Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2021 Dec;35(12):1513–1518. [Article in Chinese] doi: 10.7507/1002-1892.202108073

青少年及成人发育性髋关节发育不良保髋治疗最新研究进展

Recent research progress of hip-preserving treatment for adolescents and adults with developmental dysplasia of the hip

尽言 吴 1,2, 晓东 陈 1,2,*
PMCID: PMC8669189  PMID: 34913305

Abstract

目的

综述青少年及成人发育性髋关节发育不良(developmental dysplasia of the hip,DDH)有关的影像学评估、治疗进展与争议。

方法

查阅近年国内外有关青少年与成人DDH有关的热点问题,包括影像学评估软骨的新技术、对临界DDH(borderline DDH,BDDH)诊断及治疗的争议以及髋臼周围截骨术(peracetabular osteotomy,PAO)技术的改进与展望,并进行总结分析。

结果

DDH是导致髋关节骨关节炎的主要因素之一,随着对DDH病理改变认识不断加深,利用延迟钆增强的软骨磁共振成像技术可以进一步评估骨关节炎进展并预测保髋手术的预后。有关BDDH的诊断和治疗方法选择仍有争论,同时PAO手术技术与理念仍在不断完善与改进中。

结论

软骨损伤情况与骨性结构决定了保髋手术方式与术后预后。青少年及成人 DDH 的保髋之路将朝着个体化、精准化的目标前进。

Keywords: 发育性髋关节发育不良, 延迟钆增强的软骨磁共振成像, 髋关节镜, 髋臼周围截骨术, 个体化治疗


发育性髋关节发育不良(developmental dysplasia of the hip,DDH)是一种常见的肌肉骨骼疾病,被认为是导致髋关节骨关节炎(osteoarthritis,OA)的主要因素之一[1],也是青少年及成人接受人工全髋关节置换术的主要病因之一。DDH是一种复杂的三维畸形,其特征是髋臼和/或股骨近端的形状、大小和方向存在畸形[2]。早期和及时​​的手术干预是预防或延缓髋关节进一步退化的最有效方法之一。

在影像学上已有根据X线片判断OA进展的Tönnis分级[3]。但依据二维X线片难以判断软骨损伤状况,通过延迟钆增强的软骨磁共振成像(delayed gadolinium-enhanced MRI of cartilage,dGEMRIC)技术可以更全面评估软骨损伤情况,并预测髋臼周围截骨术(peracetabular osteotomy,PAO)的预后。DDH的诊断通常是根据外侧中心边缘角(lateral center edge angle,LCEA),然而LCEA 在诊断临界DDH(borderline DDH,BDDH)时并不是完全可靠,仍需要借助额外的放射学参数及体格检查[4-5]。PAO已成为改变髋臼位置和治疗青少年及成人DDH的主要方法[6],虽然对术者技术要求较高,但为患者提供了缓解疼痛、改善髋关节功能和保髋的机会。本文将对DDH影像学评估的新技术、BDDH的诊断和治疗选择上的争议,以及PAO治疗青少年及成人DDH的最新进展综述如下。

1. DDH影像学评估新技术

目前,Tönnis分级[3]是临床较常用的评估DDH患者OA进展的方法,但其基于X线片进行判断,诊断早期软骨变化或评估短期疗效相当有限。MRI可以提供髋关节软骨损伤程度图像,然而对于OA病程早期发生的细微软骨基质改变,如胶原纤维网络障碍、水分和糖胺聚糖(glycosaminoglycans,GAG)含量变化等方面,则难以判断[7]。OA可能是由于异常力学导致生化介导的软骨降解所致[8]。dGEMRIC技术对软骨的电荷密度极其敏感,在静脉注射或关节腔注射钆造影剂后,携带负电荷的钆会被同样带有负电荷的组织排斥,所以钆会在低电荷区域积聚;而GAG会携带高浓度负电荷,意味着较低的GAG浓度会导致较高的造影剂分布[9]。GAG含量在青少年及成人髋关节早期OA患者的软骨退变过程中呈下降趋势,因此dGEMRIC技术可以更全面评估软骨损伤情况,判断和评估 DDH 患者早期OA程度。

PAO旨在恢复髋关节正常力学,可以减轻青少年及成人DDH患者疼痛并改善髋关节功能,其疗效被广泛认可[9]。Cunningham等[10]的研究利用负重区软骨的T1弛豫时间,即dGEMRIC指数,作为术前评估OA的早期指标,有助于预测PAO手术的远期效果。Jessel等[11]和Melkus等[12]研究了与DDH引起的OA早期发病相关的解剖学和人口统计学因素,根据大数据研究,髋关节OA被定义为dGEMRIC指数<390 ms。Kim等[13]回顾分析了41例行PAO治疗的DDH患者髋关节不同区域的dGEMRIC指数与PAO疗效关系,显示髋关节前方负重区的dGEMRIC指数能更好地预测PAO术后髋关节OA进展情况。

上述研究揭示了dGEMRIC技术对于DDH患者OA进展的诊断潜力,尤其对OA早期的软骨基质变化很敏感这一特性,可用于评估DDH患者髋关节中的软骨状况[14]。同时该技术可用于预测保髋手术治疗效果,以及随访评估软骨状态时的重要补充。随着技术研究的不断发展,较新的软骨磁共振技术,如定量T1ρ和T2*已可在无需注射任何对比剂的情况下评估软骨损伤情况,但仍需进一步研究这两种技术与临床功能和结果评分的相关性[1215]

2. BDDH的诊断与治疗

在过去几十年间,随着髋关节生物力学知识的提高和外科技术的发展,保髋手术技术亦迅速发展。保髋治疗范围逐渐扩大,从不稳定的浅髋臼到患有股骨髋臼撞击综合征(femoroacetabular impingement,FAI)的深髋臼均可行保髋治疗。虽然普遍认为不稳定DDH的最佳治疗方法是重新摆放髋臼以增加覆盖范围,也认同必须修整过度覆盖的髋臼以消除撞击[16];然而在明确诊断的发育不良与过度覆盖之间有一中间地带,被称作BDDH。BDDH是青少年及成人髋部疼痛的主要病因之一,在保髋领域也是主要争论点之一[17]。争论的根源在于通过单一方式判断是存在髋关节不稳定还是存在FAI比较困难。

2.1. BDDH的诊断

BDDH是指髋臼对股骨头的覆盖范围处于轻度异常状态。站立骨盆前后位X线片仍是诊断青少年及成人DDH影像学上的金标准[18]。从传统X线片获得的LCEA依赖于精确识别包括股骨头中心和髋臼内外侧缘在内的影像学标志。当LCEA仅略微小于正常时,对于BDDH的诊断则更加困难[16]。Kuroda等[19]的系统评价纳入28项研究,均将LCEA作为界定BDDH的指标,然而具体角度范围仍有争议[20-21]。其中13项将 BDDH定义为LCEA 20°~25°,10项定义为LCEA 18°~24°,5项定义为LCEA<25°。因此,简单通过LCEA定义BDDH是不全面的[1622],仍需要其他影像学参数与特征来帮助判断髋关节稳定性[4]。有学者将股骨骨骺生长板中央1/3与髋臼顶之间的角度定义为股骨骨骺髋臼顶倾斜角,认为当该角度>5°时与髋关节不稳定的相关性更大[23]。测量髋臼的外侧斜上缘也可以帮助判断BDDH患者的髋关节是否稳定[24]。在存在与髋臼发育不良相关的不稳定性情况下,软组织结构通常会代偿性地过度生长,以弥补骨支撑的不足,通过MRI可以观察到髋臼盂唇肥厚与退化[25]

DDH在髋臼侧的畸形是三维的,Wilkin等[26]及Nepple等[27]将DDH分为前上方、后上方和整体不稳定3类。基于CT重建三维和MRI研究BDDH的诊断仍待进一步完善。

2.2. BDDH的手术治疗

有症状的BDDH治疗方案包括非手术治疗、解决关节内撞击的手术治疗(通过髋关节镜手术或髋关节外科脱位进行的FAI手术)和解决髋关节不稳定问题的PAO治疗。在临床实践中,治疗BDDH的手术方式主要是髋关节镜手术和PAO[28]

2.2.1. 髋关节镜治疗BDDH

基于近十余年外科技术与科技的进步,髋关节镜技术已成为一种公认的诊断和治疗髋关节疾病的方法[329]。髋关节镜技术已被广泛用于治疗髋臼盂唇撕裂[30]、圆韧带损伤[31]、关节囊松弛[32]、髋股撞击征[33]。然而关于髋关节镜治疗BDDH患者的有效性,目前仍存在很大争议。髋关节镜手术可以解决BDDH患者的关节内病变,例如盂唇撕裂[34]。在一项纳入28个研究、涉及1 502个髋关节的系统评价中[35],结果表明髋关节镜治疗BDDH后短期内并发症发生率较低,但年龄过大、股骨前倾角过大以及髋臼前方覆盖不足都是导致髋关节镜手术治疗效果不佳的危险因素。另一项纳入425例患者的系统评价中[19],软骨损伤、髋关节OA、圆韧带撕裂、髋股撞击征会影响BDDH髋关节镜手术效果。

但上述研究术后随访时间均较短,尚无长期随访结果,且髋关节镜手术效果受多种危险因素影响。因此,对BDDH患者进行髋关节镜手术前需要进行全面评估。

2.2.2. PAO治疗BDDH

对于单次或多次髋关节镜手术后疼痛未完全改善,或者由于髋关节镜手术引发医源性髋关节不稳定[536-37]的BDDH患者,可接受PAO治疗。一项对56例LCEA为18°~25° 的BDDH患者行PAO的临床报道显示,经平均随访2年,患者髋部疼痛减轻,功能得到改善[38]。一项比较BDDH患者和LCEA<17°的确诊DDH患者PAO术后疗效的临床报道显示,5年随访后两组患者的报告结局评估工具(PROMs)评分无明显差异[39]。 在一项33例接受PAO手术并至少随访1年的BDDH患者研究中,术后超过90%患者功能评分得到了显著改善[36]

与大量髋关节镜治疗BDDH的研究相比,只有少数研究报道了PAO治疗BDDH的效果,且纳入患者数量较少,未来需要更大样本量且更长随访时间的研究。

2.2.3. BDDH治疗的争论

仅通过LCEA定义BDDH,将这些患者归入同一类别过于简单,且不利于个性化治疗髋部疼痛[38]。BDDH治疗方案选择取决于髋关节稳定性,仅通过X线片很难判断髋关节是否存在不稳定,最终需要根据病史、体格检查以及更为详细的影像学检查共同评估确诊。同时有症状和体格检查阳性的患者建议接受高分辨率的髋关节MRI,以评估关节内损伤;CT三维重建也有助于判断骨骼形状和轮廓,并排除FAI。如果仅通过髋关节镜手术治疗继发的关节内损伤,而不解决已存在的骨性生物力学缺陷,只会在短期内产生较为满意的结果,长期疗效并不确切。

在比较PAO和髋关节镜治疗BDDH患者的效果时,由于缺乏更多PAO治疗BDDH的报道,导致两组患者数量存在显著差异,且在髋关节镜手术治疗时不同医生的手术步骤和技术亦存在差异,这些因素都会影响疗效比较结果。但无论采用哪种方法治疗,患者的PROMs评分均得到改善,但两种手术术后均有部分患者再次行髋关节手术。因此,目前对BDDH患者的最佳治疗方案仍缺乏共识[40],期待更多高质量的临床研究进一步明确。

3. PAO治疗DDH的最新进展

3.1. PAO与髋关节镜联合治疗

PAO是治疗青少年及成人DDH的一种有效手术方式[41]。通过PAO可重新摆放髋臼,从而改善髋关节稳定性、股骨头覆盖率和关节生物力学[42]。髋关节镜通过修补因边缘应力增加所引起的盂唇撕裂来治疗DDH。确诊的DDH患者在接受髋关节镜手术时并未解决已存在的骨性结构,在术后有可能再次出现髋部疼痛,这时需要接受进一步的PAO治疗[43-44]。同时有研究统计在PAO术后再次接受髋关节镜手术的患者往往预后不佳[45]

目前对于合并有盂唇损伤的DDH患者,可以在行PAO之前,利用髋关节镜探查盂唇损伤情况,同时修复损伤的盂唇,术后10年随访髋关节功能评分优于术前[46]。在一项回顾性研究中,对MRI显示有全层盂唇撕裂的DDH患者分别行单纯PAO、PAO联合关节囊切开术或联合髋关节镜下修补盂唇术后疗效进行比较,结果证明盂唇撕裂的修补在中短期内未体现出优势,该结果也与两组患者年龄和DDH严重程度不同有关[45]。尽管在有症状DDH中经常发生盂唇撕裂,但对于同时存在DDH和髋臼盂唇撕裂的治疗还未达成共识[47]。未来需要高质量的对照研究进一步明确。

3.2. 3D打印个体化导板在PAO术中的应用

PAO的挑战之一是过度矫正和矫正不足之间的平衡[48],即如何选择髋臼周围截骨块的摆放位置。近年来,计算机技术及相关软件不断开发,并在临床医学领域得到广泛应用[49],在术前通过CT三维重建DDH患者的髋关节三维模型,并利用CT三维重建和图像处理技术,可以综合评估DDH患者骨盆几何特征和覆盖缺损的部位与程度,在计算机上模拟截骨后髋臼骨块的摆放,建立旋转角度模型并订制旋转导板,设计个性化治疗方案[50]。在原有建模基础上预先设计特定患者的切割和旋转导板,在术中沿切割导板边缘进行截骨,然后使用旋转导板将髋臼周围骨块旋转矫正到术前规划的预定位置。术后随访显示,术中使用新开发的PAO截骨导板患者术后髋关节Harris评分和疼痛视觉模拟评分(VAS)显著提高[51]

3.3. 机器人辅助PAO的现状与展望

手术机器人已被用于其他骨科手术如人工全髋关节置换术等[52],但国际上尚未见针对PAO的手术机器人报道。针对PAO中截骨块位置追踪的难题,美国约翰斯·霍普金斯大学于2020年申请了基于单张X线图像和植入式金属标记点的截骨块位置追踪技术的专利[53]。英国曼彻斯特大学在2013年开展了如何利用有限元分析来优化截骨块的旋转角度,以改善髋关节力学分布的研究[54]。瑞士伯尔尼大学自1997年起研发计算机辅助PAO系统,至今已研发了3代系统[55-57]。这些计算机辅助导航系统在一定程度上使得DDH的诊断和PAO手术规划更加精准,但尚未解决术中精准执行的问题。

未来即将完善的髋臼智能精准截骨手术机器人系统,可用于从CT影像分割骨性和血管结构、术前自动计算髋臼覆盖率、术前规划整体操作流程,以及术中导航及机械臂控制。研发带有智能术前规划和导航的功能,可以解决目前PAO手术创伤大、学习曲线长等突出问题,同时还可以提高手术精准性,减少术中操作难度,并改善疗效。

4. 总结

近年来随着保髋意识与技术的不断提高,保髋手术的数量与质量也飞速进步。目前对青少年及成人DDH治疗的术后疗效预测、对BDDH治疗方式的选择以及PAO手术技术的不断改进,仍是临床医生关注的热点。复杂的定量MRI技术可以为软骨退变评估提供有效的无创评估。为了达到良好且可预测的治疗结果,如何选择合适的干预时间点尤为重要。目前对BDDH患者如何选择最佳治疗方法仍缺乏共识,在评估BDDH患者时应考虑术前症状、伴随的软组织损伤及骨性结构异常;针对BDDH患者的影像学研究更需要从三维立体角度去考量。PAO对初学者来说难度高,因此阻碍了PAO手术的推广与应用,截骨导板及未来截骨机器人的应用可以缩短PAO的学习曲线并减少并发症发生率。在未来,青少年及成人DDH 的保髋之路会朝着精准化与个体化的目标不断前进。

作者贡献:吴尽言负责论文撰写、内容构思及逻辑梳理;陈晓东负责论文审阅和修改。

利益冲突:所有作者声明,在课题研究和论文撰写过程中不存在利益冲突。

Biography

陈晓东,主任医师、博士生导师,上海交通大学医学院附属新华医院骨科主任。任中国医师协会骨科分会常务委员,国际髋关节学会会员,中国医师协会骨科医师分会关节工作委员会保髋工作组组长,中华医学会骨科学分会关节外科学组委员,上海市骨科学会关节外科学组副组长。为《中华骨与关节外科杂志》、《中华创伤骨科杂志》《国际骨科学杂志》、《中华解剖与临床杂志》、Arthroplasty编委,《中华骨科杂志》、《中华外科杂志》通讯编委。主持国家自然科学基金等课题十余项。发表论文50余篇,SCI论文30余篇。主编主译专著3部,参编专著5部。曾获安徽省科技进步一等奖、安徽省卫生厅科技进步一等奖、华夏医学科技二等奖、四川省科技进步二等奖,中华医学科技奖三等奖、教育部科技进步二等奖

References

  • 1.Schmitz MR, Murtha AS, Clohisy JC, et al Developmental dysplasia of the hip in adolescents and young adults. J Am Acad Orthop Surg. 2020;28(3):91–101. doi: 10.5435/JAAOS-D-18-00533. [DOI] [PubMed] [Google Scholar]
  • 2.Harris MD, Shepherd MC, SONG K, et al. The biomechanical disadvantage of dysplastic hips. J Orthop Res, 2021. doi: 10.1002/jor.25165.
  • 3.Domb BG, Chen SL, Go CC, et al Predictors of clinical outcomes after hip arthroscopy: 5-year follow-up analysis of 1038 patients. Am J Sports Med. 2021;49(1):112–120. doi: 10.1177/0363546520968896. [DOI] [PubMed] [Google Scholar]
  • 4.Kraeutler MJ, Safran MR, Scillia AJ, et al A contemporary look at the evaluation and treatment of adult borderline and frank hip dysplasia. Am J Sports Med. 2020;48(9):2314–2323. doi: 10.1177/0363546519881411. [DOI] [PubMed] [Google Scholar]
  • 5.Brusalis CM, Peck J, Wilkin GP, et al Periacetabular osteotomy as a salvage procedure: Early outcomes in patients treated for iatrogenic hip instability. J Bone Joint Surg (Am) 2020;102(Suppl2):73–79. doi: 10.2106/JBJS.20.00087. [DOI] [PubMed] [Google Scholar]
  • 6.Ali M, Malviya A Complications and outcome after periacetabular osteotomy-influence of surgical approach. Hip Int. 2020;30(1):4–15. doi: 10.1177/1120700019871195. [DOI] [PubMed] [Google Scholar]
  • 7.Link TM, Stahl R, Woertler K Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol. 2007;17(5):1135–1146. doi: 10.1007/s00330-006-0453-5. [DOI] [PubMed] [Google Scholar]
  • 8.Crockett R, Grubelnik A, Roos S, et al Biochemical composition of the superficial layer of articular cartilage. J Biomed Mater Res A. 2007;82(4):958–964. doi: 10.1002/jbm.a.31248. [DOI] [PubMed] [Google Scholar]
  • 9.Hingsammer AM, Miller PE, Millis MB, et al Does periacetabular osteotomy have depth-related effects on the articular cartilage of the hip? Clin Orthop Relat Res. 2015;473(12):3735–3743. doi: 10.1007/s11999-015-4545-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Cunningham T, Jessel R, Zurakowski D, et al Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg (Am) 2006;88(7):1540–1548. doi: 10.2106/00004623-200607000-00015. [DOI] [PubMed] [Google Scholar]
  • 11.Jessel RH, Zurakowski D, Zilkens C, et al Radiographic and patient factors associated with pre-radiographic osteoarthritis in hip dysplasia. J Bone Joint Surg (Am) 2009;91(5):1120–1129. doi: 10.2106/JBJS.G.00144. [DOI] [PubMed] [Google Scholar]
  • 12.Melkus G, Beaulé PE, Wilkin G, et al. What is the correlation among dGEMRIC, T1ρ, and T2* quantitative MRI cartilage mapping techniques in developmental hip dysplasia? Clin Orthop Relat Res, 2021, 479(5): 1016-1024.
  • 13.Kim SD, Jessel R, Zurakowski D, et al Anterior delayed gadolinium-enhanced MRI of cartilage values predict joint failure after periacetabular osteotomy. Clin Orthop Relat Res. 2012;470(12):3332–3341. doi: 10.1007/s11999-012-2519-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Fernquest S, Palmer A, Gammer B, et al Compositional MRI of the hip: Reproducibility, effect of joint unloading, and comparison of T2 relaxometry with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. Cartilage. 2021;12(4):418–430. doi: 10.1177/1947603519841670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Hesper T, Bittersohl B, Schleich C, et al Automatic cartilage segmentation for delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: A feasibility study. Cartilage. 2020;11(1):32–37. doi: 10.1177/1947603518783481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Wyatt MC, Beck M The management of the painful borderline dysplastic hip. J Hip Preserv Surg. 2018;5(2):105–112. doi: 10.1093/jhps/hny012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Murata Y, Fukase N, Dornan G, et al. Arthroscopic treatment of femoroacetabular impingement in patients with and without borderline developmental dysplasia of the hip: A systematic review and meta-analysis. Orthop J Sports Med, 2021, 9(8): 23259671211015973. doi: 10.1177/23259671211015973.
  • 18.Millis MB, Kim YJ Rationale of osteotomy and related procedures for hip preservation: a review. Clin Orthop Relat Res. 2002;(405):108–121. doi: 10.1097/00003086-200212000-00013. [DOI] [PubMed] [Google Scholar]
  • 19.Kuroda Y, Saito M, Sunil Kumar KH, et al Hip arthroscopy and borderline developmental dysplasia of the hip: A systematic review. Arthroscopy. 2020;36(9):2550–2567. doi: 10.1016/j.arthro.2020.05.035. [DOI] [PubMed] [Google Scholar]
  • 20.Wiberg G Studies on dysplastic acetabula and congenital subluxation of the hip joint with special reference to the complication of osteoarthritis. Acta Chir Scand. 1939;83(Suppl58):1–132. [Google Scholar]
  • 21.Fredensborg N The CE angle of normal hips. Acta Orthop Scand. 1976;47(4):403–405. doi: 10.3109/17453677608988709. [DOI] [PubMed] [Google Scholar]
  • 22.Garabekyan T, Ashwell Z, Chadayammuri V, et al Lateral acetabular coverage predicts the size of the hip labrum. Am J Sports Med. 2016;44(6):1582–1589. doi: 10.1177/0363546516634058. [DOI] [PubMed] [Google Scholar]
  • 23.Wyatt M, Weidner J, Pfluger D, et al. The femoro-epiphyseal acetabular roof (FEAR) index: A new measurement associated with instability in borderline hip dysplasia? Clin Orthop Relat Res, 2017, 475(3): 861-869.
  • 24.Wong TY, Jesse MK, Jensen A, et al Upsloping lateral sourcil: a radiographic finding of hip instability. J Hip Preserv Surg. 2018;5(4):435–442. doi: 10.1093/jhps/hny042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Higashihira S, Kobayashi N, Choe H, et al. Use of a 3D virtually reconstructed patient-specific model to examine the effect of acetabular labral interference on hip range of motion. Orthop J Sports Med, 2020, 8(11): 2325967120964465. doi: 10.1177/2325967120964465.
  • 26.Wilkin GP, Ibrahim MM, Smit KM, et al A contemporary definition of hip dysplasia and structural instability: Toward a comprehensive classification for acetabular dysplasia. J Arthroplasty. 2017;32(9S):S20–S27. doi: 10.1016/j.arth.2017.02.067. [DOI] [PubMed] [Google Scholar]
  • 27.Nepple JJ, Wells J, Ross JR, et al Three patterns of acetabular deficiency are common in young adult patients with acetabular dysplasia. Clin Orthop Relat Res. 2017;475(4):1037–1044. doi: 10.1007/s11999-016-5150-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Nepple JJ, Fowler LM, Larson CM Decision-making in the borderline hip. Sports Med Arthrosc Rev. 2021;29(1):15–21. doi: 10.1097/JSA.0000000000000298. [DOI] [PubMed] [Google Scholar]
  • 29.Bartlett JD, Lawrence JE, Khanduja V Virtual reality hip arthroscopy simulator demonstrates sufficient face validity. Knee Surg Sports Traumatol Arthrosc. 2019;27(10):3162–3167. doi: 10.1007/s00167-018-5038-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Byrd JW, Jones KS Hip arthroscopy in the presence of dysplasia. Arthroscopy. 2003;19(10):1055–1060. doi: 10.1016/j.arthro.2003.10.010. [DOI] [PubMed] [Google Scholar]
  • 31.Chaharbakhshi EO, Perets I, Ashberg L, et al Do ligamentum teres tears portend inferior outcomes in patients with borderline dysplasia undergoing hip arthroscopic surgery? A match-controlled study with a minimum 2-year follow-up. Am J Sports Med. 2017;45(11):2507–2516. doi: 10.1177/0363546517710008. [DOI] [PubMed] [Google Scholar]
  • 32.Chandrasekaran S, Darwish N, Martin TJ, et al Arthroscopic capsular plication and labral seal restoration in borderline hip dysplasia: 2-year clinical outcomes in 55 cases. Arthroscopy. 2017;33(7):1332–1340. doi: 10.1016/j.arthro.2017.01.037. [DOI] [PubMed] [Google Scholar]
  • 33.Yeung M, Kowalczuk M, Simunovic N, et al Hip arthroscopy in the setting of hip dysplasia: A systematic review. Bone Joint Res. 2016;5(6):225–231. doi: 10.1302/2046-3758.56.2000533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Fukui K, Trindade CA, Briggs KK, et al Arthroscopy of the hip for patients with mild to moderate developmental dysplasia of the hip and femoroacetabular impingement: Outcomes following hip arthroscopy for treatment of chondrolabral damage. Bone Joint J. 2015;97-B(10):1316–1321. doi: 10.1302/0301-620X.97B10.35303. [DOI] [PubMed] [Google Scholar]
  • 35.Ding Z, Sun Y, Liu S, et al Hip arthroscopic surgery in borderline developmental dysplastic hips: A systematic review. Am J Sports Med. 2019;47(10):2494–2500. doi: 10.1177/0363546518803367. [DOI] [PubMed] [Google Scholar]
  • 36.Swarup I, Zaltz I, Robustelli S, et al Outcomes of periacetabular osteotomy for borderline hip dysplasia in adolescent patients. J Hip Preserv Surg. 2020;7(2):249–255. doi: 10.1093/jhps/hnaa012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Benali Y, Katthagen BD Hip subluxation as a complication of arthroscopic debridement. Arthroscopy. 2009;25(4):405–407. doi: 10.1016/j.arthro.2009.01.012. [DOI] [PubMed] [Google Scholar]
  • 38.McClincy MP, Wylie JD, Kim YJ, et al Periacetabular osteotomy improves pain and function in patients with lateral center-edge angle between 18° and 25°, but are these hips really borderline dysplastic? Clin Orthop Relat Res. 2019;477(5):1145–1153. doi: 10.1097/CORR.0000000000000516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Livermore AT, Anderson LA, Anderson MB, et al Correction of mildly dysplastic hips with periacetabular osteotomy demonstrates promising outcomes, achievement of correction goals, and excellent five-year survivorship. Bone Joint J. 2019;101-B(6_Supple_B):16–22. doi: 10.1302/0301-620X.101B6.BJJ-2018-1487.R1. [DOI] [PubMed] [Google Scholar]
  • 40.Murata Y, Fukase N, Martin M, et al. Comparison between hip arthroscopic surgery and periacetabular osteotomy for the treatment of patients with borderline developmental dysplasia of the hip: A systematic review. Orthop J Sports Med, 2021, 9(5): 23259671211007401. doi: 10.1177/23259671211007401.
  • 41.Ziran N, Varcadipane J, Kadri O, et al Ten- and 20-year survivorship of the hip after periacetabular osteotomy for acetabular dysplasia. J Am Acad Orthop Surg. 2019;27(7):247–255. doi: 10.5435/JAAOS-D-17-00810. [DOI] [PubMed] [Google Scholar]
  • 42.Ike H, Inaba Y, Kobayashi N, et al Effects of rotational acetabular osteotomy on the mechanical stress within the hip joint in patients with developmental dysplasia of the hip: a subject-specific finite element analysis. Bone Joint J. 2015;97-B(4):492–497. doi: 10.1302/0301-620X.97B4.33736. [DOI] [PubMed] [Google Scholar]
  • 43.Ross JR, Zaltz I, Nepple JJ, et al Arthroscopic disease classification and interventions as an adjunct in the treatment of acetabular dysplasia. Am J Sports Med. 2011;39Suppl:72S–78S. doi: 10.1177/0363546511412320. [DOI] [PubMed] [Google Scholar]
  • 44.Parvizi J, Bican O, Bender B, et al Arthroscopy for labral tears in patients with developmental dysplasia of the hip: a cautionary note. J Arthroplasty. 2009;24(6Suppl):110–113. doi: 10.1016/j.arth.2009.05.021. [DOI] [PubMed] [Google Scholar]
  • 45.Thanacharoenpanich S, Boyle MJ, Murphy RF, et al. Periacetabular osteotomy for developmental hip dysplasia with labral tears: is arthrotomy or arthroscopy required? J Hip Preserv Surg, 2018, 5(1): 23-33.
  • 46.Cho YJ, Kim KI, Kwak SJ, et al Long-term results of periacetabular rotational osteotomy concomitantly with arthroscopy in adult acetabular dysplasia. J Arthroplasty. 2020;35(10):2807–2812. doi: 10.1016/j.arth.2020.05.045. [DOI] [PubMed] [Google Scholar]
  • 47.Hartig-Andreasen C, Troelsen A, Thillemann TM, et al Risk factors for the need of hip arthroscopy following periacetabular osteotomy. J Hip Preserv Surg. 2015;2(4):374–384. doi: 10.1093/jhps/hnv053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Hanke MS, Lerch TD, Schmaranzer F, et al Complications of hip preserving surgery. EFORT Open Rev. 2021;6(6):472–486. doi: 10.1302/2058-5241.6.210019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Billings S, Kang HJ, Cheng A, et al Minimally invasive registration for computer-assisted orthopedic surgery: combining tracked ultrasound and bone surface points via the P-IMLOP algorithm. Int J Comput Assist Radiol Surg. 2015;10(6):761–771. doi: 10.1007/s11548-015-1188-z. [DOI] [PubMed] [Google Scholar]
  • 50.Xuyi W, Jianping P, Junfeng Z, et al Application of three-dimensional computerised tomography reconstruction and image processing technology in individual operation design of developmental dysplasia of the hip patients. Int Orthop. 2016;40(2):255–265. doi: 10.1007/s00264-015-2994-1. [DOI] [PubMed] [Google Scholar]
  • 51.Shelton TJ, Monazzam S, Calafi A, et al Preoperative 3D modeling and printing for guiding periacetabular osteotomy. J Pediatr Orthop. 2021;41(3):149–158. doi: 10.1097/BPO.0000000000001734. [DOI] [PubMed] [Google Scholar]
  • 52.许固军, 马明阳, 张帅, 等. Mako机器人辅助人工全髋关节置换术在发育性髋关节发育不良中的应用. 中国修复重建外科杂志, 2021, 35(10): 1233-1239.
  • 53.Grupp RB, Murphy RJ, Hegeman RA, et al. Fast and automatic periacetabular osteotomy fragment pose estimation using intraoperatively implanted fiducials and single-view fluoroscopy. Phys Med Biol, 2020, 65(24): 245019. doi: 10.1088/1361-6560/aba089.
  • 54.Zou Z, Chávez-Arreola A, Mandal P, et al Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis. J Orthop Res. 2013;31(3):472–479. doi: 10.1002/jor.22245. [DOI] [PubMed] [Google Scholar]
  • 55.Langlotz F, Stucki M, Bächler R, et al The first twelve cases of computer assisted periacetabular osteotomy. Comput Aided Surg. 1997;2(6):317–326. doi: 10.3109/10929089709149831. [DOI] [PubMed] [Google Scholar]
  • 56.Liu L, Siebenrock K, Nolte LP, et al Computer-assisted planning, simulation, and navigation system for periacetabular osteotomy. Adv Exp Med Biol. 2018;1093:143–155. doi: 10.1007/978-981-13-1396-7_12. [DOI] [PubMed] [Google Scholar]
  • 57.Pflugi S, Vasireddy R, Lerch T, et al Augmented marker tracking for peri-acetabular osteotomy surgery. Int J Comput Assist Radiol Surg. 2018;13(2):291–304. doi: 10.1007/s11548-017-1690-6. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES