Abstract
目的
比较Crowe Ⅳ型发育性髋关节发育不良(developmental dysplasia of the hip,DDH)人工全髋关节置换术(total hip arthroplasty,THA)中,股骨转子下短缩截骨术(subtrochanteric shortening osteotomy,SSO)后3种固定方式固定截骨断端的疗效差异。
方法
回顾分析2014年11月—2019年5月63例(78髋)因Crowe Ⅳ型DDH行THA联合SSO患者临床资料,其中18例(20髋)截骨后依靠股骨假体髓内压配进行固定(A组);22例(30髋)在截骨后、植入假体前,采用钢丝对股骨进行预防性捆绑固定(B组);23例(28髋)截骨后将截下的骨块覆盖于截骨部位,并辅以钢丝或钛缆固定(C组)。3组患者性别、年龄、身体质量指数、患肢侧别以及术前Harris评分等一般资料比较,差异均无统计学意义(P>0.05)。记录并比较3组手术时间、并发症发生情况、影像学检查结果以及髋关节功能评分。
结果
3组手术时间比较差异无统计学意义(P>0.05)。术后切口均Ⅰ期愈合。3组患者均获随访,A组随访时间2.5~4.0年,平均3.1年;B组1.5~5.5年,平均3.2年;C组1.0~5.0年,平均1.6年。术后4、12个月3组间Harris评分以及西安大略和麦克马斯特大学骨关节炎指数(WOMAC)评分比较,差异均无统计学意义(P>0.05)。X线片复查显示3组截骨均愈合,3组间愈合时间以及术后4、8、12个月截骨愈合率比较,差异均无统计学意义(P>0.05)。B组1髋术中发生股骨远端骨折,无关节脱位、假体松动、假体周围关节感染以及异位骨化等并发症发生。
结论
Crowe Ⅳ型DDH患者THA术中SSO后,与仅采用股骨假体髓内压配固定相比,钢丝预防性捆绑及自体骨块辅以钢丝或线缆捆绑不能显著促进截骨愈合。但对于截骨断端髓腔不匹配者,建议选择自体骨辅以线缆固定。
Keywords: 发育性髋关节发育不良, 人工全髋关节置换术, 股骨转子下短缩截骨术, 内固定
Abstract
Objective
To compare the effectiveness of three different fixation methods after subtrochanteric shortening osteotomy (SSO) in total hip arthroplasty (THA) for Crowe type Ⅳ developmental dysplasia of the hip (DDH).
Methods
A clinical data of 63 patients (78 hips) with Crowe type Ⅳ DDH, who underwent THA with SSO between November 2014 and May 2019, was retrospectively analyzed. Among them, 18 patients (20 hips) obtained stability by intramedullary pressure provided by the S-ROM modular prostheses (group A); 22 patients (30 hips) underwent prophylactic binding by stainless steel wire after osteotomy and before stem implantation (group B); 23 patients (28 hips) were fixed with autogenous cortical strut grafts and stainless steel wire or cables (group C). There was no significant difference in gender, age, body mass index, affected limb side, and preoperative Harris score between groups (P>0.05). The operation time, complications, imaging results, hip functional score of the three groups were recorded and compared.
Results
There was no significant difference in the operation time between groups (P>0.05). All incisions healed by first intention. All patients were followed up, and the follow-up time was 2.5-4.0 years (mean, 3.1 years) in group A, 1.5-5.5 years (mean, 3.2 years) in group B, and 1.0-5.0 years (mean, 1.6 years) in group C. There was no significant difference in Harris score or Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score between groups at 4 and 12 months after operation (P>0.05). X-ray films showed that there was no significant difference in osteotomy healing rate at 4, 8, and 12 months after operation and the osteotomy healing time between groups (P>0.05). There was no complications such as joint dislocation, prosthesis loosening, prosthetic joint infection, or heterotopic ossification during follow-up, except for the distal femoral fracture of 1 hip during operation in group B.
Conclusion
In THA for patients with Crowe type Ⅳ DDH, the stainless steel wire binding alone and autogenous cortical strut grafts combined with stainless steel wire or cable binding can not significantly promote the osteotomy healing compared with femoral prosthesis intramedullary compression fixation. For patients with nonmatched medullary cavity after SSO, it is recommended to apply autogenous cortical strut grafts with wire or cables for additional fixation.
Keywords: Developmental dysplasia of the hip, total hip arthroplasty, subtrochanteric shortening osteotomy, internal fixation
发育性髋关节发育不良(developmental dysplasia of the hip,DDH)患者因髋关节解剖结构异常,会出现局部疼痛和功能障碍[1],继发骨关节炎时可以选择人工全髋关节置换术(total hip arthroplasty,THA)。DDH根据股骨头脱位程度可分为Crowe Ⅰ~Ⅳ型,其中Ⅳ型因髋关节存在高脱位[2],THA不仅需要恢复髋关节旋转中心,还需矫正下肢长度,使患者恢复正常步态[3]。术中通常将髋臼假体置于真臼,使用组配式假体来匹配异常髓腔形态,减小关节间应力和增大外展肌力臂,以达到最佳生物力学效果[4-5]。然而,单纯将髋关节旋转中心调整至真臼,肢体延长难以避免,可能导致坐骨神经和股神经损伤等并发症[6-7],因此常需联合股骨转子下短缩截骨术(subtrochanteric shortening osteotomy,SSO)。
SSO包括横形截骨、斜形截骨、阶梯形截骨和双 V 形截骨等[8-10]。其中,横形截骨相对容易实现,与其他截骨方式相比手术时间较短,成为临床应用最广泛的SSO术式。但横形截骨存在旋转不稳定,可能导致截骨部位不愈合的问题[11-12]。为此,有学者推荐在横形截骨后使用髓外固定装置,如骨移植物、环扎线缆或钢板螺钉固定,以促进截骨愈合[13-15],但目前有关不同固定方式的效果存在争议。为明确横形截骨后固定方式对截骨愈合的影响,我们进行了一项单中心回顾性研究,以2014年11月—2019年5月在解放军总医院第一医学中心因Crowe Ⅳ型DDH行THA联合SSO的患者作为研究对象,比较3种截骨固定方式疗效差异,以期为临床选择恰当固定方式提供参考。报告如下。
1. 临床资料
1.1. 患者选择标准
纳入标准:① Crowe Ⅳ型DDH;② 采用THA联合SSO(横形截骨)治疗,且手术均由同一名医师完成;③ 术侧髋关节为初次手术;④ 临床资料完整,包括术前及术后4、8、12个月骨盆正位和髋关节侧位X线片,以及术后4、12个月髋关节Harris评分和西安大略和麦克马斯特大学骨关节炎指数(WOMAC)评分。排除影像资料未达要求的患者。
2014年11月—2019年5月,共82例(97髋)Crowe Ⅳ型DDH患者行THA,其中63例(78髋)符合选择标准纳入研究。其中,18例(20髋)截骨后依靠股骨假体髓内压配进行固定(A组);22例(30髋)在截骨后、植入假体前,采用钢丝对股骨进行预防性捆绑固定(B组);23例(28髋)截骨后将截下的骨块覆盖于截骨部位,并辅以钢丝或钛缆固定(C组)。
1.2. 一般资料
A组:患者均为女性;年龄23~56岁,平均35.8岁。身体质量指数(body mass index,BMI)为(21.6±3.2)kg/m2。单髋16例,其中左髋8例、右髋8例;双髋2例。B组:男2例,女20例;年龄21~66岁,平均35.9岁。BMI(21.7±3.0)kg/m2。单髋14例,其中左髋8例、右髋6例;双髋8例。C组:男3例,女20例;年龄24~66岁,平均38.0岁。BMI(23.3±2.8)kg/m2。单髋18例,其中左髋6例、右髋12例;双髋5例。
3组患者性别、年龄、BMI、患肢侧别以及术前Harris评分等一般资料比较,差异均无统计学意义(P>0.05)。见表1。
表 1.
Comparison of hip functional scores between groups (
)
3组患者髋关节功能评分比较(
)
| 组别
Group |
髋数
n |
Harris评分
Harris score |
WOMAC评分
WOMAC score |
||||
| 术前
Preoperative |
术后4个月
Four months after operation |
术后12个月
Twelve months after operation |
术后4个月
Four months after operation |
术后12个月
Twelve months after operation |
|||
| A | 20 | 58.5±13.3 | 83.8±10.2 | 93.7±5.1 | 50.1±30.6 | 21.7±25.0 | |
| B | 30 | 59.3±16.4 | 80.2±16.0 | 92.2±5.6 | 49.0±24.4 | 17.7±15.0 | |
| C | 28 | 60.6±16.5 | 79.1±11.3 | 91.0±5.4 | 58.4±25.7 | 27.1±15.1 | |
| 统计值
Statistic |
时间效应F=195.558,P=0.000
交互效应F=0.700,P=0.558 组别效应F=0.248,P=0.781 |
时间效应F=24.788,P=0.000
交互效应F=0.219,P=0.804 组别效应F=1.507,P=0.228 |
|||||
1.3. 手术方法
全麻下患者取侧卧位,作后外侧切口,显露髋臼后均在原位安放臼杯。经试模无法复位,测量股骨头中心至髋臼旋转中心距离,以该距离减去1.5 cm为SSO截骨长度。经松解髂腰肌、关节囊及关节周围软组织后进行复位。本研究均采用Pinnacle非骨水泥型髋臼假体和S-ROM组配式股骨假体(DePuy公司,美国)。
采用股骨转子下横形截骨。截骨线位于转子下1.5~2.0 cm处,以保持转子区域完整性以及保证整体结构具有足够强度。A组:截骨后仅依靠股骨假体的髓内压配固定,不采取其他固定方式。B组:在截骨后、植入假体前,使用普通钢丝对股骨进行预防性捆绑,以防止植入假体时发生骨折。C组:截骨后将截下的骨块从一侧纵形切开,得到2块形状相同的半圆柱形骨片;在股骨假体植入后,将骨片像“翻书”一样打开后扣在截骨部位,并使用2~3根普通钢丝或钛缆(Cable-Ready线缆系统;Zimmer Biomet公司,美国)捆绑。
1.4. 术后处理
3组术后处理方法一致。常规使用莫西沙星预防感染治疗1周,阿司匹林或低分子肝素抗凝治疗1个月。保持屈髋、屈膝体位2周,2周后下肢可伸直情况下扶双拐下地活动,6周后可完全负重,4个月后弃拐行走。
1.5. 疗效评价指标
记录手术时间以及并发症发生情况。术后定期摄骨盆正位和髋关节侧位X线片,参照Masonis等[16]提出的标准判定截骨愈合情况,如术后12个月截骨仍未愈合定义为骨不连;观察有无假体松动[17]及异位骨化[18]发生。影像学评价由2名未参与研究的医师独立完成,若二者意见不统一,由另1名高年资医师判断。采用Harris评分及WOMAC评分评价髋关节功能。
1.6. 统计学方法
采用SPSS25.0统计软件进行分析。计量资料均符合正态分布,以均数±标准差表示,手术时间、截骨愈合时间组间比较采用单因素方差分析,两两比较采用SNK检验;Harris评分及WOMAC评分组间比较采用重复测量方差分析,其中Harris评分行球形检验,若不满足球形检验,采用Greenhouse-Geisser法进行校正,同一组别不同时间点间比较采用 Bonferroni 法,同一时间点不同组别间比较采用多因素方差分析。计数资料以率表示,组间比较采用χ2检验。检验水准α=0.05。
2. 结果
A组手术时间为(152.6±44.3)min,B组为(135.2±33.7)min,C组为(144.4±45.4)min,组间比较差异无统计学意义(P>0.05)。3组术后切口均Ⅰ期愈合。3组患者均获随访,A组随访时间为2.5~4.0年,平均3.1年;B组1.5~5.5年,平均3.2年;C组1.0~5.0年,平均1.6年。术后4、12个月3组间Harris评分以及WOMAC评分比较,差异均无统计学意义(P>0.05)。见表1及图1。
图 1.
Changes of Harris score and WOMAC score in the three groups
3组髋关节Harris评分以及WOMAC评分变化趋势
a. Harris评分;b. WOMAC评分
a. Harris score; b. WOMAC score
X线片复查显示3组截骨均愈合,其中A组愈合时间为(6.8±3.1)个月,B组为(6.7±3.3)个月,C组为(5.5±3.1)个月,组间比较差异无统计学意义(P>0.05)。术后4、8、12个月3组间截骨愈合率差异均无统计学意义(P>0.05)。见表2。B组1髋术中发生股骨远端骨折,术后嘱患者延迟下床活动,4个月随访时骨折已愈合。见图2。随访期间均无关节脱位、假体松动、假体周围关节感染以及异位骨化等并发症发生。
表 2.
Comparison of osteotomy healing rate between groups after operation (%)
3组术后各时间点截骨愈合率比较(%)
| 组别
Group |
髋数
n |
4个月
Four months |
8个月
Eight months |
12个月
Twelve months |
| A | 20 | 9(45) | 18(90) | 19(95) |
| B | 30 | 15(50) | 26(87) | 28(93) |
| C | 28 | 21(75) | 26(93) | 27(96) |
| 统计值
Statistic |
χ2=5.484
P=0.064 |
χ2=0.605
P=0.739 |
χ2=0.286
P=0.867 |
图 2.
X-ray films of a 66-year-old female patient with bilateral Crowe type Ⅳ DDH treated with THA and SSO
患者,女,66岁,双侧Crowe Ⅳ型DDH行THA联合SSO的X线片
左髋为C组、右髋为B组 a. 术前骨盆正位片;b. 术后即刻骨盆正位片示右侧股骨远端骨折;c. 术后即刻股骨远端正位片示骨折线纵向延伸(箭头);d. 术后4个月股骨远端正位片示骨折愈合;e. 术后4个月下肢全长片示双侧截骨断端均愈合,股骨远端骨折愈合
Left hip in group C, right hip in group B a. Anteroposterior image of pelvis before operation; b. Anteroposterior image of the pelvis at immediate after operation, showed the distal femoral fracture; c. Anteroposterior image of the distal femoral at immediate after operation, showed the longitudinal extension of the fracture line (arrow); d. Anteroposterior image of the distal femoral at 4 months after operation, showed the fracture healed; e. Full-length image of lower limbs at 4 months after operation, showed that the distal femoral fracture healed
3. 讨论
目前,关于导致SSO截骨延迟愈合的因素尚未明确,可能与以下四方面有关。首先,截骨后股骨两断端接触面对合程度和髓腔直径匹配程度可能会影响截骨愈合[19]。若截骨端表面不平整,髓腔大小不匹配,愈合时间会延长。其次,股骨近端和远端间结构不稳定引起的相对旋转,可能导致截骨延迟愈合。研究表明,S-ROM组配式假体的齿条和凹槽可以嵌入股骨皮质,进而提供旋转稳定性[20]。但股骨假体的圆柄与发育畸形的椭圆形股骨髓腔不匹配,可能降低假体对扭转趋势的阻力,导致结构不稳,使截骨愈合延迟。再次,截骨愈合可能受到潜在的生物机制影响。例如,感染、磨锉髓腔操作对骨膜的损伤、截骨时摆锯的局部高温等,都可能破坏骨膜成骨活性,导致术后骨不连的发生[19, 21-22]。最后,截骨部位软组织嵌入、患者术后过早站立负荷或不当活动也可能影响截骨愈合[21]。
因此,在行SSO时应注意以下几点:① 尽可能保证截骨后两断端接触面平整和髓腔直径匹配。② 截骨后应在远端股骨重新扩髓测试,选择合适型号假体,以防止截骨后两股骨断端间相对旋转。③ 植入假体时避免软组织嵌入。④ 避免术后过早负荷和不当活动[23-24]。⑤ 股骨转子下截骨高度的选择也应引起注意,若截骨线过高,处于股骨由近端向远端移行变窄的区域,截骨后近端和远端节段间的髓腔匹配程度较低,增加不稳定发生风险;若截骨线过低、远离干骺端,此处相对不丰富的血供和股骨假体远端较差的压配固定也不利于截骨愈合[25]。⑥ 术中避免过度剥离截骨断端骨膜,以最大程度保证截骨断端血运[21]。
目前,SSO截骨后除通过选择S-ROM组配式假体取得髓内固定外,植入假体前对近端和远端股骨进行钢丝预防性捆绑,或者使用自体骨移植物覆盖截骨断端并辅以线缆捆绑固定,也可以提供额外固定[8, 19, 26]。前者可以预防假体植入过程中可能发生的骨折,并在一定程度上允许选择大一号假体,进而增强股骨假体的抗旋转作用;后者则被认为可以增加截骨部位稳定性,并在某种生物机制下促进截骨愈合。另外有研究认为,单纯使用钢丝或钛缆环扎会影响股骨血运,进而增加截骨不愈合风险。而自体骨移植物覆盖避免了线缆与股骨的直接接触,保证了股骨血运顺畅[27-29]。Kawai等[30]的研究还发现,在股骨转子下横形截骨THA中,所截下的股骨越短,延迟愈合风险越高,分析截除更长的股骨节段可以带来纵向更长的自体骨移植物,并可能增加截骨部位稳定性。本研究中,术后3个时间点3组截骨愈合率差异均无统计学意义,提示SSO横形截骨后结构的稳定性主要依靠组配式假体的髓内压配固定获得,B、C组采取的额外操作只起到辅助作用。但是值得注意的是,我们在临床中发现S-ROM组配式假体并非在所有情况下都能取得预期固定效果。对于部分Dorr C型内、后侧皮质骨丢失较多的Crowe Ⅳ型DDH,其股骨髓腔直径较宽[31],SSO截骨后近端与远端股骨髓腔直径不匹配。在这种情况下,依据最小髓腔所选择的股骨假体难以匹配远端股骨髓腔,假体齿条、凹槽等也不能有效固定截骨断端,此时则可以选择自体骨片辅以线缆固定提供额外固定。而且有研究认为自体骨块移植辅以线缆捆绑固定除能为截骨断端提供额外稳定性外[1],还可以从以下两方面促进截骨断端愈合[21]:① 在假体型号不匹配、截骨断端吻合界面不平整情况下,自体骨块覆盖可防止截骨断端软组织嵌入。② 自体骨块内壁覆盖于截骨部位,可以为其周围提供更多骨性接触,进而促进愈合。
本研究3组手术时间差异无统计学意义,分析可能与CroweⅣ型DDH患者髋关节结构矫形比较复杂,耗时较长有关,B、C组虽有额外手术操作,但对手术时间无显著影响。术后各时间点3组间Harris评分和WOMAC评分差异均无统计学意义,分析原因可能为无严重并发症(如感染、脱位等)发生情况下,早期(术后4个月)患者一般刚弃拐恢复行走,截骨愈合与否对功能恢复无显著影响;而中后期(术后8、12个月)截骨大多刚愈合,术后恢复效果普遍良好。
本研究为一项单中心回顾性研究,样本量相对较小,而且患者截骨愈合时间判断依赖于随访时间点,且截骨是否愈合仅通过医师观察X线片判断,缺乏客观、精准评价方法。后续我们将开展多中心、大样本量临床试验和相关基础实验研究,进一步明确固定方式对截骨断端的影响以及相关作用机制。
作者贡献:孔祥朋、柴伟负责实验设计;杨敏之、郭人文负责患者随访及临床资料收集;刘宇博、马明阳负责数据整理、统计分析及文章撰写。
利益冲突:所有作者声明,在课题研究和文章撰写过程中不存在利益冲突。经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道。
机构伦理问题:研究方案经中国人民解放军总医院医学伦理委员会批准(S2018-014-01)。患者均知情同意。
Funding Statement
国家自然科学基金面上项目(81772320);解放军总医院医疗大数据与人工智能研发项目(2019MDA-041)
National Natural Science Foundation of China (81772320); Research and Development Project of Medical Big Data and Artificial Intelligence of PLA General Hospital (2019MDA-041)
Contributor Information
祥朋 孔 (Xiangpeng KONG), Email: 18810999609@163.com.
伟 柴 (Wei CHAI), Email: chaiwei301@163.com.
References
- 1.Çatma MF, Ünlü S, Öztürk A, et al Femoral shortening osteotomy in total hip arthroplasty for severe dysplasia: a comparison of two fixation techniques. Int Orthop. 2016;40(11):2271–2276. doi: 10.1007/s00264-016-3144-0. [DOI] [PubMed] [Google Scholar]
- 2.Kong X, Chai W, Chen J, et al Intraoperative monitoring of the femoral and sciatic nerves in total hip arthroplasty with high-riding developmental dysplasia. Bone Joint J. 2019;101-B(11):1438–1446. doi: 10.1302/0301-620X.101B11.BJJ-2019-0341.R2. [DOI] [PubMed] [Google Scholar]
- 3.Sun J, Guo L, Ni M, et al Changes in distribution of lower limb alignment after total hip arthroplasty for Crowe Ⅳ developmental dysplasia of the hip. Ther Clin Risk Manag. 2021;17:389–396. doi: 10.2147/TCRM.S302298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Wang S, Zhou Y, Ma H, et al Mid-term results of total hip replacement with subtrochanteric osteotomy, modular stem, and ceramic surface in Crowe Ⅳ hip dysplasia. Arthroplast Today. 2017;4(3):363–369. doi: 10.1016/j.artd.2017.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Yoder SA, Brand RA, Pedersen DR, et al Total hip acetabular component position affects component loosening rates. Clin Orthop Relat Res. 1988;(228):79–87. [PubMed] [Google Scholar]
- 6.Rogers BA, Garbedian S, Kuchinad RA, et al Total hip arthroplasty for adult hip dysplasia. J Bone Joint Surg (Am) 2012;94(19):1809–1821. doi: 10.2106/JBJS.K.00779. [DOI] [PubMed] [Google Scholar]
- 7.Shi XT, Li CF, Han Y, et al Total Hip arthroplasty for Crowe type Ⅳ hip dysplasia: surgical techniques and postoperative complications. Orthop Surg. 2019;11(6):966–973. doi: 10.1111/os.12576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Becker DA, Gustilo RB Double-chevron subtrochanteric shortening derotational femoral osteotomy combined with total hip arthroplasty for the treatment of complete congenital dislocation of the hip in the adult. Preliminary report and description of a new surgical technique. J Arthroplasty. 1995;10(3):313–318. doi: 10.1016/s0883-5403(05)80180-9. [DOI] [PubMed] [Google Scholar]
- 9.Huo MH, Zatorski LE, Keggi KJ Oblique femoral osteotomy in cementless total hip arthroplasty. Prospective consecutive series with a 3-year minimum follow-up period. J Arthroplasty. 1995;10(3):319–327. doi: 10.1016/s0883-5403(05)80181-0. [DOI] [PubMed] [Google Scholar]
- 10.Sponseller PD, McBeath AA Subtrochanteric osteotomy with intramedullary fixation for arthroplasty of the dysplastic hip. A case report. J Arthroplasty. 1988;3(4):351–354. doi: 10.1016/s0883-5403(88)80036-6. [DOI] [PubMed] [Google Scholar]
- 11.Muratli KS, Karatosun V, Uzun B, et al Subtrochanteric shortening in total hip arthroplasty: biomechanical comparison of four techniques. J Arthroplasty. 2014;29(4):836–842. doi: 10.1016/j.arth.2013.09.004. [DOI] [PubMed] [Google Scholar]
- 12.Reikeraas O, Lereim P, Gabor I, et al Femoral shortening in total arthroplasty for completely dislocated hips: 3-7 year results in 25 cases. Acta Orthop Scand. 1996;67(1):33–36. doi: 10.3109/17453679608995605. [DOI] [PubMed] [Google Scholar]
- 13.Çağlar Ö, Özdemir E, Tokgözoğlu AM, et al Use of proximal humerus plates for the fixation of the subtrochanteric femoral shortening osteotomy during total hip arthroplasty for Crowe type Ⅳ developmental dysplasia of the hip patients. Jt Dis Relat Surg. 2020;31(2):306–311. doi: 10.5606/ehc.2020.73078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Togrul E, Ozkan C, Kalaci A, et al A new technique of subtrochanteric shortening in total hip replacement for Crowe type 3 to 4 dysplasia of the hip. J Arthroplasty. 2010;25(3):465–470. doi: 10.1016/j.arth.2009.02.023. [DOI] [PubMed] [Google Scholar]
- 15.Yasgur DJ, Stuchin SA, Adler EM, et al Subtrochanteric femoral shortening osteotomy in total hip arthroplasty for high-riding developmental dislocation of the hip. J Arthroplasty. 1997;12(8):880–888. doi: 10.1016/S0883-5403(97)90157-1. [DOI] [PubMed] [Google Scholar]
- 16.Masonis JL, Patel JV, Miu A, et al Subtrochanteric shortening and derotational osteotomy in primary total hip arthroplasty for patients with severe hip dysplasia: 5-year follow-up. J Arthroplasty. 2003;18(3 Suppl 1):68–73. doi: 10.1054/arth.2003.50104. [DOI] [PubMed] [Google Scholar]
- 17.Sutherland CJ, Wilde AH, Borden LS, et al A ten-year follow-up of one hundred consecutive Müller curved-stem total hip-replacement arthroplasties. J Bone Joint Surg (Am) 1982;64(7):970–982. doi: 10.2106/00004623-198264070-00002. [DOI] [PubMed] [Google Scholar]
- 18.Brooker AF, Bowerman JW, Robinson RA, et al Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg (Am) 1973;55(8):1629–1632. doi: 10.2106/00004623-197355080-00006. [DOI] [PubMed] [Google Scholar]
- 19.Wang D, Li LL, Wang HY, et al Long-term results of cementless total hip arthroplasty with subtrochanteric shortening osteotomy in Crowe type Ⅳ developmental dysplasia. J Arthroplasty. 2017;32(4):1211–1219. doi: 10.1016/j.arth.2016.11.005. [DOI] [PubMed] [Google Scholar]
- 20.Ma HY, Lu Q, Sun JY, et al One-stage total hip arthroplasty with modular S-ROM stem for patients with bilateral Crowe type Ⅳ developmental dysplasia. Orthop Surg. 2020;12(6):1913–1922. doi: 10.1111/os.12843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Gong S, Xu W, Wang R, et al. The causes and management of nonunion of femoral subtrochanteric shortening osteotomy in a THA patient: a case report. BMC Musculoskelet Disord, 2019, 20(1): 203. doi: 10.1186/s12891-019-2612-2.
- 22.Wang D, Li DH, Li Q, et al. Subtrochanteric shortening osteotomy during cementless total hip arthroplasty in young patients with severe developmental dysplasia of the hip. BMC Musculoskelet Disord, 2017, 18(1): 491. doi: 10.1186/s12891-017-1857-x.
- 23.Onodera S, Majima T, Ito H, et al Cementless total hip arthroplasty using the modular S-ROM prosthesis combined with corrective proximal femoral osteotomy. J Arthroplasty. 2006;21(5):664–669. doi: 10.1016/j.arth.2005.08.016. [DOI] [PubMed] [Google Scholar]
- 24.Park MS, Kim KH, Jeong WC Transverse subtrochanteric shortening osteotomy in primary total hip arthroplasty for patients with severe hip developmental dysplasia. J Arthroplasty. 2007;22(7):1031–1036. doi: 10.1016/j.arth.2007.05.011. [DOI] [PubMed] [Google Scholar]
- 25.刘宇博, 孔祥朋, 柴伟 Crowe Ⅳ型髋关节发育不良的全髋关节置换术: 术中股骨短缩截骨的文献回顾. 骨科. 2021;12(4):383–388. [Google Scholar]
- 26.Krych AJ, Howard JL, Trousdale RT, et al Total hip arthroplasty with shortening subtrochanteric osteotomy in Crowe type-Ⅳ developmental dysplasia: surgical technique. J Bone Joint Surg (Am) 2010;92(Suppl 1 Pt 2):176–187. doi: 10.2106/JBJS.J.00061. [DOI] [PubMed] [Google Scholar]
- 27.Berton C, Puskas GJ, Christofilopoulos P, et al Comparison of the outcome following the fixation of osteotomies or fractures associated with total hip replacement using cables or wires: the results at five years. J Bone Joint Surg (Br) 2021;94(11):1475–1481. doi: 10.1302/0301-620X.94B11.29687. [DOI] [PubMed] [Google Scholar]
- 28.Daou S, El Chemaly A, Christofilopoulos P, et al The potential role of cobalt ions released from metal prosthesis on the inhibition of Hv1 proton channels and the decrease in Staphyloccocus epidermidis killing by human neutrophils. J Biomaterials. 2011;32(7):1769–1777. doi: 10.1016/j.biomaterials.2010.11.016. [DOI] [PubMed] [Google Scholar]
- 29.Rae T The action of cobalt, nickel and chromium on phagocytosis and bacterial killing by human polymorphonuclear leucocytes; its relevance to infection after total joint arthroplasty. J Biomaterials. 1983;4(3):175–180. doi: 10.1016/0142-9612(83)90006-6. [DOI] [PubMed] [Google Scholar]
- 30.Kawai T, Goto K, Kuroda Y, et al. Total hip arthroplasty combined with subtrochanteric transverse shortening osteotomy: factors associated with delayed union at the osteotomy site. J Am Acad Orthop Surg Glob Res Rev, 2020, 4(8): e20.00056. doi: 10.5435/JAAOSGlobal-D-20-00056.
- 31.Dorr LD, Faugere MC, Mackel AM, et al Structural and cellular assessment of bone quality of proximal femur. Bone. 1993;14(3):231–242. doi: 10.1016/8756-3282(93)90146-2. [DOI] [PubMed] [Google Scholar]


