Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2021 Dec;35(12):1555–1562. [Article in Chinese] doi: 10.7507/1002-1892.202107112

无症状人群与发育性髋关节发育不良人群髋臼三维朝向的半自动测量与对比分析

Semi-automated measurement and analysis of three-dimensional acetabular orientation in asymptomatic population and patients of developmental dysplasia of the hip

旭 江 1,2, 恒辉 张 1, 旭民 胡 2, 凯 谢 1, 天佑 阚 1, 波 李 2, 弛 张 2, 松涛 艾 3, 梁斌 高 2, 孟宁 严 1,*, 燎 王 1,*
PMCID: PMC8669196  PMID: 34913312

Abstract

目的

比较分析无症状人群与发育性髋关节发育不良(developmental dysplasia of the hip,DDH)人群的髋臼三维朝向,为髋部疾病的鉴别诊断、手术规划、植入器械设计及术后评估等提供数据参考。

方法

回顾性收集符合选择标准的无症状人群骨盆CT 84例(无症状组)和DDH患者骨盆CT 47例(DDH组)。两组人群性别构成及年龄(包括男女亚组年龄)比较差异均无统计学意义(P>0.05)。使用半自动测量软件MaxTHA测量3种定义下的前倾角和外展角,包括手术学外展角(operative inclination,OI)、影像学外展角(radiographic inclination,RI)、解剖学外展角(anatomic inclination,AI)、手术学前倾角(operative anteversion,OA)、影像学前倾角(radiographic anteversion,RA)和解剖学前倾角(anatomic anteversion,AA),并进行两人群间、不同Crowe分型亚组间、各性别亚组间及左右侧间的比较。

结果

无症状组与DDH组健、患侧间比较显示,无症状组与DDH组健侧的髋臼朝向各角度参数差异均无统计学意义(P>0.05);DDH组患侧的OI、RI、AI显著大于健侧和无症状组,AA显著小于健侧和无症状组,差异有统计学意义(P<0.05)。正常髋臼与DDH组不同Crowe分型组间比较显示,Crowe Ⅰ型组与正常组髋臼朝向各角度参数比较差异均无统计学意义(P>0.05);Crowe Ⅱ、Ⅲ、Ⅳ型组OI、RI、AI显著大于正常组,Crowe Ⅲ型组的OI、Ⅳ型组的RI和AI显著大于Ⅰ型组,Ⅳ型组的AI显著大于Ⅱ型组(P<0.05);Crowe Ⅲ型组OA、RA、AA显著小于除Ⅰ型组外的各组(P<0.05)。无症状组女性的OA、RA、AA以及DDH组女性的OA、AI显著大于对应组男性,差异有统计学意义(P<0.05)。无症状组男性右侧髋臼的OI、RI、AI、OA以及女性右侧髋臼的RI、AI均显著大于左侧,差异有统计学意义(P<0.05)。

结论

髋臼朝向在无症状人群和DDH人群间存在人群差异,在不同Crowe分型亚组间存在组间差异,在各人群亚组内存在性别间差异,在无症状人群中存在双侧差异。

Keywords: 发育性髋关节发育不良, 髋臼, 前倾角, 外展角, 无症状人群, 计算机辅助图像处理


异常的髋臼朝向会引起股骨髋臼撞击综合征和髋关节骨关节炎的发生,异常的臼杯假体朝向会导致假体磨损加快、移位、松动及撞击脱位等问题[1-4]。因此,对髋臼朝向的分析可以提升临床医生对髋部疾病的理解,并指导诊疗。

传统基于X线片和二维CT图像的髋臼朝向分析,其结果准确性受到患者体位、X线光源位置等因素的影响,难以反映髋臼的真实朝向[5-6]。使用二维影像进行分析,对于临床医生的空间想象能力也是一种挑战。因此,基于CT三维重建的髋臼朝向分析是目前的“金标准”[7]。前倾角和外展角是评估髋臼朝向最重要的两个二维位置参数,联合分析这2个角度有助于实现髋臼三维朝向的准确判断。Murray[4]总结了3种不同参考系下的髋臼前倾角和外展角测量方法,包括解剖学、手术学和影像学,3种方法有不同的应用情景,3者之间也可以相互转化。一些研究在此基础上开展了对无症状人群髋臼三维朝向的测量研究,分析了髋臼三维朝向的分布及双侧差异[8-12]。相对于无症状人群,发育性髋关节发育不良(developmental dysplasia of the hip,DDH)人群的髋臼形态更不规则,存在髋臼变浅、髋臼部分骨缺损、边缘骨赘形成等情况,使髋臼三维朝向分析更加困难。目前对于DDH人群的髋臼三维朝向分析研究尚少,且样本量有限;对于无症状人群和DDH人群髋臼朝向差异的分析研究则更少。Yang等[13]对两人群间髋臼朝向差异进行了分析,但存在着年龄基线不同的不足。

本研究基于CT影像学资料,利用已得到验证的半自动测量软件MaxTHA[8-9],对无症状人群和DDH人群的髋臼三维朝向进行大样本测量,同时平衡两人群间的年龄基线,对比分析两组人群间及各亚组性别间和双侧髋臼朝向差异,以期对髋臼杯假体的设计、选择及术前规划提供参考。报告如下。

1. 临床资料

1.1. 一般资料

无症状人群纳入标准:① 非骨科疾病人群,包括肾脏疾病和血管疾病;② 年龄30~70岁;③ 无髋关节症状,包含完整骨盆CT数据。DDH人群纳入标准:① 年龄30~70岁;② 中心边缘角(center edge angle,CE)<20°;③ 单侧或双侧DDH,Crowe分型为Ⅰ~Ⅳ型;④ 无骨盆肿瘤、骨折史、既往骨盆手术史,包含完整骨盆CT数据。最终从上海交通大学医学院附属第九人民医院影像数据库中收集无症状人群骨盆CT 84例(无症状组),DDH患者骨盆CT 47例(DDH组)。

无症状组:男46例,女38例;年龄55(48,59)岁,其中男性年龄53(44,58)岁、女性年龄57(52,60)岁。DDH组:男18例,女29例;年龄55(47,62)岁,其中男性年龄57(44,64)岁、女性年龄53(48,62)岁。DDH单侧24例(男15例、女9例),双侧23例(男3例、女20例)。Crowe分型:Ⅰ型20髋,Ⅱ型20髋,Ⅲ型24髋,Ⅳ型6髋。两组人群性别构成及年龄(包括男女亚组年龄)比较差异均无统计学意义(P>0.05)。

1.2. 骨盆分割建模

所有CT影像均由128排Siemens SOMATOM Definition Flash双源CT(Siemens公司,德国)扫描获得;扫描参数:层厚1 mm,分辨率0.98像素;CT数据以DICOM格式导出备用。将收集的CT数据导入半自动测量软件MaxTHA中,该软件可实现骨盆股骨的自动三维建模。为更真实地重建骨盆模型,包括髋臼边缘的自然轮廓,对模型表面进行最小程度的平顺处理。股骨和骨盆的分割需要手工识别髋臼间隙,通过球体遮掩模型实现快速分割。

1.3. 坐标系的建立与髋臼朝向的测量

1.3.1. 建立坐标系

测量髋臼朝向前需建立骨盆三维模型的坐标系。由双侧髂前上棘和双侧耻骨结节最腹侧点组成的骨盆前平面,已成为髋臼三维朝向测量公认的标准冠状面(图1a[14-15]。由于髂前上棘和耻骨结节难以辨认,为避免手动取点误差,MaxTHA软件开发了切点修正的迭代算法,在手动标点的基础上进行迭代运算,自动选择双侧髂前上棘、耻骨结节最腹侧的点和耻骨结节中点,保证了骨盆前平面的可靠性。中矢面是骨盆的镜像面,该软件以双侧髂前上棘和双侧耻骨结节的镜像面作为骨盆模型的中矢面。在手工标点的基础上,该软件自动选取标点周围更大范围的骨面组成点云,再通过最近点迭代算法计算出中矢面,保证了骨盆中矢面的可靠性。骨盆横平面是通过双侧髂前上棘并与骨盆前平面、骨盆中矢面互相垂直的平面。3个平面共同构成骨盆三维模型的坐标系,为髋臼三维朝向测量提供了可靠的坐标。

图 1.

Schematic diagram of the pelvic coordinate system and the angular definitions of acetabular orientation

骨盆坐标系和髋臼朝向的角度定义

a. 骨盆坐标系;b. 髋臼轴线;c. OA和OI测量;d. RA和RI测量;e. AA和AI测量

a. Pelvic coordinate system; b. Axis of the acetabulum; c. Measurements of OA and OI; d. Measurements of RA and RI; e. Measurements of AA and AI

图 1

1.3.2. 髋臼朝向的测量

避开髋臼横韧带的缺口,在髋臼边缘手动选取约20个点。通过最小二乘法计算最佳髋臼开口圆,通过髋臼中心并垂直于髋臼开口圆的轴线即为髋臼轴线(图1b)。髋臼轴线相对于坐标系的位置关系以前倾角和外展角表示,可以被MaxTHA软件自动计算并导出。测量3种定义下的前倾角和外展角,包括手术学外展角(operative inclination,OI)、影像学外展角(radiographic inclination,RI)、解剖学外展角(anatomic inclination,AI)以及手术学前倾角(operative anteversion,OA)、影像学前倾角(radiographic anteversion,RA)和解剖学前倾角(anatomic anteversion,AA)。见图1c、d。

进行以下各组别间的髋臼朝向指标比较:无症状组与DDH组健、患侧间比较;正常组(无症状组+DDH正常侧)与DDH组不同Crowe分型组间比较;无症状组和DDH组男、女亚组间比较;无症状组左、右侧间比较。

1.4. 统计学方法

采用SPSS23.0统计软件进行分析。计量资料以均数±标准差表示,多组间比较采用单因素方差分析,两两比较采用Bonferroni检验,双侧间比较采用配对t检验,男女性别组间比较采用独立样本t检验;计数资料组间比较采用χ2检验。检验水准α=0.05。

2. 结果

2.1. 无症状组与DDH组健、患侧间比较

无症状组与DDH组健侧的髋臼朝向各角度参数差异均无统计学意义(P>0.05)。DDH组患侧髋臼外展角(OI、RI、AI)显著大于健侧和无症状组,AA显著小于健侧和无症状组,差异有统计学意义(P<0.05);其余角度参数各组间差异均无统计学意义(P>0.05)。见表1

表 1.

Comparison of acetabular orientation between asymptomatic group and healthy and affected sides of DDH group ( Inline graphic , °)

无症状组与DDH组健、患侧间髋臼朝向比较( Inline graphic ,°)

指标
Item
无症状组(n=168)
Asymptomatic
group (n=168)
DDH组
DDH group
 统计值
 Statistic
健侧(n=24)
Healthy side
(n=24)
患侧(n=70)
Affected side
(n=70)
*与无症状组比较P<0.05,#与DDH组健侧比较P<0.05
*Compared with asymptomatic group, P<0.05;#compared with healthy side of DDH group, P<0.05
OA 25.31±7.76 27.64±9.12 23.48±14.66   F=0.461
  P=0.632
OI 48.32±3.07 50.65±10.14 56.18±10.02*#   F=20.425
  P=0.000
RA 16.43±5.05 16.65±6.34 14.07±8.79   F=2.590
  P=0.078
RI 51.48±3.35 54.30±10.29 59.84±9.56*#   F=23.852
  P=0.000
AA 20.59±6.04 20.96±8.24 16.52±10.07*#   F=5.543
  P=0.005
AI 53.47±3.52 56.33±9.74 61.33±9.15*#   F=22.627
  P=0.000

2.2. 正常组与DDH组不同Crowe分型组间比较

Crowe Ⅰ型组与正常组髋臼朝向各角度参数比较差异均无统计学意义(P>0.05)。髋臼外展角(OI、RI、AI)呈现随Crowe分型增加而增大的趋势,Crowe Ⅱ、Ⅲ、Ⅳ型组显著大于正常组,Crowe Ⅲ型组的OI、Ⅳ型组的RI和AI显著大于Ⅰ型组,Crowe Ⅳ型组的AI显著大于Ⅱ型组,差异均有统计学意义(P<0.05)。除Crowe Ⅲ型组外,各髋臼前倾角(OA、RA、AA)也呈现随Crowe分型增加而增大的趋势,Crowe Ⅲ型组各前倾角显著小于除Ⅰ型组外的各组,差异有统计学意义(P<0.05);Crowe Ⅳ型组各前倾角大于其余各组且变异度最大,但差异多无统计学意义(P>0.05)。见表2

表 2.

Comparison of acetabular orientation between normal group and DDH group with different Crowe classifications ( Inline graphic , °)

正常组与DDH组不同Crowe分型组间髋臼朝向比较( Inline graphic ,°)

指标
Item
正常组(n=192)
Normal group
(n=192)
Crowe分型
Crowe classification
 统计值
 Statistic
Ⅰ(n=20) Ⅱ(n=20) Ⅲ(n=24) Ⅳ(n=6)
*与正常组比较P<0.05,#与Crowe Ⅰ型组比较P<0.05,与Crowe Ⅱ型组比较P<0.05,与Crowe Ⅲ型组比较P<0.05
*Compared with normal group, P<0.05;#compared with Crowe type Ⅰ group, P<0.05;compared with Crowe type Ⅱ group, P<0.05;compared with Crowe type Ⅲ group, P<0.05
OA 25.86±8.12 25.53±8.79 29.50±14.22 18.67±11.71* 39.26±26.53*   F=5.874
  P=0.000
OI 48.87±5.64△▽ 52.84±6.47 54.25±7.40* 59.72±11.10*# 58.46±17.53*   F=12.875
  P=0.000
RA 16.49±5.35 15.01±5.06 16.46±8.34 9.96±7.16* 19.77±17.35   F=5.579
  P=0.000
RI 52.15±5.85△▽ 56.16±7.70 58.77±7.49* 61.68±10.30* 67.09±13.77*#   F=14.814
  P=0.000
AA 20.68±6.58 18.00±5.97 19.18±9.58 11.80±8.56* 22.07±19.27   F=6.626
  P=0.000
AI 54.14±5.72△▽ 57.58±7.48 60.60±7.21* 62.51±9.84* 70.26±11.56*#   F=15.153
  P=0.000

2.3. 无症状组和DDH组男、女性别亚组间比较

无症状组女性各髋臼前倾角(OA、RA、AA)显著大于男性,差异有统计学意义(P<0.05);各髋臼外展角(OI、RI、AI)男女性别间差异无统计学意义(P>0.05)。DDH组女性OA和AI显著大于男性,差异有统计学意义(P<0.05);其余角度参数男女性别间差异均无统计学意义(P>0.05)。见表3

表 3.

Comparison of acetabular orientation between male and female subgroups in asymptomatic group and DDH group ( Inline graphic , °)

无症状组和DDH组男、女性别亚组间髋臼朝向比较( Inline graphic ,°)

指标
Item
无症状组
Asymptomatic group
DDH组
DDH group
男性(n=92)
Male (n=92)
女性(n=76)
Female (n=76)
统计值
Statistic
男性(n=21)
Male (n=21)
女性(n=49)
Female (n=49)
统计值
Statistic
OA 23.20±6.72 27.87±8.25 t=−2.858
P=0.005
19.97±11.23 28.12±15.47 t=−2.204
P=0.031
OI 48.58±3.40 47.99±2.63 t=0.877
P=0.383
55.19±6.78 56.65±11.29 t=−0.558
P=0.579
RA 15.04±4.46 18.12±5.27 t=−2.895
P=0.005
11.12±6.32 15.48±9.49 t=−1.953
P=0.055
RI 51.19±3.50 51.82±3.16 t=−0.850
P=0.398
57.32±6.85 61.01±10.48 t=−1.749
P=0.086
AA 19.02±5.50 22.50±6.18 t=−2.733
P=0.008
13.28±7.57 18.07±10.80 t=−1.869
P=0.066
AI 52.89±3.47 54.17±3.50 t=−1.669
P=0.099
58.31±6.64 62.77±9.87 t=−2.197
P=0.032

2.4. 无症状组左右侧别间比较

男性无症状人群右侧髋臼的OI、RI、AI、OA以及女性无症状人群右侧髋臼的RI、AI均显著大于左侧,差异有统计学意义(P<0.05);其余角度参数左右侧差异均无统计学意义(P>0.05)。见表4

表 4.

Comparison of acetabular orientation between left and right sides in asymptomatic group ( Inline graphic , °)

无症状组左右侧别间髋臼朝向比较( Inline graphic ,°)

指标
Item
男性(n=46)
Male (n=46)
女性(n=38)
Female (n=38)
左侧
Left
右侧
Right
差值
Difference
统计值
Statistic
左侧
Left
右侧
Right
差值
Difference
统计值
Statistic
OA 22.51±7.13 23.89±7.00 1.38±4.36 t=−2.140
P=0.038
27.22±8.36 28.52±8.70 1.30±4.35 t=−1.850
P=0.072
OI 48.21±3.51 48.96±3.61 0.75±2.12 t=−2.401
P=0.021
47.56±2.73 48.42±3.24 0.86±2.88 t=−1.850
P=0.072
RA 14.75±4.88 15.33±4.44 0.58±2.76 t=−1.416
P=0.164
17.86±5.36 18.38±5.63 0.52±3.12 t=−1.027
P=0.311
RI 50.69±3.47 51.70±3.91 1.02±2.39 t=−2.889
P=0.006
51.22±3.34 52.42±3.57 1.21±2.78 t=−2.674
P=0.011
AA 18.78±6.14 19.25±5.31 0.47±3.30 t=−0.971
P=0.337
22.34±6.27 22.66±6.67 0.32±3.87 t=−0.516
P=0.609
AI 52.38±3.41 53.40±3.94 1.03±2.45 t=−2.846
P=0.007
53.53±3.71 54.80±3.74 1.27±2.56 t=−3.054
P=0.004

3. 讨论

3.1. 髋臼三维朝向的测量软件

本研究利用MaxTHA软件对无症状人群和DDH人群的髋臼三维朝向进行半自动测量。该自主开发的软件已在既往研究中被证实具有准确性高和操作时间较短的优势,适用于髋臼朝向的大样本测量[11]。目前对于髋臼三维朝向的测量软件主要分为两大类:半自动测量和全自动测量。Lubovsky等[16]、Wang等[12]、Jóźwiak等[17]和本研究采用的MaxTHA软件均为半自动测量,需要手动标记各解剖标志点。本研究软件较前三者具有以下优势:① 步骤简化:本软件集建模、标记解剖标志点、测量于一体,而前三者均是使用额外的软件建立骨盆三维模型,大大增加了工作量。② 算法优化:本软件在骨盆坐标系的建立中,使用了手动标记联合算法优化,在很大程度上降低了人工选点的误差。Higgins等[10]、Veilleux等[11]使用全自动软件进行测量,需要在Mimics软件上进行建模,完成1例髋臼朝向测量的完整操作需要花费30 min。Lee等[18]使用了一款功能优异的一体化自动测量软件,仅需少量操作便可完成髋臼朝向的自动测量,整个过程平均耗时217.8 s。虽然本软件完成整个过程耗时10~15 min,但是手动标记解剖点联合算法优化,可有效避免自动化采点的不稳定,保证测量结果的可靠性。手动标记解剖点也使得MaxTHA软件可以满足DDH人群髋臼朝向的三维测量。

3.2. 无症状人群和DDH人群的髋臼朝向差异

对比分析无症状人群和DDH人群的髋臼朝向,可加深骨科医生对DDH的理解。我们发现无症状人群髋臼前倾角的变异度大于外展角,与Higgins等[10]、Veilleux等[11]和张恒辉等[8-9]的研究结果类似。对比分析国人和文献中欧美人群的数据显示,欧美人群的前倾角大于国人。前倾角的不同会影响人体矢状位姿势,为维持一定的股骨头覆盖率,具有不同前倾角的骨盆会发生不同程度的前后倾变化,这在一定程度上解释了人种间、个体间骨盆位置不同[19]。本研究中无症状人群髋臼的前倾角和外展角范围均超过了Lewinnek等[1]推荐的臼杯朝向“安全区”范围:即前倾角(15±10)°,外展角(40±10)°,也与近期同类研究观点一致[8-11]

DDH人群患侧拥有更大的外展角,髋臼更为陡峭,导致髋关节内压力分布不均,局部压力过高,从而引起髋关节骨关节炎进展和股骨形态异常。通过比较无症状人群、DDH人群健侧和患侧的髋臼朝向,我们发现存在DDH人群患侧髋臼外展角大于健侧和无症状人群,前倾角小于健侧和无症状人群的趋势。DDH人群健侧的髋臼朝向和无症状人群间无明显差异,说明DDH的发展并不是对称的。进一步分析髋臼朝向和Crowe分型的关系,我们发现Crowe Ⅰ型患者与无症状人群的髋臼朝向差异无统计学意义(P>0.05),说明Crowe Ⅰ型患者的髋臼尚未发生改变,当达到Crowe Ⅱ型时,DDH患者的髋臼朝向才开始发生变化。其中,外展角随着Crowe分型的增加而增大,Crowe Ⅱ型和Ⅲ型的外展角(OI、RI、AI)显著大于正常髋臼(P<0.05);而除了Crowe Ⅲ型外,前倾角呈现随Crowe分型增加而增大的趋势,Crowe Ⅲ型的前倾角在各分型中最小(P<0.05)。因为Crowe Ⅲ型的特殊情况,DDH人群的AA小于无症状人群(P<0.05)。Yang等[13]和曾羿等[20]对各型DDH真臼形态进行分析时,发现髋臼前倾角随着Crowe分型的增加而增大。Fujii等[21]发现大部分DDH患者的髋臼前倾角比对照组大,但仍有约18%的DDH患者由于髋臼后壁相对不足而出现髋臼后倾的情况。Bernasek等[22]的研究则认为髋臼前倾角随Crowe分型增加而减小,正常人平均髋臼前倾角为17°,Crowe Ⅰ~Ⅳ型的平均髋臼前倾角分别为15°、10°、7°和 –4°。本研究大体支持Yang等 [13]、曾羿等[20]和Fujii等[21]的结论,但存在着Crowe Ⅲ型前倾角显著减小的特殊情况。分析相关因素有以下几点:① 髋臼前壁的定义,Crowe Ⅲ型患者前方骨赘增生明显,若以骨赘前缘作为测量基准,那么髋臼出现前倾角减小的情况较为普遍;② DDH伴高位脱位患者的髋臼边缘往往存在较为广泛的缺损,骨赘增生不明显,CroweⅣ型患者多属于此类,因此髋臼前倾角往往是增大的;③ 本研究Crowe Ⅳ型患者较少,对结果可能有较大影响;④ 髋臼后壁相对不足,部分DDH患者甚至出现髋臼后倾的情况[21]

3.3. 无症状人群和DDH人群髋臼朝向的性别间差异

比较性别间差异时,我们发现在无症状人群中,女性的前倾角显著大于男性,外展角间无明显差异;在DDH人群中,虽然大多数参数差异无统计学意义,但是女性所有角度均呈现大于男性的趋势。关于无症状人群髋臼朝向的性别间差异,文献报道的结论并不一致。Zeng等[23]测量了中国东南部地区无症状人群的髋臼朝向,发现髋臼朝向存在性别差异,女性外展角显著大于男性,但前倾角无明显差异。舒荣宝等[24]、Wang等[12]和吴昊等[25]测量了中国中部地区无症状人群的髋臼朝向,发现前倾角和外展角均无性别差异。杨本涛等[26]、金进宝等[27]、张恒辉等[8-9]、Higgins等[10]和Veilleux等[11]的研究则有相同结论,女性无症状人群的前倾角大于男性。各报道间的差异可能源于人群纳入标准的不同。关于DDH人群髋臼朝向的性别间差异,分析结果可能受到单侧与双侧DDH差异的干扰。本研究中,31.03%的女性患者为单侧DDH,而男性患者中有83.33%为单侧DDH。因此,需要大样本研究来进一步证实DDH患者髋臼朝向的性别间差异。

3.4. 无症状人群髋臼朝向的双侧差异

得益于软件测量的精确性,双侧髋臼之间的细微差异可被检测出。无症状人群中存在双侧髋臼间的差异性,男性无症状人群右侧髋臼的OI、RI、AI、OA以及女性无症状人群右侧髋臼的RI、AI均显著大于左侧。Higgins等[10]、张恒辉等[8-9]、Lee等[18]也比较了双侧髋臼朝向之间的差异,前两者数据显示右侧髋臼外展角大于左侧,而后者数据显示韩国人群的左侧髋臼外展角大于右侧;吴昊等[25]和Ma等[28]则认为双侧髋臼之间无明显差异。但他们的测量方法难以避免手动测量误差,测量结果的准确度难以保证。我们认为双侧髋臼朝向存在差异的原因可能源于惯用脚差异或亚临床的下肢不等长。国人多惯用右脚支撑,两侧髋臼压力分布不均,进而发展为双侧髋臼朝向的差异。这一猜想需要大样本研究进一步验证,而使用精确度高的半自动测量软件有助于准确揭示其规律。

3.5. 本研究的不足

本研究也存在一些缺陷:首先,纳入样本量较少,需要收集更多无症状人群骨盆CT数据,来揭示我国无症状人群髋臼朝向的真实情况;需要收集更多DDH人群骨盆CT数据,进一步分析髋臼朝向与Crowe分型的联系。其次,本研究中DDH患者髋臼前壁的骨赘未去除,可能是导致DDH组Crowe Ⅲ型髋臼前倾角偏小的原因。最后,本研究使用的半自动测量软件需要有经验的医生标记解剖标志点,改进的方向是进一步优化软件以实现全自动测量,为大样本测量提供更高效、可靠的测量工具。

综上述,本研究通过半自动软件测量了无症状人群和DDH人群的髋臼三维朝向,得到了解剖学、手术学和影像学3种不同参考系下的髋臼前倾角和外展角,发现了无症状人群、DDH人群健侧和患侧间髋臼朝向的差异,各人群髋臼朝向的性别差异和无症状人群髋臼朝向的双侧差异。这些髋臼朝向数据可为髋部相关疾病的诊断、手术规划、植入器械设计、术后评估等提供基本的数据参考。

作者贡献:王燎、严孟宁参与试验设计及实施;艾松涛、张恒辉、张弛参与数据收集整理;江旭、谢凯、阚天佑参与统计分析;江旭、张恒辉、胡旭民起草文章;李波、高梁斌、王燎对文章的知识性内容作批评性审阅。

利益冲突:所有作者声明,在课题研究和文章撰写过程中不存在利益冲突,且经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道。

机构伦理问题:研究方案经上海交通大学医学院附属第九人民医院医学伦理委员会批准(2016141)。

Funding Statement

国家自然科学基金资助项目(81772425);上海市科学委员会资助项目(16441908700);上海交通大学医工交叉项目(YG2016MS11);上海交通大学医学院转化医学协同创新中心合作研究项目(TM201814)

National Natural Science Foundation of China (81772425); Shanghai Science Committee Project (16441908700); Medical Engineering Cross Project of Shanghai Jiao Tong University (YG2016MS11); Project of the Shanghai Collaborative Innovation Center for Translational Medicine (TM201814)

Contributor Information

孟宁 严 (Mengning YAN), Email: wang821127@163.com.

燎 王 (Liao WANG), Email: wang821127@163.com.

References

  • 1.Lewinnek GE, Lewis JL, Tarr R, et al Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg (Am) 1978;60(2):217–220. doi: 10.2106/00004623-197860020-00014. [DOI] [PubMed] [Google Scholar]
  • 2.Kennedy JG, Rogers WB, Soffe KE, et al Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. J Arthroplasty. 1998;13(5):530–534. doi: 10.1016/S0883-5403(98)90052-3. [DOI] [PubMed] [Google Scholar]
  • 3.Teeter MG, Goyal P, Yuan X, et al Change in acetabular cup orientation from supine to standing position and its effect on wear of highly crosslinked polyethylene. J Arthroplasty. 2018;33(1):263–267. doi: 10.1016/j.arth.2017.08.016. [DOI] [PubMed] [Google Scholar]
  • 4.Murray DW The definition and measurement of acetabular orientation. J Bone Joint Surg (Br) 1993;75(2):228–232. doi: 10.1302/0301-620X.75B2.8444942. [DOI] [PubMed] [Google Scholar]
  • 5.Song SK, Choi WK, Jung SH, et al Changes of acetabular anteversion according to pelvic tilt on sagittal plane under various acetabular inclinations. J Orthop Res. 2021;39(4):806–812. doi: 10.1002/jor.24790. [DOI] [PubMed] [Google Scholar]
  • 6.Kaiser M, Renkawitz T, Benditz A, et al. Pelvic tilt impacts cup orientation on CT: how accurate is the gold standard? Acta Radiol, 2021. doi: 10.1177/02841851211009466.
  • 7.Davda K, Smyth N, Cobb JP, et al 2D measurements of cup orientation are less reliable than 3D measurements. Acta Orthop. 2015;86(4):485–490. doi: 10.3109/17453674.2015.1017791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.张恒辉, 曲扬, 陈晓军, 等 数字化技术辅助的中国人髋臼朝向三维测量. 上海交通大学学报 (医学版) 2016;36(9):1311–1316. [Google Scholar]
  • 9.Zhang H, Wang Y, Ai S, et al. Three-dimensional acetabular orientation measurement in a reliable coordinate system among one hundred Chinese. PLoS One, 2017, 12(2): e0172297. doi: 10.1371/journal.pone.0172297.
  • 10.Higgins SW, Spratley EM, Boe RA, et al A novel approach for determining three-dimensional acetabular orientation: results from two hundred subjects. J Bone Joint Surg (Am) 2014;96(21):1776–1784. doi: 10.2106/JBJS.L.01141. [DOI] [PubMed] [Google Scholar]
  • 11.Veilleux NJ, Kalore NV, Vossen JA, et al. Automatic characterization of pelvic and sacral measures from 200 subjects. J Bone Joint Surg (Am), 2020, 102(23): e130. doi: 10.2106/JBJS.20.00343.
  • 12.Wang RY, Xu WH, Kong XC, et al. Measurement of acetabular inclination and anteversion via CT generated 3D pelvic model. BMC Musculoskelet Disord, 2017, 18(1): 373. doi: 10.1186/s12891-017-1714-y.
  • 13.Yang Y, Zuo J, Liu T, et al. Morphological analysis of true acetabulum in hip dysplasia (Crowe classes Ⅰ-Ⅳ) via 3-d implantation simulation. J Bone Joint Surg (Am), 2017, 99(17): e92. doi: 10.2106/JBJS.16.00729.
  • 14.Maruyama M, Feinberg JR, Capello WN, et al The Frank Stinchfield Award: Morphologic features of the acetabulum and femur: anteversion angle and implant positioning. Clin Orthop Relat Res. 2001;(393):52–65. [PubMed] [Google Scholar]
  • 15.Murtha PE, Hafez MA, Jaramaz B, et al Variations in acetabular anatomy with reference to total hip replacement. J Bone Joint Surg (Br) 2008;90(3):308–313. doi: 10.1302/0301-620X.90B3.19548. [DOI] [PubMed] [Google Scholar]
  • 16.Lubovsky O, Wright D, Hardisty M, et al Acetabular orientation: anatomical and functional measurement. Int J Comput Assist Radiol Surg. 2012;7(2):233–240. doi: 10.1007/s11548-011-0648-3. [DOI] [PubMed] [Google Scholar]
  • 17.Jóźwiak M, Rychlik M, Musielak B, et al. An accurate method of radiological assessment of acetabular volume and orientation in computed tomography spatial reconstruction. BMC Musculoskelet Disord, 2015, 16: 42. doi: 10.1186/s12891-015-0503-8.
  • 18.Lee C, Jang J, Kim HW, et al Three-dimensional analysis of acetabular orientation using a semi-automated algorithm. Comput Assist Surg (Abingdon) 2019;24(1):18–25. doi: 10.1080/24699322.2018.1545872. [DOI] [PubMed] [Google Scholar]
  • 19.Uemura K, Atkins PR, Peters CL, et al The effect of pelvic tilt on three-dimensional coverage of the femoral head: A computational simulation study using patient-specific anatomy. Anat Rec (Hoboken) 2021;304(2):258–265. doi: 10.1002/ar.24320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.曾羿, 闵理, 赖欧杰, 等 三维表面重建技术在高位脱位DDH患者髋臼形态评价中的应用. 四川大学学报 (医学版) 2015;46(2):296–300. [Google Scholar]
  • 21.Fujii M, Nakashima Y, Yamamoto T, et al Acetabular retroversion in developmental dysplasia of the hip. J Bone Joint Surg (Am) 2010;92(4):895–903. doi: 10.2106/JBJS.I.00046. [DOI] [PubMed] [Google Scholar]
  • 22.Bernasek TL, Haidukewych GJ, Gustke KA, et al Total hip arthroplasty requiring subtrochanteric osteotomy for developmental hip dysplasia: 5- to 14-year results. J Arthroplasty. 2007;22(6 Suppl 2):145–150. doi: 10.1016/j.arth.2007.05.014. [DOI] [PubMed] [Google Scholar]
  • 23.Zeng Y, Wang Y, Zhu Z, et al Differences in acetabular morphology related to side and sex in a Chinese population. J Anat. 2012;220(3):256–262. doi: 10.1111/j.1469-7580.2011.01471.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.舒荣宝, 罗潇, 何仿 髋臼位相与开口形态学参数及其相互关系多层螺旋CT的评价. 中国组织工程研究. 2013;17(4):633–638. [Google Scholar]
  • 25.吴昊, 王渭君, 孙明辉, 等 髋臼相关参数在不同CT平面上的对比研究. 中华关节外科杂志 (电子版) 2016;10(1):20–26. [Google Scholar]
  • 26.杨本涛, 王振常, 徐爱德, 等 正常成人髋臼前倾角的CT测量. 临床放射学杂志. 2000;19(12):814–815. doi: 10.3969/j.issn.1001-9324.2000.12.023. [DOI] [Google Scholar]
  • 27.金进宝, 石岩, 尚鹏, 等 华南人髋臼前倾角测量分析及临床意义. 国际骨科学杂志. 2013;34(6):439–441, 448. doi: 10.3969/j.issn.1673-7083.2013.06.015. [DOI] [Google Scholar]
  • 28.Ma H, Han Y, Yang Q, et al Three-dimensional computed tomography reconstruction measurements of acetabulum in Chinese adults. Anat Rec (Hoboken) 2014;297(4):643–649. doi: 10.1002/ar.22885. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES