (2018). Aqueous Extract of Davallia Mariesii Attenuates 6-Hydroxydopamine-Induced Oxidative Damage and Apoptosis in B35 Cells through Inhibition of Caspase Cascade and Activation of PI3K/AKT/GSK-3β Pathway. Nutrients 10, 1449. 10.3390/nu10101449 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu D. C., Teismann P., Tieu K., Vila M., Jackson-Lewis V., Ischiropoulos H., et al. (2003). NADPH Oxidase Mediates Oxidative Stress in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease. Proc. Natl. Acad. Sci. United States America 100, 6145–6150. 10.1073/pnas.0937239100 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J., Zhao Y. M., Deng Z. K. (2018). Neuroprotective Action and Mechanistic Evaluation of Protodioscin against Rat Model of Parkinson's Disease. Pharmacol. Rep. 70, 139–145. 10.1016/j.pharep.2017.08.013 [DOI] [PubMed] [Google Scholar]
- Wu L., Xu H., Cao L., Li T., Li R., Feng Y., et al. (2017). Salidroside Protects against MPP+-Induced Neuronal Injury through DJ-1-Nrf2 Antioxidant Pathway. Evid Based. Complement. Altern. Med. 2017, 5398542. 10.1155/2017/5398542 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu W., Han H., Liu J., Tang M., Wu X., Cao X., et al. (2021). Fucoxanthin Prevents 6-OHDA-Induced Neurotoxicity by Targeting Keap1. Oxidative Med. Cell. longevity 2021, 6688708. 10.1155/2021/6688708 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu X. F., Block M. L., Zhang W., Qin L., Wilson B., Zhang W. Q., et al. (2005). The Role of Microglia in Paraquat-Induced Dopaminergic Neurotoxicity. Antioxid. Redox signaling 7, 654–661. 10.1089/ars.2005.7.654 [DOI] [PubMed] [Google Scholar]
- Xiao H., Lv F., Xu W., Zhang L., Jing P., Cao X. (2011). Deprenyl Prevents MPP(+)-induced Oxidative Damage in PC12 Cells by the Upregulation of Nrf2-Mediated NQO1 Expression through the Activation of PI3K/Akt and Erk. Toxicology 290, 286–294. 10.1016/j.tox.2011.10.007 [DOI] [PubMed] [Google Scholar]
- Xu H., Wang Y., Song N., Wang J., Jiang H., Xie J. (2017). New Progress on the Role of Glia in Iron Metabolism and Iron-Induced Degeneration of Dopamine Neurons in Parkinson's Disease. Front. Mol. Neurosci. 10, 455. 10.3389/fnmol.2017.00455 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu L. L., Wu Y. F., Yan F., Li C. C., Dai Z., You Q. D., et al. (2019). 5-(3,4-Difluorophenyl)-3-(6-methylpyridin-3-yl)-1,2,4-oxadiazole (DDO-7263), a Novel Nrf2 Activator Targeting Brain Tissue, Protects against MPTP-Induced Subacute Parkinson's Disease in Mice by Inhibiting the NLRP3 Inflammasome and Protects PC12 Cells against Oxidative Stress. Free Radic. Biol. Med. 134, 288–303. 10.1016/j.freeradbiomed.2019.01.003 [DOI] [PubMed] [Google Scholar]
- Xu Y., Tang D., Wang J., Wei H., Gao J. (2019). Neuroprotection of Andrographolide against Microglia-Mediated Inflammatory Injury and Oxidative Damage in PC12 Neurons. Neurochem. Res. 44, 2619–2630. 10.1007/s11064-019-02883-5 [DOI] [PubMed] [Google Scholar]
- Yamamoto M., Kensler T. W., Motohashi H. (2018). The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol. Rev. 98, 1169–1203. 10.1152/physrev.00023.2017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto N., Izumi Y., Matsuo T., Wakita S., Kume T., Takada-Takatori Y., et al. (2010). Elevation of Heme Oxygenase-1 by Proteasome Inhibition Affords Dopaminergic Neuroprotection. J. Neurosci. Res. 88, 1934–1942. 10.1002/jnr.22363 [DOI] [PubMed] [Google Scholar]
- Yamamoto N., Sawada H., Izumi Y., Kume T., Katsuki H., Shimohama S., et al. (2007). Proteasome Inhibition Induces Glutathione Synthesis and Protects Cells from Oxidative Stress: Relevance to Parkinson Disease. J. Biol. Chem. 282, 4364–4372. 10.1074/jbc.M603712200 [DOI] [PubMed] [Google Scholar]
- Yan J., Pang Y., Zhuang J., Lin H., Zhang Q., Han L., et al. (2019). Selenepezil, a Selenium-Containing Compound, Exerts Neuroprotective Effect via Modulation of the Keap1-Nrf2-ARE Pathway and Attenuates Aβ-Induced Cognitive Impairment In Vivo . ACS Chem. Neurosci. 10, 2903–2914. 10.1021/acschemneuro.9b00106 [DOI] [PubMed] [Google Scholar]
- Yan J., Qiao L., Wu J., Fan H., Sun J., Zhang Y. (2018). Simvastatin Protects Dopaminergic Neurons against MPP+-Induced Oxidative Stress and Regulates the Endogenous Anti-oxidant System through ERK. Cell Physiol. Biochem. 51, 1957–1968. 10.1159/000495720 [DOI] [PubMed] [Google Scholar]
- Yang C., Mo Y., Xu E., Wen H., Wei R., Li S., et al. (2019). Astragaloside IV Ameliorates Motor Deficits and Dopaminergic Neuron Degeneration via Inhibiting Neuroinflammation and Oxidative Stress in a Parkinson's Disease Mouse Model. Int. immunopharmacology 75, 105651. 10.1016/j.intimp.2019.05.036 [DOI] [PubMed] [Google Scholar]
- Yang C., Zhao J., Cheng Y., Le X. C., Rong J. (2015). N-propargyl Caffeate Amide (PACA) Potentiates Nerve Growth Factor (NGF)-Induced Neurite Outgrowth and Attenuates 6-Hydroxydopamine (6-Ohda)-Induced Toxicity by Activating the Nrf2/HO-1 Pathway. ACS Chem. Neurosci. 6, 1560–1569. 10.1021/acschemneuro.5b00115 [DOI] [PubMed] [Google Scholar]
- Yang L., Calingasan N. Y., Thomas B., Chaturvedi R. K., Kiaei M., Wille E. J., et al. (2009). Neuroprotective Effects of the Triterpenoid, CDDO Methyl Amide, a Potent Inducer of Nrf2-Mediated Transcription. PloS one 4, e5757. 10.1371/journal.pone.0005757 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Y., Kong F., Ding Q., Cai Y., Hao Y., Tang B. (2020). Bruceine D Elevates Nrf2 Activation to Restrain Parkinson's Disease in Mice through Suppressing Oxidative Stress and Inflammatory Response. Biochem. biophysical Res. Commun. 526, 1013–1020. 10.1016/j.bbrc.2020.03.097 [DOI] [PubMed] [Google Scholar]
- Ye Q., Huang B., Zhang X., Zhu Y., Chen X. (2012). Astaxanthin Protects against MPP(+)-induced Oxidative Stress in PC12 Cells via the HO-1/NOX2 axis. BMC Neurosci. 13, 156. 10.1186/1471-2202-13-156 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoritaka A., Hattori N., Uchida K., Tanaka M., Stadtman E. R., Mizuno Y. (1996). Immunohistochemical Detection of 4-hydroxynonenal Protein Adducts in Parkinson Disease. Proc. Natl. Acad. Sci. United States America 93, 2696–2701. 10.1073/pnas.93.7.2696 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zahra W., Rai S. N., Birla H., Singh S. S., Rathore A. S., Dilnashin H., et al. (2020). Neuroprotection of Rotenone-Induced Parkinsonism by Ursolic Acid in PD Mouse Model. CNS Neurol. Disord. Drug Targets 19, 527–540. 10.2174/1871527319666200812224457 [DOI] [PubMed] [Google Scholar]
- Zakharova E. T., Sokolov A. V., Pavlichenko N. N., Kostevich V. A., Abdurasulova I. N., Chechushkov A. V., et al. (2018). Erythropoietin and Nrf2: Key Factors in the Neuroprotection provided by Apo-Lactoferrin. Biometals 31, 425. 10.1007/s10534-018-0111-9 [DOI] [PubMed] [Google Scholar]
- Zawada W. M., Banninger G. P., Thornton J., Marriott B., Cantu D., Rachubinski A. L., et al. (2011). Generation of Reactive Oxygen Species in 1-Methyl-4-Phenylpyridinium (MPP+) Treated Dopaminergic Neurons Occurs as an NADPH Oxidase-dependent Two-Wave cascade. J. neuroinflammation 8, 129. 10.1186/1742-2094-8-129 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zenkov N. K., Kozhin P. M., Chechushkov A. V., Martinovich G. G., Kandalintseva N. V., Menshchikova E. B. (2017). Mazes of Nrf2 Regulation. Biochemistry 82, 556–564. 10.1134/S0006297917050030 [DOI] [PubMed] [Google Scholar]
- Zgorzynska E., Dziedzic B., Walczewska A. (2021). An Overview of the Nrf2/ARE Pathway and its Role in Neurodegenerative Diseases. Int. J. Mol. Sci. 22, 9592. 10.3390/ijms22179592 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang B., Wang G., He J., Yang Q., Li D., Li J., et al. (2019). Icariin Attenuates Neuroinflammation and Exerts Dopamine Neuroprotection via an Nrf2-dependent Manner. J. neuroinflammation 16, 92. 10.1186/s12974-019-1472-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang C., Li C., Chen S., Li Z., Jia X., Wang K., et al. (2017). Berberine Protects against 6-OHDA-Induced Neurotoxicity in PC12 Cells and Zebrafish through Hormetic Mechanisms Involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 Pathways. Redox Biol. 11, 1–11. 10.1016/j.redox.2016.10.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang D., Hu X., Wei S. J., Liu J., Gao H., Qian L., et al. (2008). Squamosamide Derivative FLZ Protects Dopaminergic Neurons against Inflammation-Mediated Neurodegeneration through the Inhibition of NADPH Oxidase Activity. J. neuroinflammation 5, 21. 10.1186/1742-2094-5-21 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Perry G., Smith M. A., Robertson D., Olson S. J., Graham D. G., et al. (1999). Parkinson's Disease Is Associated with Oxidative Damage to Cytoplasmic DNA and RNA in Substantia Nigra Neurons. Am. J. Pathol. 154, 1423–1429. 10.1016/S0002-9440(10)65396-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L., Hao J., Zheng Y., Su R., Liao Y., Gong X., et al. (2018). Fucoidan Protects Dopaminergic Neurons by Enhancing the Mitochondrial Function in a Rotenone-Induced Rat Model of Parkinson's Disease. Aging Dis. 9, 590–604. 10.14336/AD.2017.0831 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang M., An C., Gao Y., Leak R. K., Chen J., Zhang F. (2013). Emerging Roles of Nrf2 and Phase II Antioxidant Enzymes in Neuroprotection. Prog. Neurobiol. 100, 30–47. 10.1016/j.pneurobio.2012.09.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang N., Shu H. Y., Huang T., Zhang Q. L., Li D., Zhang G. Q., et al. (2014). Nrf2 Signaling Contributes to the Neuroprotective Effects of Urate against 6-OHDA Toxicity. PloS one 9, e100286. 10.1371/journal.pone.0100286 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang S., Wang R., Wang G. (2019). Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration. ACS Chem. Neurosci. 10, 945–953. 10.1021/acschemneuro.8b00454 [DOI] [PubMed] [Google Scholar]
- Zhang W., Wang T., Pei Z., Miller D. S., Wu X., Block M. L., et al. (2005). Aggregated Alpha-Synuclein Activates Microglia: a Process Leading to Disease Progression in Parkinson's Disease. FASEB J. 19, 533–542. 10.1096/fj.04-2751com [DOI] [PubMed] [Google Scholar]
- Zhang X. L., Yuan Y. H., Shao Q. H., Wang Z. Z., Zhu C. G., Shi J. G., et al. (2017). DJ-1 Regulating PI3K-Nrf2 Signaling Plays a Significant Role in Bibenzyl Compound 20C-Mediated Neuroprotection against Rotenone-Induced Oxidative Insult. Toxicol. Lett. 271, 74–83. 10.1016/j.toxlet.2017.02.022 [DOI] [PubMed] [Google Scholar]
- Zhang X. S., Ha S., Wang X. L., Shi Y. L., Duan S. S., Li Z. A. (2015). Tanshinone IIA Protects Dopaminergic Neurons against 6-Hydroxydopamine-Induced Neurotoxicity through miR-153/nf-E2-Related Factor 2/antioxidant Response Element Signaling Pathway. Neuroscience 303, 489–502. 10.1016/j.neuroscience.2015.06.030 [DOI] [PubMed] [Google Scholar]
- Zhang Z., Cui W., Li G., Yuan S., Xu D., Hoi M. P., et al. (2012). Baicalein Protects against 6-OHDA-Induced Neurotoxicity through Activation of Keap1/Nrf2/HO-1 and Involving PKCα and PI3K/AKT Signaling Pathways. J. Agric. Food Chem. 60, 8171–8182. 10.1021/jf301511m [DOI] [PubMed] [Google Scholar]
- Zhang Z., Li G., Szeto S., Chong C. M., Quan Q., Huang C., et al. (2015). Examining the Neuroprotective Effects of Protocatechuic Acid and Chrysin on In Vitro and In Vivo Models of Parkinson Disease. Free Radic. Biol. Med. 84, 331–343. 10.1016/j.freeradbiomed.2015.02.030 [DOI] [PubMed] [Google Scholar]
- Zhang Z., Peng L., Fu Y., Wang W., Wang P., Zhou F. (2021). Ginnalin A Binds to the Subpockets of Keap1 Kelch Domain to Activate the Nrf2-Regulated Antioxidant Defense System in SH-Sy5y Cells. ACS Chem. Neurosci. 12, 872–882. 10.1021/acschemneuro.0c00713 [DOI] [PubMed] [Google Scholar]
- Zhao J., Cheng Y. Y., Fan W., Yang C. B., Ye S. F., Cui W., et al. (2015). Botanical Drug Puerarin Coordinates with Nerve Growth Factor in the Regulation of Neuronal Survival and Neuritogenesis via Activating ERK1/2 and PI3K/Akt Signaling Pathways in the Neurite Extension Process. CNS Neurosci. Ther. 21, 61–70. 10.1111/cns.12334 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao M., Wang B., Zhang C., Su Z., Guo B., Zhao Y., et al. (2021). The DJ1-Nrf2-STING axis Mediates the Neuroprotective Effects of Withaferin A in Parkinson's Disease. Cel Death Differ. 28, 2517. 10.1038/s41418-021-00767-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Y. F., Zhang Q., Xi J. Y., Li Y. H., Ma C. G., Xiao B. G. (2015). Multitarget Intervention of Fasudil in the Neuroprotection of Dopaminergic Neurons in MPTP-Mouse Model of Parkinson's Disease. J. Neurol. Sci. 353, 28–37. 10.1016/j.jns.2015.03.022 [DOI] [PubMed] [Google Scholar]
- Zhao Y., Han Y., Wang Z., Chen T., Qian H., He J., et al. (2020). Rosmarinic Acid Protects against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Dopaminergic Neurotoxicity in Zebrafish Embryos. Toxicol. vitro 65, 104823. 10.1016/j.tiv.2020.104823 [DOI] [PubMed] [Google Scholar]
- Zheng J., Zhu J. L., Zhang Y., Zhang H., Yang Y., Tang D. R., et al. (2020). PGK1 Inhibitor CBR-470-1 Protects Neuronal Cells from MPP+. Aging 12, 13388–13399. 10.18632/aging.103443 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou J., Qu X. D., Li Z. Y., Ji W., Liu Q., Ma Y. H., et al. (2014). Salvianolic Acid B Attenuates Toxin-Induced Neuronal Damage via Nrf2-dependent Glial Cells-Mediated Protective Activity in Parkinson's Disease Models. PloS one 9, e101668. 10.1371/journal.pone.0101668 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Q., Chen B., Wang X., Wu L., Yang Y., Cheng X., et al. (2016). Sulforaphane Protects against Rotenone-Induced Neurotoxicity In Vivo: Involvement of the mTOR, Nrf2, and Autophagy Pathways. Scientific Rep. 6, 32206. 10.1038/srep32206 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Y., Jiang Z., Lu H., Xu Z., Tong R., Shi J., et al. (2019). Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem. biodiversity 16, e1900400. 10.1002/cbdv.201900400 [DOI] [PubMed] [Google Scholar]
- Zhu J. L., Wu Y. Y., Wu D., Luo W. F., Zhang Z. Q., Liu C. F. (2019). SC79, a Novel Akt Activator, Protects Dopaminergic Neuronal Cells from MPP(+) and Rotenone. Mol. Cell. Biochem. 461, 81–89. 10.1007/s11010-019-03592-x [DOI] [PubMed] [Google Scholar]
- Zhu L., Li D., Chen C., Wang G., Shi J., Zhang F. (2019). Activation of Nrf2 Signaling by Icariin Protects against 6-OHDA-Induced Neurotoxicity. Biotechnol. Appl. Biochem. 66, 465–471. 10.1002/bab.1743 [DOI] [PubMed] [Google Scholar]
- Zou Y. M., Liu J., Tian Z. Y., Lu D., Zhou Y. Y. (2015). Systematic Review of the Prevalence and Incidence of Parkinson's Disease in the People's Republic of China. Neuropsychiatr. Dis. Treat. 11, 1467–1472. 10.2147/NDT.S85380 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zou Y., Wang R., Guo H., Dong M. (2015). Phytoestrogen β-Ecdysterone Protects PC12 Cells against MPP+-Induced Neurotoxicity In Vitro: Involvement of PI3K-Nrf2-Regulated Pathway. Toxicol. Sci. 147, 28–38. 10.1093/toxsci/kfv111 [DOI] [PubMed] [Google Scholar]
- Zou Z. C., Fu J. J., Dang Y. Y., Zhang Q., Wang X. F., Chen H. B., et al. (2021). Pinocembrin-7-Methylether Protects SH-Sy5y Cells against 6-Hydroxydopamine-Induced Neurotoxicity via Modulating Nrf2 Induction through AKT and ERK Pathways. Neurotoxicity Res. 39, 1323–1337. 10.1007/s12640-021-00376-4 [DOI] [PubMed] [Google Scholar]
- Zucca F. A., Segura-Aguilar J., Ferrari E., Muñoz P., Paris I., Sulzer D., et al. (2017). Interactions of Iron, Dopamine and Neuromelanin Pathways in Brain Aging and Parkinson's Disease. Prog. Neurobiol. 155, 96–119. 10.1016/j.pneurobio.2015.09.012 [DOI] [PMC free article] [PubMed] [Google Scholar]






