Skip to main content
ACS Pharmacology & Translational Science logoLink to ACS Pharmacology & Translational Science
. 2021 Nov 1;4(6):1747–1770. doi: 10.1021/acsptsci.1c00167

Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next?

Moein Ala †,*, Mahan Ala
PMCID: PMC8669709  PMID: 34927008

Abstract

graphic file with name pt1c00167_0007.jpg

Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.

Keywords: Metformin, Cancer, Senescence, Osteoporosis, Cardiovascular diseases, Neurodegenerative diseases


It is estimated that type 2 diabetes affects more than 462 million individuals or 6.28% of the world’s population.1 Type 2 diabetes is the major endocrine driver for global burden of diseases and has been the ninth leading cause of death during recent years.2 The prevalence of diabetes abruptly increased during the last decades, and it was observed that diabetes directly caused 1.3 million deaths worldwide in 2010. In addition, the death number doubled from 1990 to 2010.3 Diabetic patients usually have complications with several coexisting conditions such as obesity, frailty, CKD, hypertension and other cardiovascular diseases, neuropathy, retinopathy, and increased prevalence of osteoporosis, neurodegenerative diseases, and cancers.47 These complications, particularly, cardiovascular and renal diseases, are the leading causes of mortality among diabetic patients.8

Metformin is an old, inexpensive, and first-line medication for type 2 diabetes.9 It is a biguanide derivative reducing hepatic production of glucose and is safe in a wide range of ages. Despite its contra-indications such as high-grade heart failure, advanced CKD, lactic acidosis, and advanced chronic liver disease (CLD), its prescription increased during recent years.10,11 Additionally, Its contra-indication for CKD patients has been limited during recent years thanks to its newly observed effects.9 Numerous studies showed that metformin can improve several coexisting complications of diabetes.1215 Even it was observed that metformin can improve these diseases in nondiabetic patients.16,17

Metformin enhances the function of liver kinase B1 (LKB-1), a serine–threonine kinase. Subsequently, it enhances the LKB-1/AMP-activated protein kinase (AMPK) pathway.18 The LKB-1/AMPK pathway is heavily involved in the regulation of metabolism, cellular energy expenditure, cell proliferation, and growth and widely interacts with other signaling pathways.19 Metformin, through AMPK, can favorably alter the course of several diseases.20

In this review, the beneficial effects of metformin on several diseases is discussed, separately. In addition, the underlying molecular mechanisms leading to these effects are precisely explained. In this review, diabetes is deemed type 2 diabetes, unless otherwise mentioned.

Effect of Metformin on Inflammation and Immune System

There is an immense amount of evidence from cell culture to human studies showing that metformin can vigorously modulate inflammation that is a major propellant of metabolic syndrome and the mainstay of many chronic diseases.2123 Long-term (12 months) administration of metformin led to a mild reduction in C-reactive protein (CRP) in both men and women with impaired glucose tolerance.24 Consistently, it was observed that use of metformin is associated with lower mortality rate and organ failure among sepsis patients.25,26

Metformin modifies inflammation via AMPK-dependent and independent inhibition of nuclear factor kappa B (NF-κB).27,28 P65 phosphorylation and nuclear translocation of NF-κB lead to the expression of many inflammatory mediators and have been implicated in the pathogenesis of cancer and inflammatory and autoimmune diseases.29 Negative regulation of NF-κB can effectively improve several inflammatory diseases.29 In addition, metformin potentiates the antioxidant defense system.25,30

Metformin could decrease T helper 17 (Th17) differentiation in patients with rheumatoid arthritis (RA) and change T regulatory (T Reg)/Th17 balance in favor of T Reg cells. Suppression of mechanistic target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), and hypoxia-inducible factor 1 (HIF-1) through AMPK has been implicated in these effects.31 Indeed, AMPK activates tuberous sclerosis complex 2 (TSC2), thereby inhibiting mTOR.32 Inhibition of mTOR/STAT3 by metformin could also modulate B cell response and mitigate autoimmune diseases.33 mTOR/STAT3 signaling participates in the differentiation and maturation of effector T cells and B cells.3436 Metformin increased T Reg cell population in the airway of asthmatic mice and confined the production of inflammatory cytokines such as tumor necrosis factor α (TNF-α).37 Metformin modulates T cell response to alleviate several medical conditions. The drug promotes T Reg response and confines cytotoxic activity of T cells in autoimmune diseases and inflammation. However, it enhances cytotoxic activity of T cells and decreases tumor cell immune-evasion.38,39 Metformin strongly promotes immune cells to identify and invade tumor cells.40 Paradoxical behavior in different conditions makes metformin a unique drug that can improve a wide variety of medical conditions.

In order to restrict inflammatory response, metformin shifts the balance between M1 and M2 subtypes of macrophages in favor of M2 subtype. This shift in macrophages polarization decreases the release of inflammatory cytokines such as TNF-α, interleukin (IL) 1β, and IL6 and augments the anti-inflammatory response.41 Metformin also attenuates the pattern recognition receptor (PRR)-mediated inflammatory response.4244 PRR signaling pathways such as those mediated by nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) and Toll-like receptor 4 (TLR4) signaling pathways have been implicated in the pathogenesis of several inflammatory and autoimmune diseases such as inflammatory bowel disease (IBD), gout, asthma, rheumatoid arthritis, psoriasis, multiple sclerosis, and atherosclerosis.45,46 Metformin can modify innate immune response and inflammation through inhibition of TLR4, NLRP3, and other PRRs.43,44

Moreover, metformin modulates inflammatory cell infiltration by decreasing cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1).47 Treatment with metformin attenuates neutrophil-associated inflammation and suppresses the release of numerous destructive enzymes.48,49 Metformin can decrease neutrophil extracellular traps (NET) and oxidative stress to suppress neutrophil-associated inflammatory response.17

Anti-inflammatory properties of metformin can be helpful in a wide variety of diseases. Even meta-analysis of several studies demonstrated that preadmission use of metformin is associated with significantly lower mortality rate among hospitalized COVID-19 patients (95% CI, odds ratio (OR) 0.64 (0.43–0.97)).12 Uncontrolled activation of the immune system, dysregulated inflammatory response, and cytokine storm are the main causes of multiorgan failure, cardiovascular and respiratory collapse, and death in severe COVID-19.50 The release of immense amounts of inflammatory cytokines such as IL1β, IL6, IL18, TNF-α, and interferon γ (INF-γ) from macrophages, dendritic cells, and T cells impairs the function of different organs such as the heart, lungs, kidneys, and liver.50 The protective effects of metformin against inflammation and its interaction with immune cells can explain the lower mortality rate observed in COVID-19 patients who used metformin.

Use of metformin has also been associated with lower active tuberculosis (TB) incidence (95% CI, relative risk (RR) 0.51 (0.38–0.69)) and mortality (95% CI, RR 0.34 (0.20–0.57)) among diabetic patients.51 Interestingly, the drug accelerated sputum culture conversion in patients with diabetes and cavitary pulmonary tuberculosis.52 In response to Mycobacterium tuberculosis, metformin enhanced phagocytosis and oxidative stress, while in the absence of the stimulus, metformin suppressed oxidative stress and inflammatory cytokines such as IL1β, INF-γ, and TNF-α.53 Although inflammation, infection, and tumorigenesis are interacting with the same molecular mechanisms, metformin selectively regulates signaling pathways to provide the utmost benefit.

The major effects of metformin on inflammation were briefly discussed in this section. However, metformin recruits various mechanisms to halt inflammation. The detailed interactions of metformin with numerous signaling pathways will be separately discussed for each disease.

Metformin for Cardiovascular and Renal Protection

It was observed that metformin can improve moderate CKD, congestive heart failure (CHF), and chronic liver disease (CLD) in patients with diabetes. Metformin has been associated with decreased all-cause mortality, reduced incidence of heart failure, and decreased readmission because of CKD or CHF among patients with diabetes.5456 Additionally, metformin could decrease all-cause mortality in myocardial infarction and heart failure among patients with diabetes.57,58 Metformin led to 21% decrease in mortality because of myocardial infarction and 16% decrease in mortality because of heart failure.57 Recent meta-analysis showed that metformin has been associated with decreased cardiovascular mortality (95% CI, OR 0.44 (0.34–0.57)) or incidence of cardiovascular diseases (95% CI, OR 0.73 (0.59–0.90)) among patients with diabetes.59 Similarly, metformin has been associated with lower risk of all-cause mortality (95% CI, RR 0.71 (0.61–0.84)) and cardiovascular events (95% CI, RR 0.76 (0.60–0.97)) among diabetic patients with CKD at stage G1-3.13 Long-term administration of metformin in patients with diabetic nephropathy has been associated with lower all-cause mortality (95% CI, hazard ratio (HR) 0.65 (0.57–0.73)) and prevented progression to end-stage renal disease (ESRD) (95% CI, HR 0.67 (0.58–0.77)).60

The drug can protect against arterial calcification, ameliorates endothelial dysfunction, and preserves the integrity of vasculature in patients with diabetes.61,62 Metformin accelerates endothelial nitric oxide (NO) production to improve cardiovascular outcome.63 Augmentation of AMPK/endothelial NO synthase (eNOS)/NO was shown to protect against aortic smooth muscle cell calcification in rats.64 NO, in a cGMP-dependent manner, inhibits the differentiation of vascular smooth muscle cells (VSMCs) into osteoblastic cells by decreasing transforming growth factor β (TGF-β) and attenuating TGF-β signaling. NO can also downregulate TGF-β receptor and TGF-β-induced Smad2/3 phosphorylation.65 Consistent with its vascular protection, it was observed that diabetic patients who used metformin had a lower below-the-knee arterial calcification score.61 Activation of the AMPK/eNOS pathway by metformin improves blood flow and angiogenesis and was protective in several animal models of ischemia/reperfusion.6668 Augmentation of the NO system after administration of metformin was associated with cardioprotection in the mice model of myocardial infarction.69 Moreover, metformin recruits several other mechanisms to decrease the tonicity of VSMCs, which results in vasodilatation and prevents cardiovascular events.70 Long-term (>12 months) administration of metformin for patients has been associated with a significant decrease in carotid intima-media thickness.71 Consistently, mortality and adverse cardiovascular events were less common among patients with peripheral artery disease who used metformin.72

It was shown that metformin improves mitochondrial function to prevent atherosclerosis. The effect was exerted through AMPK-dependent downregulation of dynamin-related protein (Drp1).73 Drp1-mediated mitochondrial fission has been implicated in cardiomyocyte injury and myocardial hypertrophy.74,75 Furthermore, it was shown that inhibition of Drp1 can protect against myocardial infarction and prevent apoptosis.75 Moreover, metformin through AMPK/silent mating-type information regulation 2 homologue-1 (SIRT1) signaling activates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α).76 PGC-1α is the chief regulator of mitochondrial biogenesis, protects the integrity of mitochondrial membrane, and improves mitochondrial respiration and myocardial energy metabolism in heart failure.76

Metformin activates AMPK to attenuate oxidative stress and augment autophagy.77,78 The drug attenuates mTOR signaling to promote autophagy, prevent the development and progression of atherosclerosis, and provide cardiovascular protection.79 Autophagy is crucial for cardiovascular health. Attenuation of autophagy has been associated with disorganization of heart sarcomeres, age-related cardiomyopathy, heart failure, and shorter lifespan.80,81 Meanwhile, metformin activates the AMPK/peroxisome proliferator-activated receptor δ (PPARδ) pathway to suppress endoplasmic reticulum (ER) stress and improve cardiac injury and endothelial dysfunction.82,83 Uncontrolled activation of ER stress upregulates CCAAT-enhancer-binding protein homologous protein (CHOP), thereby activating apoptotic cell death.84 AMPK/PPARδ-mediated attenuation of ER stress and oxidative stress is markedly involved in maintaining vascular health.85 Attenuation of ER stress by metformin can protect against vascular damage in hypertension.86

Metformin, via AMPK, could also downregulate the TLR4/NF-κB signaling pathway in a rat’s heart and prevent the release of several inflammatory cytokines such as TNF-α and IL6.87 Sustained activation of NF-κB and subsequent production of several inflammatory cytokines can lead to endothelial and myocardial injury and heart failure in the long term.88 Metformin, in an AMPK-dependent manner, could improve diabetic cardiomyopathy by suppressing the mTOR/NLRP3 signaling pathway.42 Downregulation of mTOR/NLRP3 signaling helps M2 macrophage polarization, suppresses inflammation, and promotes autophagy43,89 (Figure 1).

Figure 1.

Figure 1

Protective effect of metformin on cardiovascular diseases at the molecular level. Metformin activates the LKB-1/AMPK pathway to modulate other signaling pathways. AMPK activation can enhance the eNOS/NO pathway, which leads to vasodilation and protects against fibrosis and vascular calcification. AMPK-mediated activation of SIRT1/PGC-1α and inhibition of Drp1 improves mitochondrial biogenesis and protects against mitochondrial fission. Inhibition of mTOR signaling by AMPK/TSC2 can enhance autophagy. Moreover, metformin inhibits major molecules involved in the inflammatory response such as TLR4, NLRP3, and NF-κB. Activation and nuclear translocation of NF-κB leads to the expression of several inflammatory mediators. Furthermore, metformin can attenuate ER stress through PPARδ and prevent ER-stress-mediated apoptosis.

Furthermore, metformin can increase glucagon-like peptide 1 (GLP-1) secretion.11,90 GLP-1 receptor agonists have been associated with considerably better cardiovascular and renal outcome among patients with diabetes.91 Recent meta-analysis uncovered that GLP-1 receptor agonists could decrease cardiovascular mortality (95% CI, RR 0.88 (0.80–0.97)), major adverse cardiac events (95% CI, RR 0.88 (0.81 to 0.97)), and nonfatal stroke (95% CI, RR 0.87 (0.76 to 0.99)) among diabetic patients.92

Consistent with its renoprotective effects in diabetic patients, metformin could protect against renal fibrosis in animal models. Furthermore, it could attenuate the deleterious effects of angiotensin II, aldosterone, TGF-β, and high glucose concentration on the progression of renal fibrosis. It could also hinder ER stress in the kidneys. Metformin activated AMPK to exert these effects, which were abolished in the presence of an AMPK inhibitor.93 Metformin decreased the production of inflammatory and fibrogenic mediators such as MCP-1, ICAM-1, TGF-β, fibronectin, and type IV collagen in the kidney. In addition, it inhibited TGF-β/Smad3, extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (P38 MAPK) signaling pathways in the kidneys of mice.94 Previously, it was revealed that ERK and TGF-β/Smad are involved in the development of renal fibrosis.95 ERK and P38 MAPK signaling can aggravate tubular epithelial cell loss in damaged kidneys.96

Metformin enhances AMPK/SIRT1-mediated inhibition of the forkhead box protein O1 (FOXO1) pathway to increase autophagy in diabetic nephropathy.97 SIRT1 and FOXO1 are markedly involved in the pathogenesis of diabetic nephropathy. It was observed that particular polymorphisms of these molecules can increase the susceptibility to diabetic nephropathy.98 Knockdown of SIRT1 results in podocyte dysfunction and leads to age-related changes in the kidneys. SIRT1 knockdown has been associated with increased activity of NF-κB, FOXO3, and FOXO4 in the kidneys that led to inflammation and apoptosis.99 Additionally, SIRT1 attenuates hypoxia-inducible factor 1-alpha (HIF1α) signaling to restrict mitochondrial damage, oxidative stress, apoptosis, and fibrogenesis in the kidneys.100 Potentiation of SIRT1 signaling by metformin can vigorously maintain the structure and function of the kidneys.101

Metformin can improve cardiovascular diseases through different mechanisms (Figure 1). Similarly, metformin modifies several signaling pathways to ameliorate renal injury and prevent apoptosis of tubular cells and substitution of fibrotic tissue. These protective effects can mitigate the annual decline in renal function. Here, we have addressed how metformin can ameliorate the leading causes of mortality among diabetic patients. Future studies should answer the question of whether metformin can replicate the same results in nondiabetic subjects or not.

Metformin and Obesity

Meta-analysis of six randomized clinical trials disclosed that metformin led to 2.23 kg weight loss (95% CI, WMD −2.23 kg (−2.84 to −1.62)) and simultaneously improved total cholesterol (−0.184 mmol/L, p < 0.001) and low-density lipoprotein (LDL) levels (−0.182 mmol/L, p < 0.001) in elderly (>60 years of age) diabetic patients.102 Another meta-analysis of clinical trials by Pu et al. revealed that metformin could significantly lower body mass index (BMI) (95% CI, WMD −0.98 kg/m2 (−1.25 to −0.72)), particularly among nondiabetic patients.103 Similarly, Sadeghi et al. revealed that use of metformin has been associated with significant decrease in BMI (95% CI, WMD −1.07 kg/m2 (−1.43 to −0.72)), body weight (95% CI, WMD −2.51 kg (−3.14 to −1.89)), and waist circumference (95% CI, WMD −1.93 cm (−2.69 to −1.16)) in children and adolescents and significantly reduced body fat mass in overweight or obese patients (95% CI, WMD −1.90% (−3.25 to −0.56)).104 Interestingly, it was shown that metformin led to modest weight loss in patients who used olanzapine or clozapine, thus metformin can prevent antipsychotic-induced weight gain.14,105 Likewise, Ellul et al. showed that metformin led to 0.98, 1.83, and 3.23 kg weight loss after 4, 12, and 16 weeks of treatment in children and adolescents who used second-generation antipsychotics.106 Furthermore, the drug could prevent the development of metabolic syndrome in large trials.107,108

Administration of metformin for 6 months to nondiabetic but obese children decreased their BMI and increased their insulin sensitivity and adiponectin/leptin ratio (Figure 2).109 Metformin improved leptin sensitivity in the rat model of obesity.110 Leptin resistance impairs endogenous mechanisms of satiety, increases food intake, and leads to weight gain.111 Leptin decreases intracellular lipid accumulation and improves insulin sensitivity, hence leptin resistance contributes to the development of diabetes and metabolic syndrome.112 Metformin increases the bioavailability of adiponectin that can maintain body composition and prevent excessive fat accumulation (Figure 2).113,114

Figure 2.

Figure 2

Effect of metformin on hormonal changes and obesity. Metformin can lead to a modest weight loss or prevent weight gain. It increases insulin sensitivity, leptin sensitivity and adiponectin/leptin ratio, and reduces insulin requirement. Furthermore, it can suppress appetite by increasing GLP-1 and GDF-15 secretion and decreasing ghrelin.

As mentioned previously, the drug increases the plasma levels of GLP-1 in both diabetic and nondiabetic patients (Figure 2).115,116 GLP-1 receptor agonists could lead to pronounced weight loss in previous clinical trials. Even, once-weekly 2.4 mg of semaglutide caused 15.3 kg weight loss after 68 weeks of use.117 Enterochromaffin cells release GLP-1, within a few minutes of ingestion. GLP-1 postpones gastric emptying, decreases appetite, and limits food intake. It targets several sites on the central nervous system (CNS) to exert these effects.118

Moreover, metformin increases growth differentiation factor 15 (GDF-15), which can decrease appetite and is associated with weight loss and cardioprotection.119,120 GDF-15 stimulates glial cell-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL) in the hind brain that leads to anorexia, nausea, and emesis.121 Lack of GDF-15 in null mice attenuated the weight lowering effect of metformin. Furthermore, GDF-15 plasma level is positively correlated with weight loss in diabetic patients.120 GDF-15 is distinctively involved in the pathophysiology of cachexia, and cachectic cancer patients have higher levels of GDF-15.122,123 Similarly, attenuation of GDF-15 signaling by specific antibodies ameliorated cancer-associated cachexia.124 Metformin suppresses mitochondrial function to enhance GDF-15 release from intestinal cells.125 It can also prolong the postprandial decrease in plasma ghrelin. Ghrelin is a positive regulator of appetite, and its absence may decrease snack eating between the main meals (Figure 2).126

Metformin can act through different mechanisms to cause a modest weight loss (Figure 2). It modulates the cross-talk between gastrointestinal tract and the brain through GDF-15, ghrelin, and GLP-1. Furthermore, it improves leptin sensitivity and increases adiponectin. These effects can be considered as additional advantages of metformin for obese or overweight patients who are using metformin for diabetes or other reasons.

Metformin for Neuronal Damage, Neurodegenerative Diseases, and Cognitive Disorder

Diabetes and long-lasting hyperglycemia damage nerve fibers and are characterized by neuropathy and neurodegeneration.127 Metformin (500 mg of TDS for 1 year) could improve cognitive function in patients with impaired glucose metabolism and nondementia vascular cognitive impairment.128 Guo et al. reported that metformin not only improved cognitive performance but also alleviated depressive symptoms in patients with diabetes.129 Metformin enhanced the antidepressant effects of fluoxetine in nondiabetic patients with major depressive disorder.16 Similarly, Shi et al. indicated that long-term use of metformin is associated with a lower risk of neurodegenerative diseases among elderly adults with type 2 diabetes (11.48 per 1000 person-years among metformin users, compared with 25.45 per 1000 person-years for nonusers).130 Particularly, more than 6 years of treatment with metformin vigorously (95% CI, OR 0.30 (0.11–0.80)) protected against cognitive impairment among diabetic patients. Likewise, a positive correlation was observed between the duration of use and the protective effects of metformin.131 A pilot study revealed that 8 week administration of metformin brought improvement in executive functioning, learning, memory, and attention of nondiabetic patients with mild cognitive impairment or mild dementia because of Alzheimer’s disease.132 Primary results of another pilot study showed that use of metformin is associated with better performance than placebo on tests of declarative and working memory of survivors of pediatric brain tumors.133

Metformin promotes the AMPK signaling pathway and enhances autophagy, which can vigorously improve neurological diseases and increase nerve repair.134 There are several preclinical studies reporting that metformin can improve spinal cord injury. It accelerates autophagy via inhibition of mTOR. The drug can downregulate NF-κB signaling in the damaged foci to alleviate neuronal inflammation. Furthermore, metformin decreases the expression of caspases in the damaged segment of the spinal cord and promotes the expression of antiapoptotic proteins such as bcl-2.135 The drug increases the expression of nuclear factor erythroid-related factor 2 (Nrf2). Nrf2 binds to antioxidant response element to promote the expression of endogenous antioxidants.136 It was shown that metformin also activates phosphoinositide 3-kinases (PI3K)/protein kinase B (AKT) and Wnt/β-catenin signaling pathways in spinal cord injury. These signaling pathways can accelerate axon regeneration and nerve repair after spinal cord injury.135140 The drug also impedes microglial activation after spinal cord injury. Microglial activation strongly exacerbates neuroinflammation and causes secondary damage after spinal cord injury.141

Numerous experimental studies revealed that metformin is able to alleviate neuropathy through activation of AMPK. AMPK activation attenuates oxidative stress and prevents intradermal nerve fibers degeneration.142144 Metformin hinders the atrophy of myelinated axons and decreases the expression of inducible nitric oxide synthase (iNOS) and inflammatory cytokines such as IL1β. Interestingly, metformin augments the expression of neurotrophic factors such as myelin basic protein and nerve growth factor and increases anti-inflammatory cytokines such as IL10 and inhibitor kappa B-alpha (IκBα).145

Metformin improved mechanical and cold hypersensitivity induced by oxaliplatin in rats.146 Use of metformin has been significantly associated with decreased lumbar radiculopathy pain among patients.147 Lin et al. reported that metformin can decrease the increased number of myelinated fibers in spinothalamic tract to reduce pain.148 Moreover, it was indicated that peripheral diabetic neuropathy is associated with numerical increase of synapses in the spinal dorsal horn, and metformin can hamper this numerical increase of synapses to mitigate diabetic neuropathy.149 Meanwhile, metformin partially activates the opioid system to silence neuropathic pain.150 Zhang et al. revealed that metformin can decrease diabetic neuropathy and the increased levels of IL33.151 IL33 and its receptor play a pivotal role in the conduction of neuropathic pain.152 The drug could also ameliorate diabetic retinopathy and optic neuropathy in diabetic rats.153 Similarly, metformin attenuated cisplatin-induced ototoxicity in mice and zebrafish.154 Likewise, Das et al. observed that metformin can improve complex regional pain syndrome subsequent to tibial fracture in mice. The effect was mediated through upregulation of AMPK and downregulation of mTOR and eukaryotic initiation factor 2α (eIF-2α).155 EIF-2α is a regulatory target for translation whose overactivation is an ER stressor, involved in apoptosis of neurons and neurodegeneration.156,157 Interestingly, a recent cross-sectional study in the U.K. reported that diabetic patients using metformin were less likely to complain of back, knee, neck, shoulder, and multisite musculoskeletal pain than diabetic patients with no prior use of metformin.158 Consistently, recent clinical trial performed by El-Fatatry et al. indicated that metformin can markedly alleviate oxaliplatin-induced peripheral neuropathy in patients with stage III colorectal cancer.159 Taken together, metformin can enhance autophagy and ameliorate oxidative stress, ER stress, inflammation, and apoptosis in the nervous system. The neuroprotective effects of metformin can help to better the management of neuropathy, spinal cord injury, and several neurodegerative diseases that are currently without an effective treatment.

Use of metformin may be associated with increased risk of B12 deficiency and its subsequent clinical neuropathy.160,161 B12 deficiency, which is evident in long-term use of metformin for diabetic patients, strongly correlates with diabetic neuropathy.162 Hashem et al. indicated that the dose of metformin and duration of administration are positively correlated with the severity of vitamin B12 deficiency and predict the severity of diabetic neuropathy. Moreover, metformin increases homocysteine and methylmalonic acid in patients with diabetes that can accentuate diabetic neuropathy, as well.163,164 Metformin leads to B12 malabsorption that will be reversed by stoppage of treatment or increase in calcium intake.165 B12 deficiency should be strongly considered when using metformin long-term to improve the neuroprotective effects of metformin.166,167

Metformin and Cancer

Diabetes is associated with increased risk of several cancers such as colorectal cancer, endometrial cancer, prostate cancer, lung cancer, and hepatocellular carcinoma.168172 Metformin may have a dose-dependent effect on cancer prevention. Use of metformin has been associated with a 31% decrease in overall cancer risk, compared with other antidiabetic medications and insulin. The effect was statistically significant for hepatocellular carcinoma, pancreatic cancer, lung cancer, and colorectal cancer.15,58,173175 Use of metformin has been associated with 23% decrease in the incidence of colorectal adenoma, 39% decrease in the incidence of advanced adenoma, and 24% decrease in the incidence of colorectal cancer among diabetic patients. Metformin similarly improved overall survival (95% CI, HR 0.6 (0.53–0.67)) and colorectal cancer-specific survival (95% CI, HR 0.66 (0.59–0.74)) among patients with colorectal cancer and concurrent diabetes.176 Patients with acromegaly are at higher risk of colorectal polyps and cancers. Albertelli et al. performed a cross-sectional study to measure the association between metformin and new formation of colorectal polyps in 153 patients with acromegaly. The study uncovered that use of metformin is significantly associated with lower risk of colonic polyps (95% CI, OR 0.22 (0.06–0.77) P = 0.01) in patients with acromegaly.177

Metformin could also significantly improve the incidence of lung cancer (95% CI, HR 0.78 (0.70–0.86)), the incidence of hepatocellular carcinoma (95% CI, OR 0.468 (0.275–0.799)), the incidence of pancreatic cancer (95% CI, RR 0.63 (0.46–0.86)), survival of lung cancer (95% CI, HR 0.65 (0.55–0.77)), overall survival of hepatocellular carcinoma (95% CI, OR 3.31 (2.39–4.59)), and survival of pancreatic cancer (95% CI, HR 0.83 (0.74–0.91)) among diabetic patients.178182 However, some systematic reviews and meta-analyses revealed that metformin may not decrease the incidence of other cancers such as breast cancer, endometrial cancer, and prostate cancer; instead, they showed that metformin can improve prognosis, overall survival, and recurrence-free survival of these cancers.183185 Metformin can prevent the incidence of cancers, improve response to chemotherapy and radiotherapy, hinder the relapse of cancers, and hamper their progression to malignancy.175,186 In addition, use of metformin is associated with reduced all-cause mortality, compared to insulin and other antidiabetic drugs.58

Although the exact antitumor mechanisms have not been disclosed yet, activation of AMPK and inhibition of proliferative signaling pathways have been implicated in this regard. Metformin inhibits the PI3K/AKT/mTOR signaling pathway, which is a major stimulator of proliferation in cancer cells.187 Likewise, metformin acts through AMPK to suppress the dishevelled segment polarity protein 3 (DVL3)/Wnt/β-catenin signaling pathway.188 Furthermore, some studies reported that metformin can also inhibit the Raf/mitogen-activated extracellular signal-regulated kinase (MEK)/ERK pathway.189 The Raf/MEK/ERK pathway is a major proliferative pathway in tumorigenesis and interacts with growth factor receptors such as epidermal growth factor receptor (EGFR) and proto-oncogenes such as KRAS.190,191

Uncontrolled activation of Wnt/β-catenin, PI3K/AKT/mTOR, and Raf/MEK/ERK signaling pathways is the major cause of neoplasia and leads to the development of several cancers.190,192194 These signaling pathways interact with numerous growth factors and are affected by several oncogenes. Indeed, they are the effector parts of oncogenic networks and play pivotal roles in the pathogenesis of cancers, hence, their blockade may inhibit a chain of neoplastic alterations, tumor cell proliferation, migration, invasion, and metastasis.195202 As mentioned previously, metformin activates AMPK/TSC2 to directly inhibit mTOR. mTOR inhibition results in the autophagy of tumor cells, cell cycle arrest, and inhibition of tumor cell proliferation.32

Metformin could augment the effect of rapamycin and cisplatin on human gastric cancer cells. It activated AMPK and subsequently inhibited the phosphorylation of mTOR and also its downstream molecules such as S6, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), and P70S6K.203 Metformin similarly attenuated mTOR and its downstream molecules in other cancers such as endometrial cancer to stop tumor cell proliferation.204 Increased phosphorylation of S6, 4E-BP1, and P70S6K following mTOR activation was observed in cancers. This signaling pathway enhances ribosomal translation of proteins and has been implicated in cancer cell growth.205,206 These proteins are needed for cancer cell homeostasis, cell cycle progression, and proliferation of cancer cells.207

Previous studies illuminated that chronic inflammation is a main driver for neoplastic reactions and is associated with a higher incidence of cancers.208,209 As mentioned, metformin possesses numerous anti-inflammatory characteristics that can inhibit cancer development and progression.210,211 For instance, it was uncovered that metformin attenuates the NF-κB/IL6 axis in fibroblasts to inactivate fibroblast-mediated ovarian cancer progression.212 The drug could also hinder the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2)/STAT3 axis to inhibit epithelial–mesenchymal transition (EMT) in prostate cancer.213 Similarly, metformin inhibited COX-2 to decrease the migration and invasion of breast cancer cells.214 STAT3 is a transcription factor that can expedite EMT, invasion, and metastasis of cancer cells.215 Metformin ameliorated colitis and colitis-associated colorectal cancer in mice.216 It also prevented progression from NAFLD to hepatocellular carcinoma by modulating inflammation in animal models.217 Interestingly, metformin could improve chemoresistance in cisplatin- and paclitaxel-resistant tumor cells. Further measurements uncovered that attenuation of NF-κB-mediated inflammatory response in tumor cells is involved in such an effect.218 These findings are just some examples of anti-inflammatory properties of metformin which could potentiate its anticancer effects. Hence, the anti-inflammatory property of metformin can be an advantage to counterattack cancer cells.219

Importantly, metformin could decrease the expression of HIF-1α through AMPK, thereby downregulating pyruvate kinase M2 (PKM2) and vascular endothelial growth factor (VEGF) in cancer cells.220,221 VEGF stimulates angiogenesis, and PKM2 increases tumor cell aerobic glycolysis, known as the Warburg effect. Angiogenesis and aerobic glycolysis expedite tumor cell proliferation and accelerate their metastasis.220,221 Further, metformin downregulates c-Myc, which is a transcription factor for glycolytic enzymes and a major enhancer of Warburg effect. c-Myc potentiates tumor cell biosynthesis and provides the substrates for proliferation in cancer cells.222

Song et al. revealed that metformin downregulates the expression of Snail through activation of LKB-1/AMPK.223 Snail decreases E-cadherin, which is a major cell adhesion molecule, and its absence accelerates EMT, tumor cell invasion, and metastasis.224 In addition to Snail, metformin downregulates Slug and zinc finger E-box-binding homeobox 1 (ZEB1), other transcription factors, and promoters of EMT.225 Hence, metformin can downregulate the major transcription factors in cancer cells such as c-Myc, HIF-1α, STAT3, Slug, Snail, and ZEB1, thereby impairing cancer cell metabolism, proliferation, and metastasis.

Addition of metformin to conventional chemotherapy regimens could improve the efficacy of treatment with several anticancer drugs and overcome cancer cell chemoresistance. Metformin improved the efficacy of cisplatin and paclitaxel for ovarian cancer cells. It reduced chemoresistance and increased differentiation among cancer cells.226 Also, ovarian cancer cells from patients who were treated with metformin had better in vitro sensitivity to chemotherapy agents.227 Likewise, metformin enhanced sensitivity to 5-fluorouracil in rectal cancer cells. It increased tumor cell apoptosis and prevented their proliferation, migration, and invasion.228 It was found that metformin accelerates Nrf2 degradation and suppresses Nrf2-mediated expression of antioxidants in cancer cells. These effects were shown to be involved in the attenuation of chemoresistance of non-small cell lung cancer and hepatocellular carcinoma.189,229 Nrf2 is a major transcription factor for numerous endogenous antioxidants; therefore, Nrf2 downregulation can paralyze tumor cells’ self-defense system and makes them vulnerable to apoptosis.189,229

DNA repair contributes to the integrity of the cancer cell genome and increases cancer cell survival. Cancer cells possess high potential of DNA repair and utilize it against chemotherapy.230 Inhibitors of DNA repair can increase the efficacy of cancer chemotherapy and decrease chemoresistance.231 Metformin significantly reduces the expression of DNA-repairing proteins in cancer cells.232 Inhibition of DNA repair by metformin can enhance the effect of radiotherapy and chemotherapeutic drugs.232,233

It was uncovered that metformin can upregulate PTEN and P21 in gastric and lung cancer cells.203,234 P21 is downstream of P53 and a potent cyclin-dependent kinase (CDK) inhibitor whose upregulation leads to cell cycle arrest on the G1/S phase. CDKs are critical regulators of the cell cycle. Their overactivity is involved in cancer pathogenesis, and their inhibition can effectively contribute to the treatment of cancer.235 PTEN is an important tumor suppressor which effectively attenuates proliferative signaling of the PI3K/AKT pathway. Loss of PTEN function due to its methylation, genetic mutation, and deletion correlates with a higher risk of cancers and aggressive and metastatic phenotypes of cancer cells.236 Metformin upregulates PTEN through AMPK activation.237 Interestingly, metformin decreases the secretion of IGF-1 and the expression of growth factor receptors such as the IGF-1 receptor. Stimulation of the IGF-1 receptor results in the activation of the PI3K/AKT/mTOR pathway. Metformin targets this growth and proliferation signal from different points.238,239 Therefore, metformin can partly inhibit cell cycle progression and collaborate with oncosuppressors to attenuate the proliferation of tumor cells and decrease their invasiveness.

Interestingly, it was uncovered that metformin affects the bioavailability of noncoding RNAs, which are heavily involved in the pathogenesis of cancer. For instance, the inhibitory effects of metformin on breast cancer cell viability was associated with increased expression of miR-26a. miR-26a overexpression was associated with decreased viability of breast cancer cells, and miR-26a deletion partly attenuated the inhibitory effect of metformin on breast cancer cell viability.240 Metformin also upregulated miR-483-3p to increase the expression of p21.241 Metformin via downregulation of miR-222 could increase the protein abundance of p27, p57, and PTEN in human lung cancer cells and prevent cancer cell proliferation.234 P27 is a CDK inhibitor encoded by CDKN1B. Lack of P27 is a common finding in most human epithelial cancer cells, and augmentation of its function improves the outcome of cancer chemotherapy.242 Similar to P21 and P27, P57 is a CKD inhibitor and a tumor suppressor that negatively regulates cell cycle progression, intratumor angiogenesis, and metastasis in cancer.243 P57 also promotes tumor cell differentiation and apoptosis.243 Long noncoding RNA H19 was shown to be involved in the inhibitory effects of metformin on the invasive behavior of human gastric cancer cells. Additionally, after deletion of long noncoding RNA H19, metformin could no longer activate AMPK or decrease matrix metalloproteinase 9 (MMP-9).244 It seems that metformin recruits many noncoding RNAs to modulate several signaling pathways.

Metformin can potentiate the immune system to attack immune cells. It decreases the differentiation of T Reg cells and reduces their population in the tumor microenvironment. Diminished population of T Reg cells accelerates T-cell-mediated cytotoxicity and removal of tumor cells.245 Interestingly, metformin enhanced the antitumor effects of chimeric antigen receptor (CAR) T cells via AMPK.39 Metformin, in an AMPK-dependent manner, decreases the expression of program cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) to prolong the CD8+ T cell lifespan, thereby increasing their antitumor efficacy.39,246 Metformin also improves the antitumor activity of PD-1 inhibitors.247 Consistently, using metformin as an additive treatment for head and neck squamous cell carcinoma resulted in a significant increase in CD8+ population and decrease in T Reg cell population in the tumor.248

Metformin is a safe drug, with wide variety of interactions with numerous oncogenic and tumor-suppressing pathways which make it a good choice for cancer prevention and treatment (Figure 3).

Figure 3.

Figure 3

Underlying mechanisms involved in the protective effects of metformin against cancers. Metformin hinders the development of cancers and inhibits cancer cells proliferation, invasion, and metastasis through different mechanisms. The drug attenuates cancer cell proliferation through inhibition of major proliferative pathways such as PI3K/AKT/mTOR, DVL3/Wnt/β-catenin, and Raf/MEK/ERK. Simultaneously, metformin increases the expression of tumor suppressors such as PTEN, P21, P27, and P57. These tumor suppressors inhibit CKD that results in cell cycle arrest. Furthermore, metformin downregulates Snail, Slug, and ZEB1 to maintain E-cadherin expression and prevent cancer cell metastasis. Interestingly, metformin decreases PD-1 and PD-L1 and impairs tumor cell immune-evasion. Metformin also attenuates the growth signals mediated by EGFR and IGF1 receptors. The drug downregulates Nrf2, thereby impairing tumor cells’ antioxidant defense and improving chemoresistance. Furthermore, metformin can reduce the expression of HIF-1α and c-Myc. HIF-1α and c-Myc can promote the expression of glycolytic enzymes, enhance intratumor angiogenesis, and increase tumor cell invasion and metastasis.

Polycystic Ovarian Syndrome (PCOS) and Metformin

Adolescent PCOS is associated with greater risk of metabolic syndrome particularly among overweight/obese patients.249,250 Use of metformin (1700 mg/day for 6 months) for adolescent girls with PCOS improved menstrual cycles and made them ovulatory. In addition, metformin ameliorated patients’ BMI and their hyperandrogenic symptoms such as hirsutism and acne and reduce their total testosterone, androstenedione, and free testosterone levels.251,252 The modulatory effects of metformin on the hormonal and metabolic status of patients with PCOS have been associated with clinical improvement in ovulation, pregnancy rate, and androgenic symptoms.253 Metformin increased the clinical pregnancy rate among patients with PCOS and BMI ≥26 who underwent in vitro fertilization.254 Three months of pretreatment with metformin effectively increased pregnancy rate and live birth rate in both obese and non-obese PCOS patients who had non-ovulatory menstrual cycles.255 Metformin prevented early pregnancy loss, preterm labor, and pregnancy complications such as gestational diabetes mellitus (GDM) and pregnancy-induced hypertension (PIH) and preeclampsia in pregnant women with PCOS.256259 Moreover, metformin lowered the chance of neonatal hypoglycemia and being large for gestational age (LGA)260 (Figure 4). Contrary to insulin, metformin can freely pass through the placenta, hence, the fetus will be exposed to the concentrations of metformin comparable to its therapeutic concentrations.261,262 According to available evidence, metformin is safe during gestation and currently, further studies are measuring its safety during pregnancy.256,257 Although, a follow-up study reported that use of metformin for patients with PCOS has been associated with a higher risk of being overweight among 4 year old children, which should be considered and further investigated.263

Figure 4.

Figure 4

Effect of metformin on different dimensions of PCOS. The effects of metformin on PCOS is not restricted to its beneficial effects on metabolic syndrome. Metformin can mitigate infertility and pregnancy complications. The drug improves anovulation, pregnancy loss, PIH, preeclampsia, LGA, neonatal hypoglycemia, and preterm labor. In addition, it was observed that metformin can decrease androgens and hyperandrogenism symptoms such as hirsutism and acne.

Activation of the ovarian AMPK/SIRT1 signaling pathway has been implicated in the beneficial effects of metformin on ovulation and hormonal changes.264 Impaired function of the AMPK/SIRT1 signaling pathway in granulosa cells is associated with insulin resistance and hyperandrogenism. Likewise, activation of the AMPK/SIRT1 pathway modulates insulin resistance and modifies hormonal status.265,266 AMPK activation by metformin also led to suppression of mTOR signaling and decreased the expression of MMP-2 and MMP-9 in the animal model of PCOS.267 Previously, it was reported that patients with PCOS have considerably higher levels of MMP-2 and MMP-9, which may be involved in menstrual irregularity or higher risk of cardiovascular events.268,269 Furthermore, metformin upregulates the expression of implantation-associated genes.270 It was observed that metformin interacts with noncoding RNAs to regulate the expression of these genes.271

It was uncovered that higher expression of endometrial progesterone receptor is associated with anovulation in PCOS patients.272 Indeed, higher expression of endometrial progesterone receptor implies an underlying progesterone resistance in PCOS patients that can progress to endometrial hyperplasia.273 Metformin can improve progesterone resistance in PCOS and decrease the expression of the endometrial progesterone receptor.270,273,274 Metformin also attenuates androgen-mediated endometrial inflammation. It inhibits endometrial TLR4 and NF-κB signaling and prevents the release of inflammatory cytokines such as INF-γ and TNF-α in the endometrium.44

Metformin markedly ameliorates PCOS and its complications. It is relatively safe during pregnancy, increases the chance of a successful pregnancy, and minimizes maternal and fetal complications.

Metformin and Osteoporosis

Interestingly, metformin has been associated with decreased risk of fracture (95% CI, RR 0.82 (0.72, 0.93)) among diabetic patients, indicated by meta-analyses of several observational studies.275,276 Eighteen months use of metformin could significantly increase bone mineral content and bone mineral densitometry (BMD) in overweight patients with type 2 diabetes.277 Tseng et al. showed that long-term use of metformin, particularly for more than 2 years, not only prevents osteoporosis but also protects against vertebral fracture.278 Blumel et al. assessed the association between metformin and osteoporosis among Latin American adult women aged 40 or more who did not use antiosteoporotic drugs. The study uncovered that metformin use has been associated with a lower risk of osteoporosis, regardless of the presence of diabetes, obesity, and other factors.279 Interestingly, it was observed that metformin reduces the incidence of osteoporosis among patients with carcinoma in situ.280 It seems that metformin has several benefits for cancer patients including decreasing cancer incidence and facilitating cancer treatment, improving chemotherapy-induced neuropathy, and preventing osteoporosis among patients.

Metformin ameliorated glucocorticoid-associated osteoporosis in rats.281 Use of metformin was associated with increased levels of osteocalcin, collagen type I, and OSTERIX in the rat model of osteoporosis. These proteins are markers of osteoblastic activity and bone formation. Similarly, higher BMDs were found in metformin-treated rats.281,282 In addition, metformin increased osteoblast proliferation and decreased their apoptosis in cell culture.283 Metformin increases the expression of runt-related transcription factor 2 (RUNX-2) through AMPK. RUNX-2 promotes osteoblast differentiation.284 RUNX-2 is a key factor to induce a group of genes involved in the differentiation of osteoblast progenitor cells into osteoblasts.285 AMPK-mediated expression of bone morphogenetic protein 2 (BMP-2) and eNOS was also shown to be involved in osteoblastic differentiation after administration of metformin.286 BMP-2 is an upstream of RUNX-2 and promotes osteoblastogenesis. Activation of the BMP-2/RUNX-2 pathway leads to the expression of osteoblastogenesis-related proteins such as osteocalcin and OSTERIX.287 Moreover, Mai et al. uncovered that metformin can enhance the expression of osteoprotegerin (OPG), suppress the expression of receptor activator of nuclear factor kappa-B ligand (RANKL), and decrease osteoclast differentiation in cell culture and ovariectomized rats. Despite OPG, RANKL is a positive regulator of osteoclastogenesis. Increased OPG/RANKL ratio reduces osteoclast differentiation, inhibits bone resorption, and prevents osteoporosis.288,289 It was revealed that SIRT6 plays a critical role in antiosteoporosis effects of metformin. It was shown that knockout of SIRT6 reverses the beneficial effects of metformin on OPG, RANKL, and RUNX-2.282,290 SIRT6 is a histone deacetylase and regulates gene expression and glucose metabolism.291 Previously, it was shown that SIRT6 promotes osteogenic differentiation of bone marrow mesenchymal stem cells via inhibition of the NF-κB signaling pathway.292 Consistently, SIRT6 deficiency has been associated with osteopenia in the animal model.293 Metformin protects bone mesenchymal stem cells against oxidative stress and promotes their autophagy. These cells are the precursors of osteoblasts and needed for osteoblastogenesis.148 Similarly, it was shown that metformin can prevent hyperglycemia-induced apoptosis of osteoblasts through attenuation of the TLR4/MyD88/NF-κB signaling pathway.294 In addition to protecting mesenchymal stem cells, metformin promotes their differentiation to osteoblasts and simultaneously hinders their differentiation into adipocytes.295 Hence, metformin can prevent osteoporosis by protecting osteoblasts, improving their differentiation, and decreasing osteoclast function (Figure 5).

Figure 5.

Figure 5

Underlying molecular mechanisms involved in the protective effects of metformin on osteoporosis. Metformin protects against MSC damage. The drug accelerates osteoblastogenesis through promoting the AMPK/SIRT6/BMP-2/RUNX-2 pathway. Moreover, metformin promotes the expression of OPG and downregulates RANKL/RANK/NF-κB pathway to decrease osteoclastogenesis.

Metformin for Periodontitis

Recently, meta-analysis of several studies has shown that locally delivered metformin particularly with a gel concentration of 1% can markedly improve the management of chronic periodontitis and significantly increase treatment response.296,297 It was observed that metformin 1% gel can improve probing depth (95% CI, WMD 2.12 mm (1.83–2.42)) and clinical attachment level (95% CI, WMD 2.29 mm (1.72–2.86)). These findings show the efficacy of metformin 1% gels to enhance the effect of mechanical periodontal therapy for periodontitis.297

Metformin could increase the decreased levels of AMPK and attenuate NF-κB and NIMA-related kinase 7 (Nek7)/NLRP3 signaling pathways in the animal models of periodontitis. Thereby, metformin suppressed the release of several inflammatory cytokines such as IL-1β, IL18, and TNF-α and prevented apoptosis and inflammasome-associated pyroptosis of periodontal cells.298301 Moreover, metformin promoted autophagy and suppressed oxidative stress in periodontal ligament cells.148,302 Intracanal use of metformin inhibited the upregulated iNOS/NO system and prevented monocyte infiltration in periodontitis.303 iNOS overactivity is a strong activator of osteoclasts and facilitates alveolar bone loss.304 Interestingly, metformin protects against dental stem cell damage and preserves the regenerative capacity of periodontal tissue.305 Metformin enhances Nrf2 function during periodontitis to protect periodontal stem cells against oxidative stress.306 Nrf2 signaling has been implicated in the attenuation of oxidative stress and osteogenic differentiation of periodontal ligament stem cells.307,308

Additionally, metformin downregulates the RANK/RANKL signaling pathway and increases OPG to decrease bone resorption.300 As mentioned, decreased RANKL/OPG ratio can hinder osteoclast differentiation and maintain bone structure.309 The NLRP3 inflammasome promotes osteoclast differentiation, augments alveolar bone resorption and exacerbates periodontitis.310 Therefore, the inhibitory effect of metformin on the NLRP3 inflammasome not only alleviates inflammation but also prevents osteoclast differentiation.298 The drug also promotes the osteogenic differentiation and facilitates the proliferation and migration of osteocytes in the periodontal ligament, which may contribute to regeneration of periodontal tissue.311 Furthermore, use of metformin has been associated with decreased expression of MMP-9.300 MMPs play a critical role in the degeneration of periodontal soft and hard tissues, leading to the progression of periodontitis.312 Salivary MMPs, particularly MMP9, have been proposed as markers of periodontal inflammation and periodontitis.313

Metformin 1% gel has been strongly proposed as a protective agent in the management of chronic periodontitis. Preclinical studies showed that metformin can mechanistically improve periodontitis, as well. These findings support the use of metformin for periodontitis.

Metformin for IBD and Colitis

Recently, it was reported that patients with type 2 diabetes who received metformin were at lower risk of IBD (95% CI, HR 0.55 (0.51–0.60)), compared with those whom never received this drug. Interestingly, longer duration of use has been associated with lower risk of IBD. Use durations of <26.0 months, 26.0–58.3 months, and >58.3 months were associated with HR 1.00 (0.93–1.09), HR 0.57 (0.52–0.62), and HR 0.24 (0.22–0.26) risk of IBD, respectively. Furthermore, metformin decreased the risk of IBD in combination with insulin and other antidiabetic medications.314 Recently, a study with 30 patients with ulcerative colitis and 10 healthy subjects revealed that metformin (850 mg, BID, for 3 months) significantly improved patients’ symptoms such as diarrhea, bloody stool, and abdominal pain. Further, metformin markedly decreased colon endoscopic scores, histological disease scores, erythrocyte sedimentation rate, tissue malondialdehyde, tissue myeloperoxidase, tissue TNF-α, and increased catalase.315

Metformin similarly alleviated colitis in animal models.316 Metformin upregulated the TFG-β signaling pathway and increased CD4+ Foxp3+ T Reg cell abundance in the animal models of colitis. The drug also reduced Th17 population and downregulated IL17 expression.316,317 Aberrant function or overactivity of T cells, particularly Th17 cells, is the mainstay of inflammatory response in IBD. Th17 cells respond to extracellular bacteria and provoke inflammatory response.318 Inflamed mucosa is also recognized by decreased abundance of T Reg cells.318

The ameliorative effects of metformin on colitis and colitis-associated colorectal cancer has been associated with inhibition of NF-κB, as one of the main drivers of inflammation. Metformin improved mitochondrial function, as well.216 Metformin could decrease the severity of colitis even in IL10–/– mice via activation of AMPK and inhibition of NF-κB.319 In addition to NF-κB, metformin attenuates intestinal inflammatory response through inactivation of mTOR, TLR4, and NLRP3. The drug also negatively regulates heat shock protein 90 (HSP90) in intestinal inflammation.320 Each one of these molecules has been implicated in the initiation or exacerbation of colitis, and their overactivation endangers mucosal integrity. Interestingly, metformin modulates all of them to alleviate intestinal inflammation. Moreover, metformin enhances the expression of Beclin-1 in colitis, which positively regulates autophagy.320

JNK and p38 MAPK signaling pathways are the other inflammatory pathways in IBD and colitis that can be attenuated by metformin.321,322 JNK is a major promoter of inflammatory response and leads to apoptosis and disruption of the intestinal epithelial barrier. Likewise, JNK inhibitors were shown to be protective against colitis.323 P38 MAPK is markedly overexpressed in the intestinal mucosal cells of patients with IBD, and pharmacological attenuation of P38 MAPK could bring remission for patients IBD in previous studies.324 Pandey et al. indicated that metformin decreases COX-2 and iNOS expression to improve colitis and maintain mucosal integrity.325 Previously, it was shown that inhibition of P38 MAPK decreases COX-2 and iNOS expression and modulates experimental colitis.326 Moreover, COX-2 plays a crucial role in the pathogenesis of colorectal cancer, and COX-2 inhibitors can modify the risk of colorectal cancer.327,328 Similarly, it was observed that iNOS is overexpressed in colitis and colorectal cancer.329

Metformin activates the LKB-1/AMPK axis, thereby reprogramming a wide variety of intracellular signaling pathways.216 Patients with IBD have lower amounts of activated AMPK in their mucosal cells, and treatment with metformin can increase it.322 Consistently, it was revealed that phosphorylation of AMPK is negatively correlated with the severity of colitis in the dextran sulfate sodium colitis model.330 AMPK activation by metformin restores the integrity of intestinal epithelial barrier through upregulation of tight junction proteins.330 Metformin promotes the expression of tight junction proteins such as ZO-1, occludin, claudin-1, claudin-3, and E-cadherin to prevent colitis or alleviate it.330332

Treatment with metformin led to lower expression of caspase-1, caspase-3, and MCP-1 in the in rat model of colitis. Decreased expression of caspases prevents intestinal mucosal cells apoptosis, and diminished expression of MCP-1 hinders immune cell infiltration into inflamed foci.331,333 Furthermore, the drug decreased the release of IL-1β, IL6, IL18, TNF-α, and IFN-γ and reduced M1 macrophage abundance.331,333 Metformin upregulated glutathione peroxidase (GPx) 4 activity and reduced myeloperoxidase activity and lipid peroxidation in the colon.320 The drug leads to activation and nuclear translocation of Nrf2 in colitis, thereby promoting the expression of endogenous antioxidants and suppressing oxidative stress.332 Interestingly, metformin changed gut microbial composition. These alterations in gut microbial composition improved body weight, glycemic control, and decreased intestinal inflammation.334,335

Furthermore, the drug could decrease the increased activity of sphingosine kinase 1 (SPHK1) and the concentration of sphingosine 1 phosphate (S1P) in intestinal inflammation.333 SPHK1 produces S1P. SPHK1 overexpression and activation of SPHK1/S1P/S1P receptor have been implicated in the pathophysiology of colitis and colorectal cancer. Consistently, SPHK1 inhibitors have been developed and showed anti-inflammatory and anticancer effects.336 S1P is involved in the activation of NF-κB and STAT3.337 STAT3 has mutual interactions with NF-κB, which results in gastrointestinal tract inflammation and carcinogenicity.338 Interestingly, it was also revealed that metformin inhibits STAT3 to mitigate colitis.317

Metformin can modify immune response, suppress inflammation, prevent intestinal lining cells apoptosis, and improve the integrity of mucosal barriers in IBD. These characteristics makes it a good additive therapeutic option for IBD and colitis.

Metformin and Senescence

Aging is accompanied by remarkable changes in cellular and molecular levels. These changes results in reprograming of many signaling pathways and shifts the equilibrium between restorative and destructive mechanisms, in favor of destructive mechanisms. The manifestation of these alterations in molecular and cellular levels is cancer, chronic inflammatory and noninflammatory diseases, decreased functional capacity, and frailty.339 Cellular senescence is associated with increased production of inflammatory mediators, oxidative stress, mitochondrial dysfunction, ER stress, imbalance between apoptosis and autophagy, telomere shortening, DNA damage, genomic instability, stem cell exhaustion, and neurodegeneration.340343

Because of its beneficial effects on several dimensions of age-related diseases, metformin has been proposed as an antiaging drug.344 This review mentioned how metformin can ameliorate chronic inflammation and protect against age-related comorbidities such as neuronal damage and neurodegenerative disorders, osteoporosis, periodontitis, cancer, cardiovascular diseases, and CKD. These medical conditions account for a great proportion of age-related complications and morbidities. Moreover, metformin accelerates self-renewal mechanisms such as autophagy and prevents several pathologic and destructive changes.344

Autophagy provides the opportunity to degrade aggregated and misfolded proteins and remove damaged or dysfunctional organelles. Dysregulation of autophagy is accompanied by neurodegenerative diseases, cardiovascular diseases, and age-related cellular damage in different organs.345,346 Autophagy is negatively regulated by mTOR.347 The AMPK/TSC2 pathway activation by metformin effectively attenuates mTOR signaling and promotes autophagy.138

Metformin enhances mitophagy in diabetic patients.348 Mitophagy is the selective removal of damaged and dysfunctional mitochondria. Mitophagy is involved in several physiological and pathological processes and can protect against aging, diabetes, cancers, and neurodegenerative diseases.349 Metformin, in an SIRT3/PTEN-induced kinase-1 (PINK1)-dependent manner, can enhance Parkin-dependent mitophagy.350 In response to mitochondrial damage, the mitochondrial kinase, PINK1, phosphorylates Parkin. Parkin translocation onto the mitochondrial membrane and subsequent ubiquitin chain formation leads to lysosomal degradation of damaged mitochondria.351 Consistently, Parkin overexpression has been proposed as a promoter of lifespan prolongation and protector against neurodegenerative diseases.352 Metformin also activates AMPK/PGC-1α pathway, which is necessary for competent mitochondrial biogenesis.353 Improved mitochondrial biogenesis can heavily ameliorate metabolic syndrome, cardiovascular diseases and neurodegenerative diseases.354,355

It was demonstrated that age-related mutation in mitochondrial DNA markedly accelerates apoptosis. Similarly, it was shown that apoptosis is associated with aging, and apoptotic markers are increased in older age.356 Metformin, in a AMPK-dependent manner, suppresses mitochondrial ROS production and inhibits JNK signaling to prevent apoptosis.357,358 In response to the stress signal, JNK leads to apoptosis and pharmacological inhibition of JNK prevents apoptosis.359 Moreover, metformin can attenuate ER stress to prevent organ damage.86,360 ER stress vigorously activates JNK signaling, leading to apoptosis.360

Metformin modulates gene expression by exerting epigenetic changes. Indeed, metformin via AMPK and SIRT1 selectively alters gene expression.361 Metformin can activate SIRT1 signaling, which strongly inhibits aging-related pathways.97,101,362 SIRT1 inactivation accelerates the aging process.363 SIRT1 promotes autophagy and inhibits FOXO1 signaling to attenuate oxidative stress. Furthermore, SIRT1 prevents mitochondrial damage and suppresses NF-κB signaling, thereby decreasing the release of inflammatory cytokines and abrogating apoptosis.364 Regulation of SIRT1 enables metformin to modify several pathological processes. For instance, metformin augments SIRT1 signaling to modulate p53/p21-mediated apoptosis.363 Metformin promotes AMPK/SIRT1 signaling to enhance PGC-1α expression. Subsequently, AMPK/SIRT1/PGC-1α pathway improves mitochondrial function and autophagy and hampers apoptosis.365 The SIRT1/PGC-1α pathway is a major regulator and promoter of autophagy and mitophagy.366

Aging is associated with mitochondrial and nuclear DNA damage. Accumulation of oxidative damage in DNA, particularly in mitochondrial DNA, shortens cellular lifespan and accelerates cellular aging.367 Metformin attenuates oxidative stress to protect against DNA damage and genomic instability.368 Metformin, in an Nrf2-dependent manner, promotes the expression of several antioxidants such as GPx7.369 Potentiation of Nrf2/GPx7 axis by metformin was associated with enhanced antioxidant capacity and longevity of human diploid fibroblasts and human mesenchymal stem cells.369 In addition, it was observed that metformin activates an intracellular ataxia telangiectasia mutated (ATM)/checkpoint kinase 2 (CHK2) checkpoint to promote DNA-damage response (DDR).370 Enhancement of ATM-mediated DDR by metformin not only improves DNA repair in senescence but also improves cancer treatment. ATM activation decreases tumor progression and facilitates cancer cell apoptosis.371 ATM is a member of kinases involved in DNA repair. These kinases phosphorylate several proteins to repair the damage when possible; otherwise, apoptosis happens. Furthermore, ATM is needed for preventing telomere shortening and genomic instability in stem cells.372 Consistently, it was observed that metformin could partly prevent placental telomere shortening in GDM patients.373 Similarly, it was shown that metformin can prevent telomere shortening in diabetic patients particularly in patients with mild age-related diabetes.374 After 18 months of treatment, the drug could also improve telomere length in adolescent girls with hyperinsulinemic androgen excess.375

Interestingly, it was demonstrated that metformin or fasting can prevent stem cell exhaustion. They preserve the capacity of stem cells to respond to pro-differentiation signals.376 For instance, metformin could potentiate the capability of oligodendrocyte progenitor cells to produce mature oligodendrocytes and remyelinate the CNS.376 Pavlidou et al. indicated that inactivation of mTOR/ribosomal protein S6 (RPS6) propels satellite cells in a quiescent period.377 Satellite cells are responsible for muscle fiber regeneration, and metformin may help to preserve their regenerative capacity and prevent their exhaustion during repeated regeneration cycles.377 Previously, we have mentioned that metformin activates LKB1 and subsequently activates its downstream AMPK. It was shown that LKB1 deletion in adult mice resulted in exhaustion of hematopoietic stem cells, severe pancytopenia, and death.378 Indeed, LKB1/AMPK pathways are crucially involved in stem cell quiescence, and their deletion leads to stem cell depletion.378

Older age is associated with fibrotic changes in different organs such as the kidneys, liver, and heart.379 Similarly, aging is associated with fibrogenic conversion of stem cells at the cellular level. Aged fibroblasts and extracellular matrix provoke these fibrogenic alterations in stem cells.380 Metformin effectively prevented TGF-β-induced fibrosis of endothelial stem cells, epithelial progenitor cells, and mesenchymal stem cells.379,381,382 This protective effect of metformin can prolong the lifespan and functional capacity of stem cells (Figure 6).

Figure 6.

Figure 6

Protective effects of metformin on cellular senescence, other than its protective effects on inflammation, cancer, cardiovascular, renal and neuronal diseases. Metformin reprograms intracellular signaling pathways to exert its antiaging effects. Metformin activates several mechanisms to prevent ER stress, oxidative stress, apoptosis, and stem cell exhaustion and improves mitochondrial biogenesis and autophagy. Additionally, metformin activates the SIRT3/PINK1/Parkin signaling pathway to enhance mitophagy. Meanwhile, it activates DDR through ATM/CHK2. DRR can prevent tumorigenesis, genomic instability, and telomere shortening.

However, metformin protects normal cells against apoptosis and DNA damage, and it can oppositely enhance the apoptosis of tumor cells or prevent their DNA repair. Metformin also promotes excessive autophagy of tumor cells to destroy them.232,233,383 These paradoxical behaviors of metformin in different conditions are interesting and make it unique.

Conclusion and Future Direction

Numerous cell culture studies, animal studies, and clinical trials revealed that metformin can improve inflammation, obesity, cardiovascular and renal diseases, IBD, cancers, PCOS, osteoporosis, and periodontitis. Moreover, various molecular interactions were shown to be involved in such effects. Future studies should determine the effect of metformin in nondiabetic patients who are suffering from these diseases. Finally, it is needed to assess the effect of metformin on the prevention or treatment of similar medical conditions such as autoimmune diseases.

Author Contributions

Moein Ala had the idea for this article. Moein Ala and Mahan Ala performed literature search and wrote the article. Moein Ala critically edited the article.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

The authors declare no competing financial interest.

References

  1. Khan M. A. B.; Hashim M. J.; King J. K.; Govender R. D.; Mustafa H.; Al Kaabi J. Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. Journal of epidemiology and global health 2020, 10, 107. 10.2991/jegh.k.191028.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhutani J.; Bhutani S. Worldwide burden of diabetes. Indian journal of endocrinology and metabolism 2014, 18, 868. 10.4103/2230-8210.141388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lozano R.; Naghavi M.; Foreman K.; Lim S.; Shibuya K.; Aboyans V.; Abraham J.; Adair T.; Aggarwal R.; Ahn S. Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. 10.1016/S0140-6736(12)61728-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Mantovani A.; Turino T.; Lando M. G.; Gjini K.; Byrne C. D.; Zusi C.; Ravaioli F.; Colecchia A.; Maffeis C.; Salvagno G.; et al. Screening for non-alcoholic fatty liver disease using liver stiffness measurement and its association with chronic kidney disease and cardiovascular complications in patients with type 2 diabetes. Diabetes Metab. 2020, 46, 296–303. 10.1016/j.diabet.2019.11.004. [DOI] [PubMed] [Google Scholar]
  5. Lee H. W.; Wong G. L. H.; Kwok R.; Choi K. C.; Chan C. K. M.; Shu S. S. T.; Leung J. K. Y.; Chim A. M. L.; Luk A. O. Y.; Ma R. C. W.; et al. Serial transient elastography examinations to monitor patients with type 2 diabetes: A prospective cohort study. Hepatology 2020, 72, 1230. 10.1002/hep.31142. [DOI] [PubMed] [Google Scholar]
  6. Fowler M. J. Microvascular and macrovascular complications of diabetes. Clinical diabetes 2008, 26, 77–82. 10.2337/diaclin.26.2.77. [DOI] [Google Scholar]
  7. Corriere M.; Rooparinesingh N.; Kalyani R. R. Epidemiology of diabetes and diabetes complications in the elderly: an emerging public health burden. Curr. Diabetes Rep. 2013, 13, 805–813. 10.1007/s11892-013-0425-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Yang J. J.; Yu D.; Wen W.; Saito E.; Rahman S.; Shu X.-O.; Chen Y.; Gupta P. C.; Gu D.; Tsugane S.; et al. Association of diabetes with all-cause and cause-specific mortality in Asia: a pooled analysis of more than 1 million participants. JAMA network open 2019, 2, e192696. 10.1001/jamanetworkopen.2019.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shin J.-I.; Sang Y.; Chang A. R.; Dunning S. C.; Coresh J.; Inker L. A.; Selvin E.; Ballew S. H.; Grams M. E. The FDA metformin label change and racial and sex disparities in metformin prescription among patients with CKD. J. Am. Soc. Nephrol. 2020, 31, 1847–1858. 10.1681/ASN.2019101119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crowley M. J.; Diamantidis C. J.; McDuffie J. R.; Cameron B.; Stanifer J.; Mock C. K.; Kosinski A.; Wang X.; Tang S.; Williams J. W. Jr.. Metformin use in patients with historical contraindications or precautions. Department of Veterans Affairs, Washington, DC, 2017; https://www.ncbi.nlm.nih.gov/books/NBK409374/. [PubMed]
  11. Foretz M.; Guigas B.; Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2019, 15, 569–589. 10.1038/s41574-019-0242-2. [DOI] [PubMed] [Google Scholar]
  12. Lukito A. A.; Pranata R.; Henrina J.; Lim M. A.; Lawrensia S.; Suastika K. The Effect of Metformin Consumption on Mortality in Hospitalized COVID-19 patients: a systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2020, 14, 2177. 10.1016/j.dsx.2020.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hu Y.; Lei M.; Ke G.; Huang X.; Peng X.; Zhong L.; Fu P. Metformin Use and Risk of All-Cause Mortality and Cardiovascular Events in Patients With Chronic Kidney Disease—A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 789. 10.3389/fendo.2020.559446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Siskind D. J.; Leung J.; Russell A. W.; Wysoczanski D.; Kisely S. Metformin for clozapine associated obesity: a systematic review and meta-analysis. PLoS One 2016, 11, e0156208. 10.1371/journal.pone.0156208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DeCensi A.; Puntoni M.; Goodwin P.; Cazzaniga M.; Gennari A.; Bonanni B.; Gandini S. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev. Res. 2010, 3, 1451–1461. 10.1158/1940-6207.CAPR-10-0157. [DOI] [PubMed] [Google Scholar]
  16. Abdallah M. S.; Mosalam E. M.; Zidan A.-A. A.; Elattar K. S.; Zaki S. A.; Ramadan A. N.; Ebeid A. M. The antidiabetic metformin as an adjunct to antidepressants in patients with major depressive disorder: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Neurotherapeutics 2020, 17, 1897. 10.1007/s13311-020-00878-7. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  17. Wang H.; Li T.; Chen S.; Gu Y.; Ye S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol. 2015, 67, 3190–3200. 10.1002/art.39296. [DOI] [PubMed] [Google Scholar]
  18. Shaw R. J.; Lamia K. A.; Vasquez D.; Koo S.-H.; Bardeesy N.; DePinho R. A.; Montminy M.; Cantley L. C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005, 310, 1642–1646. 10.1126/science.1120781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shackelford D. B.; Shaw R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 2009, 9, 563–575. 10.1038/nrc2676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Alexander A.; Walker C. L. The role of LKB1 and AMPK in cellular responses to stress and damage. FEBS Lett. 2011, 585, 952–957. 10.1016/j.febslet.2011.03.010. [DOI] [PubMed] [Google Scholar]
  21. Bharath L. P.; Agrawal M.; McCambridge G.; Nicholas D. A.; Hasturk H.; Liu J.; Jiang K.; Liu R.; Guo Z.; Deeney J. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020, 32, 44–55. 10.1016/j.cmet.2020.04.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sardu C.; D’Onofrio N.; Torella M.; Portoghese M.; Loreni F.; Mureddu S.; Signoriello G.; Scisciola L.; Barbieri M.; Rizzo M. R.; et al. Pericoronary fat inflammation and Major Adverse Cardiac Events (MACE) in prediabetic patients with acute myocardial infarction: effects of metformin. Cardiovasc. Diabetol. 2019, 18, 126. 10.1186/s12933-019-0931-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nyambuya T. M.; Dludla P. V.; Mxinwa V.; Mokgalaboni K.; Ngcobo S. R.; Tiano L.; Nkambule B. B. The impact of metformin and aspirin on T-cell mediated inflammation: A systematic review of in vitro and in vivo findings. Life Sci. 2020, 255, 117854. 10.1016/j.lfs.2020.117854. [DOI] [PubMed] [Google Scholar]
  24. Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance. Diabetes 2005, 54, 1566–1572. 10.2337/diabetes.54.5.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hassan F. I.; Didari T.; Khan F.; Niaz K.; Mojtahedzadeh M.; Abdollahi M. A review on the protective effects of metformin in sepsis-induced organ failure. Cell Journal (Yakhteh) 2020, 21, 363. 10.22074/cellj.2020.6286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liang H.; Ding X.; Li L.; Wang T.; Kan Q.; Wang L.; Sun T. Association of preadmission metformin use and mortality in patients with sepsis and diabetes mellitus: a systematic review and meta-analysis of cohort studies. Critical Care 2019, 23, 1–9. 10.1186/s13054-019-2346-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saisho Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr., Metab. Immune Disord.: Drug Targets 2015, 15, 196–205. 10.2174/1871530315666150316124019. [DOI] [PubMed] [Google Scholar]
  28. Cameron A. R.; Morrison V. L.; Levin D.; Mohan M.; Forteath C.; Beall C.; McNeilly A. D.; Balfour D. J. K.; Savinko T.; Wong A. K. F.; et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res. 2016, 119, 652–665. 10.1161/CIRCRESAHA.116.308445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Afonina I. S.; Zhong Z.; Karin M.; Beyaert R. Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nat. Immunol. 2017, 18, 861. 10.1038/ni.3772. [DOI] [PubMed] [Google Scholar]
  30. Zhang S.; Xu H.; Yu X.; Wu Y. I.; Sui D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Exp. Ther. Med. 2017, 14, 383–390. 10.3892/etm.2017.4475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rajaei E.; Haybar H.; Mowla K.; Zayeri Z. D. Metformin one in a million efficient medicines for rheumatoid arthritis complications: Inflammation, osteoblastogenesis, cardiovascular disease, malignancies. Curr. Rheumatol. Rev. 2019, 15, 116–122. 10.2174/1573397114666180717145745. [DOI] [PubMed] [Google Scholar]
  32. Wang Y.; Xu W.; Yan Z.; Zhao W.; Mi J.; Li J.; Yan H. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J. Exp. Clin. Cancer Res. 2018, 37, 1–12. 10.1186/s13046-018-0731-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lee S.-Y.; Moon S.-J.; Kim E.-K.; Seo H.-B.; Yang E.-J.; Son H.-J.; Kim J.-K.; Min J.-K.; Park S.-H.; Cho M.-L. Metformin suppresses systemic autoimmunity in Roquinsan/san mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J. Immunol. 2017, 198, 2661–2670. 10.4049/jimmunol.1403088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xu Y.; Li Z.; Yin Y.; Lan H.; Wang J.; Zhao J.; Feng J.; Li Y.; Zhang W. Ghrelin inhibits the differentiation of T helper 17 cells through mTOR/STAT3 signaling pathway. PLoS One 2015, 10, e0117081. 10.1371/journal.pone.0117081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kim H. Y.; Jhun J. Y.; Cho M.-L.; Choi J. Y.; Byun J. K.; Kim E.-K.; Yoon S. K.; Bae S. H.; Chung B. H.; Yang C. W. Interleukin-6 upregulates Th17 response via mTOR/STAT3 pathway in acute-on-chronic hepatitis B liver failure. J. Gastroenterol. 2014, 49, 1264–1273. 10.1007/s00535-013-0891-1. [DOI] [PubMed] [Google Scholar]
  36. Zhang S.; Pruitt M.; Tran D.; Du Bois W.; Zhang K.; Patel R.; Hoover S.; Simpson R. M.; Simmons J.; Gary J.; et al. B cell–specific deficiencies in mTOR limit humoral immune responses. J. Immunol. 2013, 191, 1692–1703. 10.4049/jimmunol.1201767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Guo Y.; Shi J.; Wang Q.; Hong L.; Chen M.; Liu S.; Yuan X.; Jiang S. Metformin alleviates allergic airway inflammation and increases Treg cells in obese asthma. J. Cell. Mol. Med. 2021, 25, 2279–2284. 10.1111/jcmm.16269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Duan W.; Ding Y.; Yu X.; Ma D.; Yang B.; Li Y.; Huang L.; Chen Z.; Zheng J.; Yang C. Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production. Am. J. Transl. Res. 2019, 11, 2393. [PMC free article] [PubMed] [Google Scholar]
  39. Zhang Z.; Li F.; Tian Y.; Cao L.; Gao Q.; Zhang C.; Zhang K.; Shen C.; Ping Y.; Maimela N. R.; et al. Metformin enhances the antitumor activity of CD8+ T lymphocytes via the AMPK–miR-107–Eomes–PD-1 pathway. J. Immunol. 2020, 204, 2575–2588. 10.4049/jimmunol.1901213. [DOI] [PubMed] [Google Scholar]
  40. Xu P.; Yin K.; Tang X.; Tian J.; Zhang Y.; Ma J.; Xu H.; Xu Q.; Wang S. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomed. Pharmacother. 2019, 120, 109458. 10.1016/j.biopha.2019.109458. [DOI] [PubMed] [Google Scholar]
  41. Jing Y.; Wu F.; Li D.; Yang L.; Li Q.; Li R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol. Cell. Endocrinol. 2018, 461, 256–264. 10.1016/j.mce.2017.09.025. [DOI] [PubMed] [Google Scholar]
  42. Yang F.; Qin Y.; Wang Y.; Meng S.; Xian H.; Che H.; Lv J.; Li Y.; Yu Y.; Bai Y.; et al. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int. J. Biol. Sci. 2019, 15, 1010. 10.7150/ijbs.29680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Qing L.; Fu J.; Wu P.; Zhou Z.; Yu F.; Tang J. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. Am. J. Transl. Res. 2019, 11, 655. [PMC free article] [PubMed] [Google Scholar]
  44. Hu M.; Zhang Y.; Li X.; Cui P.; Sferruzzi-Perri A. N.; Brännström M.; Shao L. R.; Billig H. TLR4-associated IRF-7 and NFκB signaling acts as a molecular link between androgen and metformin activities and cytokine synthesis in the PCOS endometrium. J. Clin. Endocrinol. Metab. 2021, 106, 1022. 10.1210/clinem/dgaa951. [DOI] [PubMed] [Google Scholar]
  45. Mangan M. S.; Olhava E. J.; Roush W. R.; Seidel H. M.; Glick G. D.; Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discovery 2018, 17, 588–606. 10.1038/nrd.2018.97. [DOI] [PubMed] [Google Scholar]
  46. Liu Y.; Yin H.; Zhao M.; Lu Q. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin. Rev. Allergy Immunol. 2014, 47, 136–147. 10.1007/s12016-013-8402-y. [DOI] [PubMed] [Google Scholar]
  47. Yang Q.; Yuan H.; Chen M.; Qu J.; Wang H.; Yu B.; Chen J.; Sun S.; Tang X.; Ren W. Metformin ameliorates the progression of atherosclerosis via suppressing macrophage infiltration and inflammatory responses in rabbits. Life Sci. 2018, 198, 56–64. 10.1016/j.lfs.2018.02.017. [DOI] [PubMed] [Google Scholar]
  48. Eilenberg W.; Stojkovic S.; Piechota-Polanczyk A.; Kaider A.; Kozakowski N.; Weninger W.; Nanobachvili J.; Wojta J.; Huk I.; Demyanets S.; et al. Neutrophil gelatinase associated lipocalin (NGAL) is elevated in type 2 diabetics with carotid artery stenosis and reduced under metformin treatment. Cardiovasc. Diabetol. 2017, 16, 98. 10.1186/s12933-017-0579-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Menegazzo L.; Scattolini V.; Cappellari R.; Bonora B. M.; Albiero M.; Bortolozzi M.; Romanato F.; Ceolotto G.; de Kreutzeberg S. V.; Avogaro A.; et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol. 2018, 55, 593–601. 10.1007/s00592-018-1129-8. [DOI] [PubMed] [Google Scholar]
  50. Sun X.; Wang T.; Cai D.; Hu Z.; Chen J.; Liao H.; Zhi L.; Wei H.; Zhang Z.; Qiu Y. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020, 53, 38–42. 10.1016/j.cytogfr.2020.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhang M.; He J.-q. Impacts of metformin on tuberculosis incidence and clinical outcomes in patients with diabetes: a systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2020, 76, 149–159. 10.1007/s00228-019-02786-y. [DOI] [PubMed] [Google Scholar]
  52. Lee Y.-J.; Han S. K.; Park J. H.; Lee J. K.; Kim D. K.; Chung H. S.; Heo E. Y. The effect of metformin on culture conversion in tuberculosis patients with diabetes mellitus. Korean J. Intern. Med. 2018, 33, 933. 10.3904/kjim.2017.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Lachmandas E.; Eckold C.; Böhme J.; Koeken V. A.; Marzuki M. B.; Blok B.; Arts R. J.; Chen J.; Teng K. W.; Ratter J.; et al. Metformin alters human host responses to Mycobacterium tuberculosis in healthy subjects. J. Infect. Dis. 2019, 220, 139–150. 10.1093/infdis/jiz064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Crowley M. J.; Diamantidis C. J.; McDuffie J. R.; Cameron C. B.; Stanifer J. W.; Mock C. K.; Wang X.; Tang S.; Nagi A.; Kosinski A. S.; et al. Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review. Ann. Intern. Med. 2017, 166, 191–200. 10.7326/M16-1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Eurich D. T.; Weir D. L.; Majumdar S. R.; Tsuyuki R. T.; Johnson J. A.; Tjosvold L.; Vanderloo S. E.; McAlister F. A. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34 000 patients. Circ.: Heart Failure 2013, 6, 395–402. 10.1161/CIRCHEARTFAILURE.112.000162. [DOI] [PubMed] [Google Scholar]
  56. Ekstrom N.; Schioler L.; Svensson A.-M.; Eeg-Olofsson K.; Miao Jonasson J.; Zethelius B.; Cederholm J.; Eliasson B.; Gudbjornsdottir S. Effectiveness and safety of metformin in 51 675 patients with type 2 diabetes and different levels of renal function: a cohort study from the Swedish National Diabetes Register. BMJ. open 2012, 2, e001076. 10.1136/bmjopen-2012-001076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Han Y.; Xie H.; Liu Y.; Gao P.; Yang X.; Shen Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc. Diabetol. 2019, 18, 96. 10.1186/s12933-019-0900-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Campbell J. M.; Bellman S. M.; Stephenson M. D.; Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res. Rev. 2017, 40, 31–44. 10.1016/j.arr.2017.08.003. [DOI] [PubMed] [Google Scholar]
  59. Zhang K.; Yang W.; Dai H.; Deng Z. Cardiovascular risk following metformin treatment in patients with type 2 diabetes mellitus: Results from meta-analysis. Diabetes Res. Clin. Pract. 2020, 160, 108001. 10.1016/j.diabres.2020.108001. [DOI] [PubMed] [Google Scholar]
  60. Kwon S.; Kim Y. C.; Park J. Y.; Lee J.; An J. N.; Kim C. T.; Oh S.; Park S.; Kim D. K.; Oh Y. K.; et al. The long-term effects of metformin on patients with type 2 diabetic kidney disease. Diabetes Care 2020, 43, 948–955. 10.2337/dc19-0936. [DOI] [PubMed] [Google Scholar]
  61. Mary A.; Hartemann A.; Liabeuf S.; Aubert C. E.; Kemel S.; Salem J. E.; Cluzel P.; Lenglet A.; Massy Z. A.; Lalau J.-D.; et al. Association between metformin use and below-the-knee arterial calcification score in type 2 diabetic patients. Cardiovasc. Diabetol. 2017, 16, 24. 10.1186/s12933-017-0509-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Lu Y.; Wang Y.; Weng T.; Chen Z.; Sun X.; Wei J.; Cai Z.; Xiang M. Association between metformin use and coronary artery calcification in type 2 diabetic patients. J. Diabetes Res. 2019, 2019, 1. 10.1155/2019/9484717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Zhang C. X.; Pan S. N.; Meng R. S.; Peng C. Q.; Xiong Z. J.; Chen B. L.; Chen G. Q.; Yao F. J.; Chen Y. L.; Ma Y. D.; et al. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase–endothelial nitric oxide synthase pathway in rats. Clin. Exp. Pharmacol. Physiol. 2011, 38, 55–62. 10.1111/j.1440-1681.2010.05461.x. [DOI] [PubMed] [Google Scholar]
  64. Cao X.; Li H.; Tao H.; Wu N.; Yu L.; Zhang D.; Lu X.; Zhu J.; Lu Z.; Zhu Q. Metformin inhibits vascular calcification in female rat aortic smooth muscle cells via the AMPK-eNOS-NO pathway. Endocrinology 2013, 154, 3680–3689. 10.1210/en.2013-1002. [DOI] [PubMed] [Google Scholar]
  65. Kanno Y.; Into T.; Lowenstein C. J.; Matsushita K. Nitric oxide regulates vascular calcification by interfering with TGF-β signalling. Cardiovasc. Res. 2008, 77, 221–230. 10.1093/cvr/cvm049. [DOI] [PubMed] [Google Scholar]
  66. Yu J.-W.; Deng Y.-P.; Han X.; Ren G.-F.; Cai J.; Jiang G.-J. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc. Diabetol. 2016, 15, 88. 10.1186/s12933-016-0408-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Taleb S.; Moghaddas P.; Rahimi Balaei M.; Taleb S.; Rahimpour S.; Abbasi A.; Ejtemaei-Mehr S.; Dehpour A. R. Metformin improves skin flap survival through nitric oxide system. J. Surg. Res. 2014, 192, 686–691. 10.1016/j.jss.2014.07.012. [DOI] [PubMed] [Google Scholar]
  68. Kawabata H.; Ishikawa K. Cardioprotection by metformin is abolished by a nitric oxide synthase inhibitor in ischemic rabbit hearts. Hypertens. Res. 2003, 26, 107–110. 10.1291/hypres.26.107. [DOI] [PubMed] [Google Scholar]
  69. Calvert J. W.; Gundewar S.; Jha S.; Greer J. J. M.; Bestermann W. H.; Tian R.; Lefer D. J. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS–mediated signaling. Diabetes 2008, 57, 696–705. 10.2337/db07-1098. [DOI] [PubMed] [Google Scholar]
  70. Deng M.; Su D.; Xu S.; Little P. J.; Feng X.; Tang L.; Shen A. Metformin and Vascular Diseases: A Focused Review on Smooth Muscle Cell Function. Front. Pharmacol. 2020, 11, 635. 10.3389/fphar.2020.00635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Chen Y.; Li H.; Ye Z.; Găman M.-A.; Tan S. C.; Zhu F. The effect of metformin on carotid intima-media thickness (CIMT): a systematic review and meta-analysis of randomized clinical trials. Eur. J. Pharmacol. 2020, 886, 173458. 10.1016/j.ejphar.2020.173458. [DOI] [PubMed] [Google Scholar]
  72. Khan S. Z.; Rivero M.; Nader N. D.; Cherr G. S.; Harris L. M.; Dryjski M. L.; Dosluoglu H. H. Metformin is associated with improved survival and decreased cardiac events with no impact on patency and limb salvage after revascularization for peripheral arterial disease. Annals of vascular surgery 2019, 55, 63–77. 10.1016/j.avsg.2018.05.054. [DOI] [PubMed] [Google Scholar]
  73. Wang Q.; Zhang M.; Torres G.; Wu S.; Ouyang C.; Xie Z.; Zou M.-H. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission. Diabetes 2017, 66, 193–205. 10.2337/db16-0915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Chang Y.-W.; Chang Y.-T.; Wang Q.; Lin J. J.-C.; Chen Y.-J.; Chen C.-C. Quantitative phosphoproteomic study of pressure-overloaded mouse heart reveals dynamin-related protein 1 as a modulator of cardiac hypertrophy. Molecular & Cellular Proteomics 2013, 12, 3094–3107. 10.1074/mcp.M113.027649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Ding M.; Dong Q.; Liu Z.; Liu Z.; Qu Y.; Li X.; Huo C.; Jia X.; Fu F.; Wang X. Inhibition of dynamin-related protein 1 protects against myocardial ischemia–reperfusion injury in diabetic mice. Cardiovasc. Diabetol. 2017, 16, 1–11. 10.1186/s12933-017-0501-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Sun D.; Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem. Biophys. Res. Commun. 2017, 486, 329–335. 10.1016/j.bbrc.2017.03.036. [DOI] [PubMed] [Google Scholar]
  77. Zilinyi R.; Czompa A.; Czegledi A.; Gajtko A.; Pituk D.; Lekli I.; Tosaki A. The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: the role of autophagy. Molecules 2018, 23, 1184. 10.3390/molecules23051184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Xie Z.; Lau K.; Eby B.; Lozano P.; He C.; Pennington B.; Li H.; Rathi S.; Dong Y.; Tian R.; et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011, 60, 1770–1778. 10.2337/db10-0351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. You G.; Long X.; Song F.; Huang J.; Tian M.; Xiao Y.; Deng S.; Wu Q. Metformin activates the AMPK-mTOR pathway by modulating lncRNA TUG1 to induce autophagy and inhibit atherosclerosis. Drug Des., Dev. Ther. 2020, 14, 457. 10.2147/DDDT.S233932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Taneike M.; Yamaguchi O.; Nakai A.; Hikoso S.; Takeda T.; Mizote I.; Oka T.; Tamai T.; Oyabu J.; Murakawa T.; et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 2010, 6, 600–606. 10.4161/auto.6.5.11947. [DOI] [PubMed] [Google Scholar]
  81. Oka T.; Hikoso S.; Yamaguchi O.; Taneike M.; Takeda T.; Tamai T.; Oyabu J.; Murakawa T.; Nakayama H.; Nishida K.; et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012, 485, 251–255. 10.1038/nature10992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Ge C.-X.; Xu M.-X.; Qin Y.-T.; Gu T.-T.; Lou D.-S.; Li Q.; Hu L.-F.; Wang B.-C.; Tan J. Endoplasmic reticulum stress-induced iRhom2 up-regulation promotes macrophage-regulated cardiac inflammation and lipid deposition in high fat diet (HFD)-challenged mice: Intervention of fisetin and metformin. Free Radical Biol. Med. 2019, 141, 67–83. 10.1016/j.freeradbiomed.2019.05.031. [DOI] [PubMed] [Google Scholar]
  83. Cheang W. S.; Tian X. Y.; Wong W. T.; Lau C. W.; Lee S. S.-T.; Chen Z. Y.; Yao X.; Wang N.; Huang Y. Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5′ adenosine monophosphate–activated protein kinase–peroxisome proliferator–activated receptor δ pathway. Arterioscler., Thromb., Vasc. Biol. 2014, 34, 830–836. 10.1161/ATVBAHA.113.301938. [DOI] [PubMed] [Google Scholar]
  84. Oyadomari S.; Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004, 11, 381–389. 10.1038/sj.cdd.4401373. [DOI] [PubMed] [Google Scholar]
  85. Cheang W. S.; Wong W. T.; Zhao L.; Xu J.; Wang L.; Lau C. W.; Chen Z. Y.; Ma R. C. W.; Xu A.; Wang N.; et al. PPARδ is required for exercise to attenuate endoplasmic reticulum stress and endothelial dysfunction in diabetic mice. Diabetes 2017, 66, 519–528. 10.2337/db15-1657. [DOI] [PubMed] [Google Scholar]
  86. Chen C.; Kassan A.; Castañeda D.; Gabani M.; Choi S.-K.; Kassan M. Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway. Hypertens. Res. 2019, 42, 960–969. 10.1038/s41440-019-0212-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Vaez H.; Najafi M.; Rameshrad M.; Toutounchi N. S.; Garjani M.; Barar J.; Garjani A. AMPK activation by metformin inhibits local innate immune responses in the isolated rat heart by suppression of TLR 4-related pathway. Int. Immunopharmacol. 2016, 40, 501–507. 10.1016/j.intimp.2016.10.002. [DOI] [PubMed] [Google Scholar]
  88. Gordon J. W.; Shaw J. A.; Kirshenbaum L. A. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ. Res. 2011, 108, 1122–1132. 10.1161/CIRCRESAHA.110.226928. [DOI] [PubMed] [Google Scholar]
  89. Wang H.; Zhong P.; Sun L. Exogenous hydrogen sulfide mitigates NLRP3 inflammasome-mediated inflammation through promoting autophagy via the AMPK-mTOR pathway. Biol. Open 2019, 10.1242/bio.043653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Zilov A. V.; Abdelaziz S. I.; AlShammary A.; Al Zahrani A.; Amir A.; Assaad Khalil S. H.; Brand K.; Elkafrawy N.; Hassoun A. A. K.; Jahed A.; et al. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes/Metab. Res. Rev. 2019, 35, e3173. 10.1002/dmrr.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Kristensen S. L.; Rørth R.; Jhund P. S.; Docherty K. F.; Sattar N.; Preiss D.; Køber L.; Petrie M. C.; McMurray J. J. V. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019, 7, 776–785. 10.1016/S2213-8587(19)30249-9. [DOI] [PubMed] [Google Scholar]
  92. Jia X.; Alam M.; Ye Y.; Bajaj M.; Birnbaum Y. GLP-1 receptor agonists and cardiovascular disease: a meta-analysis of recent cardiac outcome trials. Cardiovasc. Drugs Ther. 2018, 32, 65–72. 10.1007/s10557-018-6773-2. [DOI] [PubMed] [Google Scholar]
  93. Kim H.; Moon S. Y.; Kim J.-S.; Baek C. H.; Kim M.; Min J. Y.; Lee S. K. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis. American Journal of Physiology-Renal Physiology 2015, 308, F226–F236. 10.1152/ajprenal.00495.2014. [DOI] [PubMed] [Google Scholar]
  94. Yi H.; Huang C.; Shi Y.; Cao Q.; Chen J.; Chen X.-M.; Pollock C. A. Metformin attenuates renal fibrosis in a mouse model of adenine-induced renal injury through inhibiting TGF-β1 signaling pathways. Front. Cell Dev. Biol. 2021, 10.3389/fcell.2021.603802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Cheng X.; Gao W.; Dang Y.; Liu X.; Li Y.; Peng X.; Ye X. Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J. Diabetes Res. 2013, 2013, 1. 10.1155/2013/463740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Wang S.; Wei Q.; Dong G.; Dong Z. ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury. Biochim. Biophys. Acta, Mol. Basis Dis. 2013, 1832, 1582–1590. 10.1016/j.bbadis.2013.05.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Ren H.; Shao Y.; Wu C.; Ma X.; Lv C.; Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol. Cell. Endocrinol. 2020, 500, 110628. 10.1016/j.mce.2019.110628. [DOI] [PubMed] [Google Scholar]
  98. Zhao Y.; Wei J.; Hou X.; Liu H.; Guo F.; Zhou Y.; Zhang Y.; Qu Y.; Gu J.; Zhou Y.; et al. SIRT1 rs10823108 and FOXO1 rs17446614 responsible for genetic susceptibility to diabetic nephropathy. Sci. Rep. 2017, 7, 10285. 10.1038/s41598-017-10612-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Chuang P. Y.; Cai W.; Li X.; Fang L.; Xu J.; Yacoub R.; He J. C.; Lee K. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. American Journal of Physiology-Renal Physiology 2017, 313, F621–F628. 10.1152/ajprenal.00255.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Ryu D. R.; Yu M. R.; Kong K. H.; Kim H.; Kwon S. H.; Jeon J. S.; Han D. C.; Noh H. Sirt1–hypoxia-inducible factor-1α interaction is a key mediator of tubulointerstitial damage in the aged kidney. Aging Cell 2019, 18, e12904. 10.1111/acel.12904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Rogacka D.; Audzeyenka I.; Rychłowski M.; Rachubik P.; Szrejder M.; Angielski S.; Piwkowska A. Metformin overcomes high glucose-induced insulin resistance of podocytes by pleiotropic effects on SIRT1 and AMPK. Biochim. Biophys. Acta, Mol. Basis Dis. 2018, 1864, 115–125. 10.1016/j.bbadis.2017.10.014. [DOI] [PubMed] [Google Scholar]
  102. Solymár M.; Ivic I.; Pótó L.; Hegyi P.; Garami A.; Hartmann P.; Pétervári E.; Czopf L.; Hussain A.; Gyöngyi Z.; et al. Metformin induces significant reduction of body weight, total cholesterol and LDL levels in the elderly–A meta-analysis. PLoS One 2018, 13, e0207947. 10.1371/journal.pone.0207947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Pu R.; Shi D.; Gan T.; Ren X.; Ba Y.; Huo Y.; Bai Y.; Zheng T.; Cheng N. Effects of metformin in obesity treatment in different populations: a meta-analysis. Ther. Adv. Endocrinol. Metab. 2020, 11, 204201882092600. 10.1177/2042018820926000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Sadeghi A.; Mousavi S. M.; Mokhtari T.; Parohan M.; Milajerdi A. Metformin Therapy Reduces Obesity Indices in Children and Adolescents: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Childhood Obesity 2020, 16, 174–191. 10.1089/chi.2019.0040. [DOI] [PubMed] [Google Scholar]
  105. Praharaj S. K.; Jana A. K.; Goyal N.; Sinha V. K. Metformin for olanzapine-induced weight gain: a systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2011, 71, 377–382. 10.1111/j.1365-2125.2010.03783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Ellul P.; Delorme R.; Cortese S. Metformin for weight gain associated with second-generation antipsychotics in children and adolescents: a systematic review and meta-analysis. CNS Drugs 2018, 32, 1103–1112. 10.1007/s40263-018-0571-z. [DOI] [PubMed] [Google Scholar]
  107. Orchard T. J.; Temprosa M.; Goldberg R.; Haffner S.; Ratner R.; Marcovina S.; Fowler S. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial. Ann. Intern. Med. 2005, 142, 611–619. 10.7326/0003-4819-142-8-200504190-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. De Aguiar L. G. K.; Bahia L. R.; Villela N.; Laflor C.; Sicuro F.; Wiernsperger N.; Bottino D.; Bouskela E. Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care 2006, 29, 1083–1089. 10.2337/diacare.2951083. [DOI] [PubMed] [Google Scholar]
  109. Pastor-Villaescusa B.; Cañete M. D.; Caballero-Villarraso J.; Hoyos R.; Latorre M.; Vázquez-Cobela R.; Plaza-Díaz J.; Maldonado J.; Bueno G.; Leis R.; et al. Metformin for obesity in prepubertal and pubertal children: a randomized controlled trial. Pediatrics 2017, 140, e20164285. 10.1542/peds.2016-4285. [DOI] [PubMed] [Google Scholar]
  110. Kim Y.-W.; Kim J.-Y.; Park Y.-H.; Park S.-Y.; Won K.-C.; Choi K.-H.; Huh J.-Y.; Moon K.-H. Metformin restores leptin sensitivity in high-fat–fed obese rats with leptin resistance. Diabetes 2006, 55, 716–724. 10.2337/diabetes.55.03.06.db05-0917. [DOI] [PubMed] [Google Scholar]
  111. Mechanick J. I.; Zhao S.; Garvey W. T. Leptin, an adipokine with central importance in the global obesity problem. Global heart 2019, 13, 113–127. 10.1016/j.gheart.2017.10.003. [DOI] [PubMed] [Google Scholar]
  112. Dyck D. J. Leptin sensitivity in skeletal muscle is modulated by diet and exercise. Exercise Sport Sci. Rev. 2005, 33, 189–194. 10.1097/00003677-200510000-00007. [DOI] [PubMed] [Google Scholar]
  113. Grycel S.; Markowski A. R.; Hady H. R.; Zabielski P.; Kojta I.; Imierska M.; Górski J.; Blachnio-Zabielska A. U. Metformin treatment affects adipocytokine secretion and lipid composition in adipose tissues of diet-induced insulin-resistant rats. Nutrition 2019, 63, 126–133. 10.1016/j.nut.2019.01.019. [DOI] [PubMed] [Google Scholar]
  114. Dludla P. V.; Nkambule B. B.; Mazibuko-Mbeje S. E.; Nyambuya T. M.; Mxinwa V.; Mokgalaboni K.; Ziqubu K.; Cirilli I.; Marcheggiani F.; Louw J.; et al. Adipokines as a therapeutic target by metformin to improve metabolic function: A systematic review of randomized controlled trials. Pharmacol. Res. 2021, 163, 105219. 10.1016/j.phrs.2020.105219. [DOI] [PubMed] [Google Scholar]
  115. Preiss D.; Dawed A.; Welsh P.; Heggie A.; Jones A. G.; Dekker J.; Koivula R.; Hansen T. H.; Stewart C.; Holman R. R.; et al. Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes. Diabetes, Obes. Metab. 2017, 19, 356–363. 10.1111/dom.12826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. DeFronzo R. A.; Buse J. B.; Kim T.; Burns C.; Skare S.; Baron A.; Fineman M. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia 2016, 59, 1645–1654. 10.1007/s00125-016-3992-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Wilding J. P.; Batterham R. L.; Calanna S.; Davies M.; Van Gaal L. F.; Lingvay I.; McGowan B. M.; Rosenstock J.; Tran M. T.; Wadden T. A.; et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 2021, 384, 989. 10.1056/NEJMoa2032183. [DOI] [PubMed] [Google Scholar]
  118. Drucker D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018, 27, 740–756. 10.1016/j.cmet.2018.03.001. [DOI] [PubMed] [Google Scholar]
  119. Natali A.; Nesti L.; Venturi E.; Shore A. C.; Khan F.; Gooding K.; Gates P. E.; Looker H. C.; Dove F.; Goncalves I.; et al. Metformin is the key factor in elevated plasma growth differentiation factor-15 levels in type 2 diabetes: A nested, case–control study. Diabetes, Obes. Metab. 2019, 21, 412–416. 10.1111/dom.13519. [DOI] [PubMed] [Google Scholar]
  120. Day E. A.; Ford R. J.; Smith B. K.; Mohammadi-Shemirani P.; Morrow M. R.; Gutgesell R. M.; Lu R.; Raphenya A. R.; Kabiri M.; McArthur A. G.; et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nature Metabolism 2019, 1, 1202–1208. 10.1038/s42255-019-0146-4. [DOI] [PubMed] [Google Scholar]
  121. Borner T.; Shaulson E. D.; Ghidewon M. Y.; Barnett A. B.; Horn C. C.; Doyle R. P.; Grill H. J.; Hayes M. R.; De Jonghe B. C. GDF15 induces anorexia through nausea and emesis. Cell Metab. 2020, 31, 351–362. e5. 10.1016/j.cmet.2019.12.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Ahmed D. S.; Isnard S.; Lin J.; Routy B.; Routy J.-P. GDF15/GFRAL Pathway as a Metabolic Signature for Cachexia in Patients with Cancer. J. Cancer 2021, 12, 1125. 10.7150/jca.50376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Molfino A.; Amabile M. I.; Imbimbo G.; Rizzo V.; Pediconi F.; Catalano C.; Emiliani A.; Belli R.; Ramaccini C.; Parisi C.; et al. Association between Growth Differentiation Factor-15 (GDF-15) Serum Levels, Anorexia and Low Muscle Mass among Cancer Patients. Cancers 2021, 13, 99. 10.3390/cancers13010099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Suriben R.; Chen M.; Higbee J.; Oeffinger J.; Ventura R.; Li B.; Mondal K.; Gao Z.; Ayupova D.; Taskar P.; et al. Antibody-mediated inhibition of GDF15–GFRAL activity reverses cancer cachexia in mice. Nat. Med. 2020, 26, 1264–1270. 10.1038/s41591-020-0945-x. [DOI] [PubMed] [Google Scholar]
  125. Liang Y.; Pi H.; Liao L.; Tan M.; Deng P.; Yue Y.; Xi Y.; Tian L.; Xie J.; Chen M.; et al. Cadmium promotes breast cancer cell proliferation, migration and invasion by inhibiting ACSS2/ATG5-mediated autophagy. Environ. Pollut. 2021, 273, 116504. 10.1016/j.envpol.2021.116504. [DOI] [PubMed] [Google Scholar]
  126. English P.; Ashcroft A.; Patterson M.; Dovey T.; Halford J.; Harrison J.; Eccleston D.; Bloom S.; Ghatei M.; Wilding J. Metformin prolongs the postprandial fall in plasma ghrelin concentrations in type 2 diabetes. Diabetes/Metab. Res. Rev. 2007, 23, 299–303. 10.1002/dmrr.681. [DOI] [PubMed] [Google Scholar]
  127. Kim K.; Kim E. S.; Yu S.-Y. Longitudinal relationship between retinal diabetic neurodegeneration and progression of diabetic retinopathy in patients with type 2 diabetes. Am. J. Ophthalmol. 2018, 196, 165–172. 10.1016/j.ajo.2018.08.053. [DOI] [PubMed] [Google Scholar]
  128. Lin Y.; Wang K.; Ma C.; Wang X.; Gong Z.; Zhang R.; Zang D.; Cheng Y. Evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism. Front. Aging Neurosci. 2018, 10, 227. 10.3389/fnagi.2018.00227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Guo M.; Mi J.; Jiang Q. M.; Xu J. M.; Tang Y. Y.; Tian G.; Wang B. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 2014, 41, 650–656. 10.1111/1440-1681.12265. [DOI] [PubMed] [Google Scholar]
  130. Shi Q.; Liu S.; Fonseca V. A.; Thethi T. K.; Shi L. Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus. BMJ. open 2019, 9, e024954. 10.1136/bmjopen-2018-024954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Ng T. P.; Feng L.; Yap K. B.; Lee T. S.; Tan C. H.; Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes. J. Alzheimer's Dis. 2014, 41, 61–68. 10.3233/JAD-131901. [DOI] [PubMed] [Google Scholar]
  132. Koenig A. M.; Mechanic-Hamilton D.; Xie S. X.; Combs M. F.; Cappola A. R.; Xie L.; Detre J. A.; Wolk D. A.; Arnold S. E. Effects of the insulin sensitizer metformin in Alzheimer’s disease: Pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis. Assoc. Disord. 2017, 31, 107. 10.1097/WAD.0000000000000202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Ayoub R.; Ruddy R. M.; Cox E.; Oyefiade A.; Derkach D.; Laughlin S.; Ades-Aron B.; Shirzadi Z.; Fieremans E.; MacIntosh B. J.; et al. Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nat. Med. 2020, 26, 1285–1294. 10.1038/s41591-020-0985-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Demaré S.; Kothari A.; Calcutt N. A.; Fernyhough P. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system. Expert Rev. Neurother. 2021, 21, 45–63. 10.1080/14737175.2021.1847645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Wang C.; Liu C.; Gao K.; Zhao H.; Zhou Z.; Shen Z.; Guo Y.; Li Z.; Yao T.; Mei X. Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury. Biochem. Biophys. Res. Commun. 2016, 477, 534–540. 10.1016/j.bbrc.2016.05.148. [DOI] [PubMed] [Google Scholar]
  136. Wang H.; Zheng Z.; Han W.; Yuan Y.; Li Y.; Zhou K.; Wang Q.; Xie L.; Xu K.; Zhang H. Metformin Promotes Axon Regeneration after Spinal Cord Injury through Inhibiting Oxidative Stress and Stabilizing Microtubule. Oxid. Med. Cell. Longevity 2020, 2020, 1. 10.1155/2020/9741369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Zhang D.; Xuan J.; Zheng B.-b.; Zhou Y.-l.; Lin Y.; Wu Y.-s.; Zhou Y.-f.; Huang Y.-x.; Wang Q.; Shen L.-y.; et al. Metformin improves functional recovery after spinal cord injury via autophagy flux stimulation. Mol. Neurobiol. 2017, 54, 3327–3341. 10.1007/s12035-016-9895-1. [DOI] [PubMed] [Google Scholar]
  138. Guo Y.; Wang F.; Li H.; Liang H.; Li Y.; Gao Z.; He X. Metformin protects against spinal cord injury by regulating autophagy via the mTOR signaling pathway. Neurochem. Res. 2018, 43, 1111–1117. 10.1007/s11064-018-2525-8. [DOI] [PubMed] [Google Scholar]
  139. Zhang T.; Wang F.; Li K.; Lv C.; Gao K.; Lv C. Therapeutic effect of metformin on inflammation and apoptosis after spinal cord injury in rats through the Wnt/β-catenin signaling pathway. Neurosci. Lett. 2020, 739, 135440. 10.1016/j.neulet.2020.135440. [DOI] [PubMed] [Google Scholar]
  140. Zhang J.; Kang N.; Yu X.; Ma Y.; Pang X. Radial extracorporeal shock wave therapy enhances the proliferation and differentiation of neural stem cells by notch, PI3K/AKT, and Wnt/β-catenin signaling. Sci. Rep. 2017, 7, 1–10. 10.1038/s41598-017-15662-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Inyang K. E.; Szabo-Pardi T.; Wentworth E.; McDougal T. A.; Dussor G.; Burton M. D.; Price T. J. The antidiabetic drug metformin prevents and reverses neuropathic pain and spinal cord microglial activation in male but not female mice. Pharmacol. Res. 2019, 139, 1–16. 10.1016/j.phrs.2018.10.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Ge A.; Wang S.; Miao B.; Yan M. Effects of metformin on the expression of AMPK and STAT3 in the spinal dorsal horn of rats with neuropathic pain. Mol. Med. Rep. 2018, 17, 5229–5237. 10.3892/mmr.2018.8541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Ma J.; Yu H.; Liu J.; Chen Y.; Wang Q.; Xiang L. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin. Eur. J. Pharmacol. 2015, 764, 599–606. 10.1016/j.ejphar.2015.06.010. [DOI] [PubMed] [Google Scholar]
  144. Martinez N.; Sánchez A.; Diaz P.; Broekhuizen R.; Godoy J.; Mondaca S.; Catenaccio A.; Macanas P.; Nervi B.; Calvo M.; et al. Metformin protects from oxaliplatin induced peripheral neuropathy in rats. Neurobiology of Pain 2020, 8, 100048. 10.1016/j.ynpai.2020.100048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Los D. B.; Oliveira W. H. d.; Duarte-Silva E.; Sougey W. W. D.; Freitas E. d. S. R. d.; de Oliveira A. G. V.; Braga C. F.; Franca M. E. R. d.; Araujo S. M. d. R.; Rodrigues G. B.; et al. Preventive role of metformin on peripheral neuropathy induced by diabetes. Int. Immunopharmacol. 2019, 74, 105672. 10.1016/j.intimp.2019.05.057. [DOI] [PubMed] [Google Scholar]
  146. Martinez N.; Sánchez A.; Diaz P.; Broekhuizen R.; Godoy J.; Mondaca S.; Catenaccio A.; Macanas P.; Nervi B.; Calvo M.; et al. Metformin protects from oxaliplatin induced peripheral neuropathy in rats. Neurobiology of Pain 2020, 8, 100048. 10.1016/j.ynpai.2020.100048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Taylor A.; Westveld A. H.; Szkudlinska M.; Guruguri P.; Annabi E.; Patwardhan A.; Price T. J.; Yassine H. N. The use of metformin is associated with decreased lumbar radiculopathy pain. J. Pain Res. 2013, 6, 755. 10.2147/JPR.S52205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Lin J.; Xu R.; Shen X.; Jiang H.; Du S. Metformin promotes the osseointegration of titanium implants under osteoporotic conditions by regulating BMSCs autophagy, and osteogenic differentiation. Biochem. Biophys. Res. Commun. 2020, 531, 228–235. 10.1016/j.bbrc.2020.06.146. [DOI] [PubMed] [Google Scholar]
  149. Lin J.-y.; He Y.-n.; Zhu N.; Peng B. Metformin attenuates increase of synaptic number in the rat spinal dorsal horn with painful diabetic neuropathy induced by type 2 diabetes: a stereological study. Neurochem. Res. 2018, 43, 2232–2239. 10.1007/s11064-018-2642-4. [DOI] [PubMed] [Google Scholar]
  150. Augusto P. S.; Braga A. V.; Rodrigues F. F.; Morais M. I.; Dutra M. M.; Batista C. R.; Melo I. S.; Costa S. O.; Goulart F. A.; Coelho M. M.; et al. Metformin antinociceptive effect in models of nociceptive and neuropathic pain is partially mediated by activation of opioidergic mechanisms. Eur. J. Pharmacol. 2019, 858, 172497. 10.1016/j.ejphar.2019.172497. [DOI] [PubMed] [Google Scholar]
  151. Zhang L.; Niu J.; Zhang X.; He W. Metformin can alleviate the symptom of patient with diabetic nephropathy through reducing the serum level of Hcy and IL-33. Open Medicine 2019, 14, 625–628. 10.1515/med-2019-0071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Zarpelon A. C.; Rodrigues F. C.; Lopes A. H.; Souza G. R.; Carvalho T. T.; Pinto L. G.; Xu D.; Ferreira S. H.; Alves-Filho J. C.; McInnes I. B.; et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016, 30, 54–65. 10.1096/fj.14-267146. [DOI] [PubMed] [Google Scholar]
  153. Nahar N.; Mohamed S.; Mustapha N. M.; Lau S.; Ishak N. I. M.; Umran N. S. Metformin attenuated histopathological ocular deteriorations in a streptozotocin-induced hyperglycemic rat model. Naunyn-Schmiedeberg's Arch. Pharmacol. 2021, 394, 457–467. 10.1007/s00210-020-01989-w. [DOI] [PubMed] [Google Scholar]
  154. Liang Z.; Zhang T.; Zhan T.; Cheng G.; Zhang W.; Jia H.; Yang H. Metformin Alleviates Cisplatin-Induced Ototoxicity by Autophagy Induction Possibly via the AMPK/FOXO3a Pathway. J. Neurophysiol. 2021, 125, 1202. 10.1152/jn.00417.2020. [DOI] [PubMed] [Google Scholar]
  155. Das V.; Kroin J. S.; Moric M.; McCarthy R. J.; Buvanendran A. Early treatment with metformin in a mice model of complex regional pain syndrome reduces pain and edema. Anesth. Analg. 2020, 130, 525–534. 10.1213/ANE.0000000000004057. [DOI] [PubMed] [Google Scholar]
  156. Chang R. C.; Wong A. K.; Ng H.-K.; Hugon J. Phosphorylation of eukaryotic initiation factor-2α (eIF2α) is associated with neuronal degeneration in Alzheimer’s disease. NeuroReport 2002, 13, 2429–2432. 10.1097/00001756-200212200-00011. [DOI] [PubMed] [Google Scholar]
  157. Wang M.; Chen Z.; Yang L.; Ding L. Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress. Inflammation 2021, 44, 934–945. 10.1007/s10753-020-01388-6. [DOI] [PubMed] [Google Scholar]
  158. Carvalho-e-Silva A. P.; Harmer A. R.; Ferreira M. L.; Ferreira P. H. The effect of the anti-diabetic drug metformin on musculoskeletal pain: a cross-sectional study with 21,889 individuals from the UK Biobank. Eur. J. Pain 2021, 25, 1264. 10.1002/ejp.1747. [DOI] [PubMed] [Google Scholar]
  159. El-Fatatry B. M.; Ibrahim O. M.; Hussien F. Z.; Mostafa T. M. Role of metformin in oxaliplatin-induced peripheral neuropathy in patients with stage III colorectal cancer: randomized, controlled study. International journal of colorectal disease 2018, 33, 1675–1683. 10.1007/s00384-018-3104-9. [DOI] [PubMed] [Google Scholar]
  160. Yang W.; Cai X.; Wu H.; Ji L. Associations between metformin use and vitamin B12 levels, anemia, and neuropathy in patients with diabetes: a meta-analysis. J. Diabetes 2019, 11, 729–743. 10.1111/1753-0407.12900. [DOI] [PubMed] [Google Scholar]
  161. Niafar M.; Hai F.; Porhomayon J.; Nader N. D. The role of metformin on vitamin B12 deficiency: a meta-analysis review. Internal and emergency medicine 2015, 10, 93–102. 10.1007/s11739-014-1157-5. [DOI] [PubMed] [Google Scholar]
  162. Khyalappa R. J.; Bhagwat S. Correlation of Vitamin B12 Deficiency with Peripheral Neuropathy in Diabetes Mellitus. Group 100 2020, 31.25. [Google Scholar]
  163. Hashem M. M.; Esmael A.; Nassar A. K.; El-Sherif M. The relationship between exacerbated diabetic peripheral neuropathy and metformin treatment in type 2 diabetes mellitus. Sci. Rep. 2021, 11, 1–9. 10.1038/s41598-021-81631-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Out M.; Kooy A.; Lehert P.; Schalkwijk C. A.; Stehouwer C. D. Long-term treatment with metformin in type 2 diabetes and methylmalonic acid: post hoc analysis of a randomized controlled 4.3 year trial. Journal of Diabetes and its Complications 2018, 32, 171–178. 10.1016/j.jdiacomp.2017.11.001. [DOI] [PubMed] [Google Scholar]
  165. Bauman W. A.; Shaw S.; Jayatilleke E.; Spungen A. M.; Herbert V. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes Care 2000, 23, 1227–1231. 10.2337/diacare.23.9.1227. [DOI] [PubMed] [Google Scholar]
  166. Sidle J.Optimizing Peripheral Neuropathy Management Through Vitamin B12 Screening in Adults With Type Two Diabetes Mellitus Taking Metformin. Doctor of Nursing Practice (DNP) thesis, 2020; https://athenaeum.uiw.edu/uiw_dnp/80 (accessed 2021-10-28). [Google Scholar]
  167. Miyan Z.; Waris N. Association of vitamin B12 deficiency in people with type 2 diabetes on metformin and without metformin: a multicenter study, Karachi, Pakistan. BMJ. Open Diabetes Research and Care 2020, 8, e001151. 10.1136/bmjdrc-2019-001151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Larsson S. C.; Orsini N.; Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. Journal of the National Cancer Institute 2005, 97, 1679–1687. 10.1093/jnci/dji375. [DOI] [PubMed] [Google Scholar]
  169. Friberg E.; Orsini N.; Mantzoros C. S.; Wolk A.. Diabetes mellitus and risk of endometrial cancer: a meta-analysis; Springer, 2007. [DOI] [PubMed] [Google Scholar]
  170. Huxley R; Ansary-Moghaddam A; Berrington de Gonzalez A; Barzi F; Woodward M Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br. J. Cancer 2005, 92, 2076–2083. 10.1038/sj.bjc.6602619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Lee J.-Y.; Jeon I.; Lee J. M.; Yoon J.-M.; Park S. M. Diabetes mellitus as an independent risk factor for lung cancer: a meta-analysis of observational studies. Eur. J. Cancer 2013, 49, 2411–2423. 10.1016/j.ejca.2013.02.025. [DOI] [PubMed] [Google Scholar]
  172. Wang C.; Wang X.; Gong G.; Ben Q.; Qiu W.; Chen Y.; Li G.; Wang L. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int. J. Cancer 2012, 130, 1639–1648. 10.1002/ijc.26165. [DOI] [PubMed] [Google Scholar]
  173. Zhang Z.-J.; Zheng Z.-J.; Shi R.; Su Q.; Jiang Q.; Kip K. E. Metformin for liver cancer prevention in patients with type 2 diabetes: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2012, 97, 2347–2353. 10.1210/jc.2012-1267. [DOI] [PubMed] [Google Scholar]
  174. Liu F.; Yan L.; Wang Z.; Lu Y.; Chu Y.; Li X.; Liu Y.; Rui D.; Nie S.; Xiang H. Metformin therapy and risk of colorectal adenomas and colorectal cancer in type 2 diabetes mellitus patients: A systematic review and meta-analysis. Oncotarget 2017, 8, 16017. 10.18632/oncotarget.13762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Yu H.; Zhong X.; Gao P.; Shi J.; Wu Z.; Guo Z.; Wang Z.; Song Y. The potential effect of metformin on cancer: An umbrella review. Front. Endocrinol. 2019, 10, 617. 10.3389/fendo.2019.00617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Ng C.-A. W.; Jiang A. A.; Toh E. M. S.; Ng C. H.; Ong Z. H.; Peng S.; Tham H. Y.; Sundar R.; Chong C. S.; Khoo C. M. Metformin and colorectal cancer: a systematic review, meta-analysis and meta-regression. International Journal of Colorectal Disease 2020, 35, 1501–1512. 10.1007/s00384-020-03676-x. [DOI] [PubMed] [Google Scholar]
  177. Albertelli M.; Nazzari E.; Dotto A.; Grasso L.; Sciallero S.; Pirchio R.; Rebora A.; Boschetti M.; Pivonello R.; Bitti S. R.; et al. Possible protective role of metformin therapy on colonic polyps in acromegaly: an exploratory cross-sectional study. Eur. J. Endocrinol. 2021, 184, 423–429. 10.1530/EJE-20-0795. [DOI] [PubMed] [Google Scholar]
  178. Xiao K.; Liu F.; Liu J.; Xu J.; Wu Q.; Li X. The effect of metformin on lung cancer risk and survival in patients with type 2 diabetes mellitus: A meta-analysis. J. Clin. Pharm. Ther. 2020, 45, 783–792. 10.1111/jcpt.13167. [DOI] [PubMed] [Google Scholar]
  179. Zhou J.; Ke Y.; Lei X.; Wu T.; Li Y.; Bao T.; Tang H.; Zhang C.; Wu X.; Wang G.; et al. Meta-analysis: The efficacy of metformin and other anti-hyperglycemic agents in prolonging the survival of hepatocellular carcinoma patients with type 2 diabetes. Ann. Hepatol. 2020, 19, 320–328. 10.1016/j.aohep.2019.11.008. [DOI] [PubMed] [Google Scholar]
  180. Cunha V.; Cotrim H. P.; Rocha R.; Carvalho K.; Lins-Kusterer L. Metformin in the prevention of hepatocellular carcinoma in diabetic patients: a systematic review. Ann. Hepatol. 2020, 19, 232–237. 10.1016/j.aohep.2019.10.005. [DOI] [PubMed] [Google Scholar]
  181. Wang Z.; Lai S.-t.; Xie L.; Zhao J.-d.; Ma N.-y.; Zhu J.; Ren Z.-g.; Jiang G.-l. Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2014, 106, 19–26. 10.1016/j.diabres.2014.04.007. [DOI] [PubMed] [Google Scholar]
  182. Shi Y.-Q.; Zhou X.-C.; Du P.; Yin M.-Y.; Xu L.; Chen W.-J.; Xu C.-F. Relationships are between metformin use and survival in pancreatic cancer patients concurrent with diabetes: A systematic review and meta-analysis. Medicine 2020, 99, e21687. 10.1097/MD.0000000000021687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. He K.; Hu H.; Ye S.; Wang H.; Cui R.; Yi L. The effect of metformin therapy on incidence and prognosis in prostate cancer: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 1–12. 10.1038/s41598-018-38285-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Tang G. H.; Satkunam M.; Pond G. R.; Steinberg G. R.; Blandino G.; Schünemann H. J.; Muti P. Association of metformin with breast cancer incidence and mortality in patients with type II diabetes: a GRADE-assessed systematic review and meta-analysis. Cancer Epidemiol., Biomarkers Prev. 2018, 27, 627–635. 10.1158/1055-9965.EPI-17-0936. [DOI] [PubMed] [Google Scholar]
  185. Meireles C. G.; Pereira S. A.; Valadares L. P.; Rêgo D. F.; Simeoni L. A.; Guerra E. N. S.; Lofrano-Porto A. Effects of metformin on endometrial cancer: systematic review and meta-analysis. Gynecol. Oncol. 2017, 147, 167–180. 10.1016/j.ygyno.2017.07.120. [DOI] [PubMed] [Google Scholar]
  186. Saraei P.; Asadi I.; Kakar M. A.; Moradi-Kor N. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manage. Res. 2019, 11, 3295. 10.2147/CMAR.S200059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Zi F.; Zi H.; Li Y.; He J.; Shi Q.; Cai Z. Metformin and cancer: An existing drug for cancer prevention and therapy. Oncol. Lett. 2017, 15, 683–690. 10.3892/ol.2017.7412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Zou Y. F.; Xie C. W.; Yang S. X.; Xiong J. P. AMPK activators suppress breast cancer cell growth by inhibiting DVL3-facilitated Wnt/β-catenin signaling pathway activity. Mol. Med. Rep. 2017, 15, 899–907. 10.3892/mmr.2016.6094. [DOI] [PubMed] [Google Scholar]
  189. Huang S.; He T.; Yang S.; Sheng H.; Tang X.; Bao F.; Wang Y.; Lin X.; Yu W.; Cheng F.; et al. Metformin reverses chemoresistance in non-small cell lung cancer via accelerating ubiquitination-mediated degradation of Nrf2. Transl. Lung Cancer Res. 2020, 9, 2337. 10.21037/tlcr-20-1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Roberts P. J.; Der C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26, 3291–3310. 10.1038/sj.onc.1210422. [DOI] [PubMed] [Google Scholar]
  191. Mollinedo F.; Gajate C. Novel therapeutic approaches for pancreatic cancer by combined targeting of RAF→ MEK→ ERK signaling and autophagy survival response. Annals of translational medicine 2019, 7, S153. 10.21037/atm.2019.06.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Huang S.; Houghton P. J. Targeting mTOR signaling for cancer therapy. Curr. Opin. Pharmacol. 2003, 3, 371–377. 10.1016/S1471-4892(03)00071-7. [DOI] [PubMed] [Google Scholar]
  193. Porta C.; Paglino C.; Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol. 2014, 4, 64. 10.3389/fonc.2014.00064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Rahmani F.; Tadayyon Tabrizi A.; Hashemian P.; Alijannejad S.; Rahdar H. A.; Ferns G. A; Hassanian S. M.; Shahidsales S.; Avan A. Role of regulatory miRNAs of the Wnt/β-catenin signaling pathway in tumorigenesis of breast cancer. Gene 2020, 754, 144892. 10.1016/j.gene.2020.144892. [DOI] [PubMed] [Google Scholar]
  195. Yang S.; Liu Y.; Li M.-Y.; Ng C. S.; Yang S.-l.; Wang S.; Zou C.; Dong Y.; Du J.; Long X.; et al. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer 2017, 16, 124. 10.1186/s12943-017-0700-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Wang T.; Liu Z.; Shi F.; Wang J. Pin1 modulates chemo-resistance by up-regulating FoxM1 and the involvements of Wnt/β-catenin signaling pathway in cervical cancer. Mol. Cell. Biochem. 2016, 413, 179–187. 10.1007/s11010-015-2651-4. [DOI] [PubMed] [Google Scholar]
  197. Hoxhaj G.; Manning B. D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020, 20, 74–88. 10.1038/s41568-019-0216-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Brouxhon S. M.; Kyrkanides S.; Teng X.; Athar M.; Ghazizadeh S.; Simon M.; O’Banion M. K.; Ma L. Soluble E-cadherin: a critical oncogene modulating receptor tyrosine kinases, MAPK and PI3K/Akt/mTOR signaling. Oncogene 2014, 33, 225–235. 10.1038/onc.2012.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. De Marco C.; Laudanna C.; Rinaldo N.; Oliveira D. M.; Ravo M.; Weisz A.; Ceccarelli M.; Caira E.; Rizzuto A.; Zoppoli P.; et al. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS One 2017, 12, e0178865. 10.1371/journal.pone.0178865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Liu L.; Wu N.; Wang Y.; Zhang X.; Xia B.; Tang J.; Cai J.; Zhao Z.; Liao Q.; Wang J. TRPM7 promotes the epithelial–mesenchymal transition in ovarian cancer through the calcium-related PI3K/AKT oncogenic signaling. J. Exp. Clin. Cancer Res. 2019, 38, 1–15. 10.1186/s13046-019-1061-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Villegas S. N.; Gombos R.; García-López L.; Gutiérrez-Pérez I.; García-Castillo J.; Vallejo D. M.; Da Ros V. G.; Ballesta-Illán E.; Mihály J.; Dominguez M. PI3K/Akt cooperates with oncogenic notch by inducing nitric oxide-dependent inflammation. Cell Rep. 2018, 22, 2541–2549. 10.1016/j.celrep.2018.02.049. [DOI] [PubMed] [Google Scholar]
  202. Jiang K.; Zhi X.; Ma Y.; Zhou L. Long non-coding RNA TOB1-AS1 modulates cell proliferation, apoptosis, migration and invasion through miR-23a/NEU1 axis via Wnt/b-catenin pathway in gastric cancer. Eur. Rev. Med. Pharmacol Sci. 2019, 23, 9890–9899. 10.26355/eurrev_201911_19554. [DOI] [PubMed] [Google Scholar]
  203. Yu Y.; Fang W.; Xia T.; Chen Y.; Gao Y.; Jiao X.; Huang S.; Wang J.; Li Z.; Xie K. Metformin potentiates rapamycin and cisplatin in gastric cancer in mice. Oncotarget 2015, 6, 12748. 10.18632/oncotarget.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Cantrell L. A.; Zhou C.; Mendivil A.; Malloy K. M.; Gehrig P. A.; Bae-Jump V. L. Metformin is a potent inhibitor of endometrial cancer cell proliferation—implications for a novel treatment strategy. Gynecol. Oncol. 2010, 116, 92–98. 10.1016/j.ygyno.2009.09.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Qin X.; Jiang B.; Zhang Y. 4E-BP1, a multifactor regulated multifunctional protein. Cell Cycle 2016, 15, 781–786. 10.1080/15384101.2016.1151581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Xiao L.; Wang Y. C.; Li W. S.; Du Y. The role of mTOR and phospho-p70S6K in pathogenesis and progression of gastric carcinomas: an immunohistochemical study on tissue microarray. J. Exp. Clin. Cancer Res. 2009, 28, 1–9. 10.1186/1756-9966-28-152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Ekim B.; Magnuson B.; Acosta-Jaquez H. A.; Keller J. A.; Feener E. P.; Fingar D. C. mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Molecular and cellular biology 2011, 31, 2787–2801. 10.1128/MCB.05437-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Greten F. R.; Grivennikov S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 2019, 51, 27–41. 10.1016/j.immuni.2019.06.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Aguilar-Cazares D.; Chavez-Dominguez R.; Carlos-Reyes A.; Lopez-Camarillo C.; Hernadez de la Cruz O. N.; Lopez-Gonzalez J. S. Contribution of angiogenesis to inflammation and cancer. Front. Oncol. 2019, 9, 1399. 10.3389/fonc.2019.01399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Liu Q.; Tong D.; Liu G.; Gao J.; Wang L.-a.; Xu J.; Yang X.; Xie Q.; Huang Y.; Pang J.; et al. Metformin inhibits prostate cancer progression by targeting tumor-associated inflammatory infiltration. Clin. Cancer Res. 2018, 24, 5622–5634. 10.1158/1078-0432.CCR-18-0420. [DOI] [PubMed] [Google Scholar]
  211. Saka Herran C.; Jane-Salas E.; Estrugo Devesa A.; Lopez-Lopez J. Protective effects of metformin, statins and anti-inflammatory drugs on head and neck cancer: A systematic review. Oral Oncol. 2018, 85, 68–81. 10.1016/j.oraloncology.2018.08.015. [DOI] [PubMed] [Google Scholar]
  212. Xu S.; Yang Z.; Jin P.; Yang X.; Li X.; Wei X.; Wang Y.; Long S.; Zhang T.; Chen G.; et al. Metformin suppresses tumor progression by inactivating stromal fibroblasts in ovarian cancer. Mol. Cancer Ther. 2018, 17, 1291–1302. 10.1158/1535-7163.MCT-17-0927. [DOI] [PubMed] [Google Scholar]
  213. Tong D.; Liu Q.; Liu G.; Xu J.; Lan W.; Jiang Y.; Xiao H.; Zhang D.; Jiang J. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett. 2017, 389, 23–32. 10.1016/j.canlet.2016.12.031. [DOI] [PubMed] [Google Scholar]
  214. Schexnayder C.; Broussard K.; Onuaguluchi D.; Poché A.; Ismail M.; McAtee L.; Llopis S.; Keizerweerd A.; McFerrin H.; Williams C. Metformin inhibits migration and invasion by suppressing ROS production and COX2 expression in MDA-MB-231 breast cancer cells. Int. J. Mol. Sci. 2018, 19, 3692. 10.3390/ijms19113692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells 2020, 9, 217. 10.3390/cells9010217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Wang S.-Q.; Cui S.-X.; Qu X.-J. Metformin inhibited colitis and colitis-associated cancer (CAC) through protecting mitochondrial structures of colorectal epithelial cells in mice. Cancer Biol. Ther. 2019, 20, 338–348. 10.1080/15384047.2018.1529108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. de Oliveira S.; Houseright R. A.; Graves A. L.; Golenberg N.; Korte B. G.; Miskolci V.; Huttenlocher A. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J. Hepatol. 2019, 70, 710–721. 10.1016/j.jhep.2018.11.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. dos Santos Guimarães I.; Ladislau-Magescky T.; Tessarollo N. G.; Dos Santos D. Z.; Gimba E. R. P.; Sternberg C.; Silva I. V.; Rangel L. B. A. Chemosensitizing effects of metformin on cisplatin-and paclitaxel-resistant ovarian cancer cell lines. Pharmacol. Rep. 2018, 70, 409–417. 10.1016/j.pharep.2017.11.007. [DOI] [PubMed] [Google Scholar]
  219. Ritter B.; Greten F. R. Modulating inflammation for cancer therapy. J. Exp. Med. 2019, 216, 1234–1243. 10.1084/jem.20181739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Yin W.; Liu Y.; Liu X.; Ma X.; Sun B.; Yu Z. Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathway. Oncol. Lett. 2020, 21, 1–1. 10.3892/ol.2020.12292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Ye J.; Chen K.; Qi L.; Li R.; Tang H.; Zhou C.; Zhai W. Metformin suppresses hypoxia-induced migration via the HIF-1α/VEGF pathway in gallbladder cancer in vitro and in vivo. Oncol. Rep. 2018, 40, 3501–3510. 10.3892/or.2018.6751. [DOI] [PubMed] [Google Scholar]
  222. Blandino G.; Valerio M.; Cioce M.; Mori F.; Casadei L.; Pulito C.; Sacconi A.; Biagioni F.; Cortese G.; Galanti S.; et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat. Commun. 2012, 3, 865. 10.1038/ncomms1859. [DOI] [PubMed] [Google Scholar]
  223. Song L.; Guo J.; Chang R.; Peng X.; Li J.; Xu X.; Zhan X.; Zhan L. LKB1 obliterates Snail stability and inhibits pancreatic cancer metastasis in response to metformin treatment. Cancer Sci. 2018, 109, 1382–1392. 10.1111/cas.13591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Cano A.; Pérez-Moreno M. A.; Rodrigo I.; Locascio A.; Blanco M. J.; del Barrio M. G.; Portillo F.; Nieto M. A. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2000, 2, 76–83. 10.1038/35000025. [DOI] [PubMed] [Google Scholar]
  225. Song Y.; Chen Y.; Li Y.; Lyu X.; Cui J.; Cheng Y.; Zhao L.; Zhao G. Metformin inhibits TGF-β1-induced epithelial-to-mesenchymal transition-like process and stem-like properties in GBM via AKT/mTOR/ZEB1 pathway. Oncotarget 2018, 9, 7023. 10.18632/oncotarget.23317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Bishnu A.; Sakpal A.; Ghosh N.; Choudhury P.; Chaudhury K.; Ray P. Long term treatment of metformin impedes development of chemoresistance by regulating cancer stem cell differentiation through taurine generation in ovarian cancer cells. Int. J. Biochem. Cell Biol. 2019, 107, 116–127. 10.1016/j.biocel.2018.12.016. [DOI] [PubMed] [Google Scholar]
  227. Emmings E.; Mullany S.; Chang Z.; Landen C. N.; Linder S.; Bazzaro M. Targeting mitochondria for treatment of chemoresistant ovarian cancer. Int. J. Mol. Sci. 2019, 20, 229. 10.3390/ijms20010229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Park J. H.; Kim Y. h.; Park E. H.; Lee S. J.; Kim H.; Kim A.; Lee S. B.; Shim S.; Jang H.; Myung J. K.; et al. Effects of metformin and phenformin on apoptosis and epithelial-mesenchymal transition in chemoresistant rectal cancer. Cancer Sci. 2019, 110, 2834. 10.1111/cas.14124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Cai L.; Jin X.; Zhang J.; Li L.; Zhao J. Metformin suppresses Nrf2-mediated chemoresistance in hepatocellular carcinoma cells by increasing glycolysis. Aging 2020, 12, 17582. 10.18632/aging.103777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Sakthivel K. M.; Hariharan S. Regulatory players of DNA damage repair mechanisms: role in cancer chemoresistance. Biomed. Pharmacother. 2017, 93, 1238–1245. 10.1016/j.biopha.2017.07.035. [DOI] [PubMed] [Google Scholar]
  231. Martin S. A.; Lord C. J.; Ashworth A. DNA repair deficiency as a therapeutic target in cancer. Curr. Opin. Genet. Dev. 2008, 18, 80–86. 10.1016/j.gde.2008.01.016. [DOI] [PubMed] [Google Scholar]
  232. Jeong Y. K.; Kim M.-S.; Lee J. Y.; Kim E. H.; Ha H. Metformin radiosensitizes p53-deficient colorectal cancer cells through induction of G2/M arrest and inhibition of DNA repair proteins. PLoS One 2015, 10, e0143596. 10.1371/journal.pone.0143596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Soo J. S.-S.; Ng C.-H.; Tan S. H.; Malik R. A.; Teh Y.-C.; Tan B.-S.; Ho G.-F.; See M.-H.; Taib N. A. M.; Yip C.-H.; et al. Metformin synergizes 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells. Apoptosis 2015, 20, 1373–1387. 10.1007/s10495-015-1158-5. [DOI] [PubMed] [Google Scholar]
  234. Wang Y.; Dai W.; Chu X.; Yang B.; Zhao M.; Sun Y. e. Metformin inhibits lung cancer cells proliferation through repressing microRNA-222. Biotechnol. Lett. 2013, 35, 2013. 10.1007/s10529-013-1309-0. [DOI] [PubMed] [Google Scholar]
  235. Shapiro G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 2006, 24, 1770–1783. 10.1200/JCO.2005.03.7689. [DOI] [PubMed] [Google Scholar]
  236. Carnero A.; Blanco-Aparicio C.; Renner O.; Link W.; Leal J. F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 2008, 8, 187–198. 10.2174/156800908784293659. [DOI] [PubMed] [Google Scholar]
  237. Kim S. A.; Choi H. C. Metformin inhibits inflammatory response via AMPK–PTEN pathway in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2012, 425, 866–872. 10.1016/j.bbrc.2012.07.165. [DOI] [PubMed] [Google Scholar]
  238. Xie Y.; Wang J. L.; Ji M.; Yuan Z. F.; Peng Z.; Zhang Y.; Wen J. G.; Shi H. R. Regulation of insulin-like growth factor signaling by metformin in endometrial cancer cells. Oncol. Lett. 2014, 8, 1993–1999. 10.3892/ol.2014.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Zhang Y.; Li M.-X.; Wang H.; Zeng Z.; Li X.-M. Metformin down-regulates endometrial carcinoma cell secretion of IGF-1 and expression of IGF-1R. Asian Pacific Journal of Cancer Prevention 2015, 16, 221–225. 10.7314/APJCP.2015.16.1.221. [DOI] [PubMed] [Google Scholar]
  240. Cabello P.; Pineda B.; Tormo E.; Lluch A.; Eroles P. The antitumor effect of metformin is mediated by miR-26a in breast cancer. Int. J. Mol. Sci. 2016, 17, 1298. 10.3390/ijms17081298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Cheng L.; Zhang X.; Huang Y.-Z.; Zhu Y.-L.; Xu L.-Y.; Li Z.; Dai X.-Y.; Shi L.; Zhou X.-J.; Wei J.-F.; et al. Metformin exhibits antiproliferation activity in breast cancer via miR-483–3p/METTL3/m 6 A/p21 pathway. Oncogenesis 2021, 10, 1–14. 10.1038/s41389-020-00290-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Chu I. M.; Hengst L.; Slingerland J. M. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat. Rev. Cancer 2008, 8, 253–267. 10.1038/nrc2347. [DOI] [PubMed] [Google Scholar]
  243. Kavanagh E.; Joseph B. The hallmarks of CDKN1C (p57, KIP2) in cancer. Biochim. Biophys. Acta, Rev. Cancer 2011, 1816, 50–56. 10.1016/j.bbcan.2011.03.002. [DOI] [PubMed] [Google Scholar]
  244. Li P.; Tong L.; Song Y.; Sun J.; Shi J.; Wu Z.; Diao Y.; Li Y.; Wang Z. J. Cell. Physiol. 2019, 234, 4515–4527. 10.1002/jcp.27269. [DOI] [PubMed] [Google Scholar]
  245. Kunisada Y.; Eikawa S.; Tomonobu N.; Domae S.; Uehara T.; Hori S.; Furusawa Y.; Hase K.; Sasaki A.; Udono H. Attenuation of CD4+ CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine 2017, 25, 154–164. 10.1016/j.ebiom.2017.10.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Xue J.; Li L.; Li N.; Li F.; Qin X.; Li T.; Liu M. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur. J. Pharmacol. 2019, 859, 172541. 10.1016/j.ejphar.2019.172541. [DOI] [PubMed] [Google Scholar]
  247. Scharping N. E.; Menk A. V.; Whetstone R. D.; Zeng X.; Delgoffe G. M. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol. Res. 2017, 5, 9–16. 10.1158/2326-6066.CIR-16-0103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Amin D.; Richa T.; Mollaee M.; Zhan T.; Tassone P.; Johnson J.; Luginbuhl A.; Cognetti D.; Martinez-Outschoorn U.; Stapp R.; et al. Metformin Effects on FOXP3+ and CD8+ T Cell Infiltrates of Head and Neck Squamous Cell Carcinoma. Laryngoscope 2020, 130, E490–E498. 10.1002/lary.28336. [DOI] [PubMed] [Google Scholar]
  249. Fazleen N. E.; Whittaker M.; Mamun A. Risk of metabolic syndrome in adolescents with polycystic ovarian syndrome: A systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2018, 12, 1083–1090. 10.1016/j.dsx.2018.03.014. [DOI] [PubMed] [Google Scholar]
  250. Chantrapanichkul P.; Indhavivadhana S.; Wongwananuruk T.; Techatraisak K.; Dangrat C.; Sa-nga-areekul N. Prevalence of type 2 diabetes mellitus compared between lean and overweight/obese patients with polycystic ovarian syndrome: a 5-year follow-up study. Arch. Gynecol. Obstet. 2020, 301, 809–816. 10.1007/s00404-019-05423-2. [DOI] [PubMed] [Google Scholar]
  251. De Leo V.; Musacchio M.; Morgante G.; Piomboni P.; Petraglia F. Metformin treatment is effective in obese teenage girls with PCOS. Hum. Reprod. 2006, 21, 2252–2256. 10.1093/humrep/del185. [DOI] [PubMed] [Google Scholar]
  252. Kurzthaler D.; Hadziomerovic-Pekic D.; Wildt L.; Seeber B. E. Metformin induces a prompt decrease in LH-stimulated testosterone response in women with PCOS independent of its insulin-sensitizing effects. Reprod. Biol. Endocrinol. 2014, 12, 1–6. 10.1186/1477-7827-12-98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Guan Y.; Wang D.; Bu H.; Zhao T.; Wang H. The Effect of Metformin on Polycystic Ovary Syndrome in Overweight Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Endocrinol. 2020, 2020, 1. 10.1155/2020/5150684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Wu Y.; Tu M.; Huang Y.; Liu Y.; Zhang D. Association of metformin with pregnancy outcomes in women with polycystic ovarian syndrome undergoing in vitro fertilization: A systematic review and meta-analysis. JAMA network open 2020, 3, e2011995–e2011995. 10.1001/jamanetworkopen.2020.11995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Morin-Papunen L.; Rantala A. S.; Unkila-Kallio L.; Tiitinen A.; Hippeläinen M.; Perheentupa A.; Tinkanen H.; Bloigu R.; Puukka K.; Ruokonen A.; et al. Metformin improves pregnancy and live-birth rates in women with polycystic ovary syndrome (PCOS): a multicenter, double-blind, placebo-controlled randomized trial. J. Clin. Endocrinol. Metab. 2012, 97, 1492–1500. 10.1210/jc.2011-3061. [DOI] [PubMed] [Google Scholar]
  256. Zeng X.-L.; Zhang Y.-F.; Tian Q.; Xue Y.; An R.-F. Effects of metformin on pregnancy outcomes in women with polycystic ovary syndrome: a meta-analysis. Medicine 2016, 95, e4526. 10.1097/MD.0000000000004526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Zhao J.; Liu X.; Zhang W. The effect of metformin therapy for preventing gestational diabetes mellitus in women with polycystic ovary syndrome: a meta-analysis. Exp. Clin. Endocrinol. Diabetes 2020, 128, 199–205. 10.1055/a-0603-3394. [DOI] [PubMed] [Google Scholar]
  258. Nascimento I.; Dienstmann G.; de Souza M.; Fleig R.; Hoffmann C.; Silva J. Evaluation of preeclampsia results after use of metformin in gestation: systematic review and meta-analysis. Rev. Bras. Ginecol. Obstet. 2018, 40, 713–721. 10.1055/s-0038-1675214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Alqudah A.; McKinley M.; McNally R.; Graham U.; Watson C.; Lyons T.; McClements L. Risk of pre-eclampsia in women taking metformin: a systematic review and meta-analysis. Diabetic Medicine 2018, 35, 160–172. 10.1111/dme.13523. [DOI] [PubMed] [Google Scholar]
  260. Butalia S.; Gutierrez L.; Lodha A.; Aitken E.; Zakariasen A.; Donovan L. Short-and long-term outcomes of metformin compared with insulin alone in pregnancy: a systematic review and meta-analysis. Diabetic Medicine 2017, 34, 27–36. 10.1111/dme.13150. [DOI] [PubMed] [Google Scholar]
  261. Vanky E.; Zahlsen K.; Spigset O.; Carlsen S. M. Placental passage of metformin in women with polycystic ovary syndrome. Fertil. Steril. 2005, 83, 1575–1578. 10.1016/j.fertnstert.2004.11.051. [DOI] [PubMed] [Google Scholar]
  262. Boskovic R.; Feig D. S.; Derewlany L.; Knie B.; Portnoi G.; Koren G. Transfer of insulin lispro across the human placenta: in vitro perfusion studies. Diabetes Care 2003, 26, 1390–1394. 10.2337/diacare.26.5.1390. [DOI] [PubMed] [Google Scholar]
  263. Hanem L. G. E.; Stridsklev S.; Júlíusson P. B.; Salvesen Ø.; Roelants M.; Carlsen S. M.; Ødegård R.; Vanky E. Metformin use in PCOS pregnancies increases the risk of offspring overweight at 4 years of age: follow-up of two RCTs. J. Clin. Endocrinol. Metab. 2018, 103, 1612–1621. 10.1210/jc.2017-02419. [DOI] [PubMed] [Google Scholar]
  264. Tao X.; Cai L.; Chen L.; Ge S.; Deng X. Effects of metformin and Exenatide on insulin resistance and AMPKα-SIRT1 molecular pathway in PCOS rats. J. Ovarian Res. 2019, 12, 1–8. 10.1186/s13048-019-0555-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Tao X.; Chen L.; Cai L.; Ge S.; Deng X. Regulatory effects of the AMPKα-SIRT1 molecular pathway on insulin resistance in PCOS mice: an in vitro and in vivo study. Biochem. Biophys. Res. Commun. 2017, 494, 615–620. 10.1016/j.bbrc.2017.09.154. [DOI] [PubMed] [Google Scholar]
  266. Reverchon M.; Cornuau M.; Cloix L.; Rame C.; Guerif F.; Royere D.; Dupont J. Visfatin is expressed in human granulosa cells: regulation by metformin through AMPK/SIRT1 pathways and its role in steroidogenesis. Mol. Hum. Reprod. 2013, 19, 313–326. 10.1093/molehr/gat002. [DOI] [PubMed] [Google Scholar]
  267. Chen Z.; Wei H.; Zhao X.; Xin X.; Peng L.; Ning Y.; Wang Y.; Lan Y.; Zhang Q. Metformin treatment alleviates polycystic ovary syndrome by decreasing the expression of MMP-2 and MMP-9 via H19/miR-29b-3p and AKT/mTOR/autophagy signaling pathways. J. Cell. Physiol. 2019, 234, 19964–19976. 10.1002/jcp.28594. [DOI] [PubMed] [Google Scholar]
  268. Lewandowski K.; Komorowski J.; O’Callaghan C.; Tan B.; Chen J.; Prelevic G.; Randeva H. Increased circulating levels of matrix metalloproteinase-2 and-9 in women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 1173–1177. 10.1210/jc.2005-0648. [DOI] [PubMed] [Google Scholar]
  269. Baka S.; Zourla K.; Kouskouni E.; Makrakis E.; Demeridou S.; Tzanakaki D.; Hassiakos D.; Creatsas G. Matrix metalloproteinases 2 and 9 and their tissue inhibitors in the follicular fluid of patients with polycystic ovaries undergoing in vitro fertilisation. In Vivo 2010, 24, 293–296. [PubMed] [Google Scholar]
  270. Hu M.; Zhang Y.; Feng J.; Xu X.; Zhang J.; Zhao W.; Guo X.; Li J.; Vestin E.; Cui P.; et al. Uterine progesterone signaling is a target for metformin therapy in PCOS-like rats. J. Endocrinol. 2018, 237, 123–137. 10.1530/JOE-18-0086. [DOI] [PubMed] [Google Scholar]
  271. Zhai J.; Yao G.-D.; Wang J.-Y.; Yang Q.-L.; Wu L.; Chang Z.-Y.; Sun Y.-P. Metformin Regulates Key MicroRNAs to Improve Endometrial Receptivity Through Increasing Implantation Marker Gene Expression in Patients with PCOS Undergoing IVF/ICSI. Reprod. Sci. 2019, 26, 1439–1448. 10.1177/1933719118820466. [DOI] [PubMed] [Google Scholar]
  272. Hu M.; Li J.; Zhang Y.; Li X.; Brännström M.; Shao L. R.; Billig H. Endometrial progesterone receptor isoforms in women with polycystic ovary syndrome. Am. J. Transl. Res. 2018, 10, 2696. [PMC free article] [PubMed] [Google Scholar]
  273. Li X.; Feng Y.; Lin J.-F.; Billig H.; Shao R. Endometrial progesterone resistance and PCOS. J. Biomed. Sci. 2014, 21, 1–7. 10.1186/1423-0127-21-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Xiong F.; Xiao J.; Bai Y.; Zhang Y.; Li Q.; Lishuang X. Metformin inhibits estradiol and progesterone-induced decidualization of endometrial stromal cells by regulating expression of progesterone receptor, cytokines and matrix metalloproteinases. Biomed. Pharmacother. 2019, 109, 1578–1585. 10.1016/j.biopha.2018.10.128. [DOI] [PubMed] [Google Scholar]
  275. Salari-Moghaddam A.; Sadeghi O.; Keshteli A. H.; Larijani B.; Esmaillzadeh A. Metformin use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporosis Int. 2019, 30, 1167. 10.1007/s00198-019-04948-1. [DOI] [PubMed] [Google Scholar]
  276. Hidayat K.; Du X.; Wu M. J.; Shi B. M. The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: Systematic review and meta-analysis of observational studies. Obes. Rev. 2019, 20, 1494–1503. 10.1111/obr.12885. [DOI] [PubMed] [Google Scholar]
  277. Nordklint A.; Almdal T.; Vestergaard P.; Lundby-Christensen L.; Boesgaard T.; Breum L.; Gade-Rasmussen B.; Sneppen S.; Gluud C.; Hemmingsen B.; et al. Effect of metformin and insulin vs. placebo and insulin on whole body composition in overweight patients with type 2 diabetes: a randomized placebo-controlled trial. Osteoporosis Int. 2021, 32, 1837. 10.1007/s00198-021-05870-1. [DOI] [PubMed] [Google Scholar]
  278. Tseng C.-H. Metformin use is associated with a lower risk of osteoporosis/vertebral fracture in Taiwanese patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 2021, 184, 299–310. 10.1530/EJE-20-0507. [DOI] [PubMed] [Google Scholar]
  279. Blümel J. E.; Arteaga E.; Aedo S.; Arriola-Montenegro J.; López M.; Martino M.; Miranda C.; Miranda O.; Mostajo D.; Ñañez M.; et al. Metformin use is associated with a lower risk of osteoporosis in adult women independent of type 2 diabetes mellitus and obesity. REDLINC IX study. Gynecol. Endocrinol. 2020, 36, 421–425. 10.1080/09513590.2020.1718092. [DOI] [PubMed] [Google Scholar]
  280. Lu C.-H.; Chung C.-H.; Kuo F.-C.; Chen K.-C.; Chang C.-H.; Kuo C.-C.; Lee C.-H.; Su S.-C.; Liu J.-S.; Lin F.-H.; et al. Metformin Attenuates Osteoporosis in Diabetic Patients with Carcinoma in Situ: A Nationwide, Retrospective, Matched-Cohort Study in Taiwan. J. Clin. Med. 2020, 9, 2839. 10.3390/jcm9092839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Zhao J.; Li Y.; Zhang H.; Shi D.; Li Q.; Meng Y.; Zuo L. Preventative effects of metformin on glucocorticoid-induced osteoporosis in rats. J. Bone Miner. Metab. 2019, 37, 805–814. 10.1007/s00774-019-00989-y. [DOI] [PubMed] [Google Scholar]
  282. Mu W.; Wang Z.; Ma C.; Jiang Y.; Zhang N.; Hu K.; Li L.; Wang Z. Metformin promotes the proliferation and differentiation of murine preosteoblast by regulating the expression of sirt6 and oct4. Pharmacol. Res. 2018, 129, 462–474. 10.1016/j.phrs.2017.11.020. [DOI] [PubMed] [Google Scholar]
  283. Zhen D.; Chen Y.; Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. Journal of Diabetes and its Complications 2010, 24, 334–344. 10.1016/j.jdiacomp.2009.05.002. [DOI] [PubMed] [Google Scholar]
  284. Jang W. G.; Kim E. J.; Bae I.-H.; Lee K.-N.; Kim Y. D.; Kim D.-K.; Kim S.-H.; Lee C.-H.; Franceschi R. T.; Choi H.-S.; et al. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone 2011, 48, 885–893. 10.1016/j.bone.2010.12.003. [DOI] [PubMed] [Google Scholar]
  285. Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int. J. Mol. Sci. 2019, 20, 1694. 10.3390/ijms20071694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Kanazawa I.; Yamaguchi T.; Yano S.; Yamauchi M.; Sugimoto T. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem. Biophys. Res. Commun. 2008, 375, 414–419. 10.1016/j.bbrc.2008.08.034. [DOI] [PubMed] [Google Scholar]
  287. Jang W. G.; Kim E. J.; Kim D. K.; Ryoo H. M.; Lee K. B.; Kim S. H.; Choi H. S.; Koh J. T. BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J. Biol. Chem. 2012, 287, 905–915. 10.1074/jbc.M111.253187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  288. Mai Q. G.; Zhang Z. M.; Xu S.; Lu M.; Zhou R. P.; Zhao L.; Jia C. H.; Wen Z. H.; Jin D. D.; Bai X. C. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J. Cell. Biochem. 2011, 112, 2902–2909. 10.1002/jcb.23206. [DOI] [PubMed] [Google Scholar]
  289. Zheng H. X.; Chen D. J.; Zu Y. X.; Wang E. Z.; Qi S. S. Chondroitin sulfate prevents STZ induced diabetic osteoporosis through decreasing blood glucose, antioxidative stress, anti-inflammation and OPG/RANKL expression regulation. Int. J. Mol. Sci. 2020, 21, 5303. 10.3390/ijms21155303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Wang Z.; Mu W.; Li L.; Liu Q.; Ju Y.. Metformin promotes the proliferation and differentiation of murine preosteoblast by regulating the expression of sirt6 and oct4. In Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (The 18th World Congress of Basic and Clinical Pharmacology); Japanese Pharmacological Society, 2018; pp PO3–4–19. [DOI] [PubMed]
  291. Zhong L.; D’Urso A.; Toiber D.; Sebastian C.; Henry R. E.; Vadysirisack D. D.; Guimaraes A.; Marinelli B.; Wikstrom J. D.; Nir T.; et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 2010, 140, 280–293. 10.1016/j.cell.2009.12.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Sun H.; Wu Y.; Fu D.; Liu Y.; Huang C. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-κB signaling pathway. Stem Cells 2014, 32, 1943–1955. 10.1002/stem.1671. [DOI] [PubMed] [Google Scholar]
  293. Sugatani T.; Agapova O.; Malluche H. H.; Hruska K. A. SIRT6 deficiency culminates in low-turnover osteopenia. Bone 2015, 81, 168–177. 10.1016/j.bone.2015.07.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Zheng L.; Shen X.; Ye J.; Xie Y.; Yan S. Metformin alleviates hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts through inhibiting the TLR4 signaling pathway. Life Sci. 2019, 216, 29–38. 10.1016/j.lfs.2018.11.008. [DOI] [PubMed] [Google Scholar]
  295. Gu Q.; Gu Y.; Yang H.; Shi Q. Metformin enhances osteogenesis and suppresses adipogenesis of human chorionic villous mesenchymal stem cells. Tohoku J. Exp. Med. 2017, 241, 13–19. 10.1620/tjem.241.13. [DOI] [PubMed] [Google Scholar]
  296. Akram Z.; Vohra F.; Javed F. Locally delivered metformin as adjunct to scaling and root planing in the treatment of periodontal defects: A systematic review and meta-analysis. J. Periodontal Res. 2018, 53, 941–949. 10.1111/jre.12573. [DOI] [PubMed] [Google Scholar]
  297. Nicolini A. C.; Grisa T. A.; Muniz F. W. M. G.; Rösing C. K.; Cavagni J. Effect of adjuvant use of metformin on periodontal treatment: a systematic review and meta-analysis. Clinical oral investigations 2019, 23, 2659–2666. 10.1007/s00784-018-2666-9. [DOI] [PubMed] [Google Scholar]
  298. Tan Y.; Chen J.; Jiang Y.; Chen X.; Li J.; Chen B.; Gao J. The anti-periodontitis action of metformin via targeting NLRP3 inflammasome. Arch. Oral Biol. 2020, 114, 104692. 10.1016/j.archoralbio.2020.104692. [DOI] [PubMed] [Google Scholar]
  299. Zhou X.; Zhang P.; Wang Q.; Ji N.; Xia S.; Ding Y.; Wang Q. Metformin ameliorates experimental diabetic periodontitis independently of mammalian target of rapamycin (mTOR) inhibition by reducing NIMA-related kinase 7 (Nek7) expression. J. Periodontol. 2019, 90, 1032–1042. 10.1002/JPER.18-0528. [DOI] [PubMed] [Google Scholar]
  300. Araújo A. A. d.; Pereira A. d. S. B. F.; Medeiros C. A. C. X. d.; Brito G. A. d. C.; Leitão R. F. d. C.; Araújo L. d. S.; Guedes P. M. M.; Hiyari S.; Pirih F. Q.; Araújo Júnior R. F. d. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS One 2017, 12, e0183506. 10.1371/journal.pone.0183506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  301. Zhou X.; Wang Q.; Nie L.; Zhang P.; Zhao P.; Yuan Q.; Ji N.; Ding Y.; Wang Q. Metformin ameliorates the NLPP3 inflammasome mediated pyroptosis by inhibiting the expression of NEK7 in diabetic periodontitis. Arch. Oral Biol. 2020, 116, 104763. 10.1016/j.archoralbio.2020.104763. [DOI] [PubMed] [Google Scholar]
  302. Kuang Y.; Hu B.; Feng G.; Xiang M.; Deng Y.; Tan M.; Li J.; Song J. Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells. Biogerontology 2020, 21, 13–27. 10.1007/s10522-019-09838-x. [DOI] [PubMed] [Google Scholar]
  303. Wang H.-W.; Lai E. H.-H.; Yang C.-N.; Lin S.-K.; Hong C.-Y.; Yang H.; Chang J. Z.-C.; Kok S.-H. Intracanal metformin promotes healing of apical periodontitis via suppressing inducible nitric oxide synthase expression and monocyte recruitment. Journal of endodontics 2020, 46, 65–73. 10.1016/j.joen.2019.10.001. [DOI] [PubMed] [Google Scholar]
  304. Herrera B. S.; Martins-Porto R.; Maia-Dantas A.; Campi P.; Spolidorio L. C.; Costa S. K.; Van Dyke T. E.; Gyurko R.; Muscara M. N. iNOS-derived nitric oxide stimulates osteoclast activity and alveolar bone loss in ligature-induced periodontitis in rats. J. Periodontol. 2011, 82, 1608–1615. 10.1902/jop.2011.100768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Zhang S.; Zhang R.; Qiao P.; Ma X.; Lu R.; Wang F.; Li C.; E L.; Liu H. Metformin-Induced MicroRNA-34a-3p Downregulation Alleviates Senescence in Human Dental Pulp Stem Cells by Targeting CAB39 through the AMPK/mTOR Signaling Pathway. Stem Cells Int. 2021, 2021, 1. 10.1155/2021/6616240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Jia L.; Xiong Y.; Zhang W.; Ma X.; Xu X. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp. Cell Res. 2020, 386, 111717. 10.1016/j.yexcr.2019.111717. [DOI] [PubMed] [Google Scholar]
  307. Xiong Y.; Zhao B.; Zhang W.; Jia L.; Zhang Y.; Xu X. Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway. Iran. J. Basic Med. Sci. 2020, 23, 954. 10.22038/IJBMS.2020.44070.10351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  308. Chiu A.; Saigh M. A.; McCulloch C.; Glogauer M. The role of NrF2 in the regulation of periodontal health and disease. J. Dent. Res. 2017, 96, 975–983. 10.1177/0022034517715007. [DOI] [PubMed] [Google Scholar]
  309. Liu L.; Zhang C.; Hu Y.; Peng B. Protective effect of metformin on periapical lesions in rats by decreasing the ratio of receptor activator of nuclear factor kappa B ligand/osteoprotegerin. Journal of endodontics 2012, 38, 943–947. 10.1016/j.joen.2012.03.010. [DOI] [PubMed] [Google Scholar]
  310. Chen Y.; Yang Q.; Lv C.; Chen Y.; Zhao W.; Li W.; Chen H.; Wang H.; Sun W.; Yuan H. NLRP3 regulates alveolar bone loss in ligature-induced periodontitis by promoting osteoclastic differentiation. Cell Proliferation 2021, 54, e12973. 10.1111/cpr.12973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Zhang R.; Liang Q.; Kang W.; Ge S. Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro. Cell Biol. Int. 2020, 44, 70–79. 10.1002/cbin.11202. [DOI] [PubMed] [Google Scholar]
  312. Hernández Ríos M.; Sorsa T.; Obregón F.; Tervahartiala T.; Valenzuela M. A.; Pozo P.; Dutzan N.; Lesaffre E.; Molas M.; Gamonal J. Proteolytic roles of matrix metalloproteinase (MMP)-13 during progression of chronic periodontitis: initial evidence for MMP-13/MMP-9 activation cascade. J. Clin. Periodontol. 2009, 36, 1011–1017. 10.1111/j.1600-051X.2009.01488.x. [DOI] [PubMed] [Google Scholar]
  313. Luchian I.; Moscalu M.; Goriuc A.; Nucci L.; Tatarciuc M.; Martu I.; Covasa M. Using Salivary MMP-9 to Successfully Quantify Periodontal Inflammation during Orthodontic Treatment. J. Clin. Med. 2021, 10, 379. 10.3390/jcm10030379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Tseng C.-H. Metformin use is associated with a lower risk of inflammatory bowel disease in patients with type 2 diabetes mellitus. Journal of Crohn’s and Colitis 2021, 15, 64–73. 10.1093/ecco-jcc/jjaa136. [DOI] [PubMed] [Google Scholar]
  315. Kabel A. M.; Omar M. S.; Alotaibi S. N.; Baali M. H. Effect of Indole-3-carbinol and/or Metformin on Female Patients with Ulcerative Colitis (Premalignant Condition): Role of Oxidative Stress, Apoptosis and Proinflammatory Cytokines. Journal of Cancer Research 2017, 5, 1–8. 10.12691/jcrt-5-1-1. [DOI] [Google Scholar]
  316. Liu X.; Sun Z.; Wang H. Metformin alleviates experimental colitis in mice by up-regulating TGF-β signaling. Biotech. Histochem. 2021, 96, 146–152. 10.1080/10520295.2020.1776896. [DOI] [PubMed] [Google Scholar]
  317. Lee S.-Y.; Lee S. H.; Yang E.-J.; Kim E.-K.; Kim J.-K.; Shin D.-Y.; Cho M.-L. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS One 2015, 10, e0135858. 10.1371/journal.pone.0135858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Zenewicz L. A.; Antov A.; Flavell R. A. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol. Med. 2009, 15, 199–207. 10.1016/j.molmed.2009.03.002. [DOI] [PubMed] [Google Scholar]
  319. Koh S. J.; Kim J. M.; Kim I. K.; Ko S. H.; Kim J. S. Anti-inflammatory mechanism of metformin and its effects in intestinal inflammation and colitis-associated colon cancer. J. Gastroenterol. Hepatol. 2014, 29, 502–510. 10.1111/jgh.12435. [DOI] [PubMed] [Google Scholar]
  320. Saber S.; El-Kader E. M. A. Novel complementary coloprotective effects of metformin and MCC950 by modulating HSP90/NLRP3 interaction and inducing autophagy in rats. Inflammopharmacology 2021, 29, 237–251. 10.1007/s10787-020-00730-6. [DOI] [PubMed] [Google Scholar]
  321. Deng J.; Zeng L.; Lai X.; Li J.; Liu L.; Lin Q.; Chen Y. Metformin protects against intestinal barrier dysfunction via AMPKα1-dependent inhibition of JNK signalling activation. Journal of cellular and molecular medicine 2018, 22, 546–557. 10.1111/jcmm.13342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Di Fusco D.; Dinallo V.; Monteleone I.; Laudisi F.; Marafini I.; Franzè E.; Di Grazia A.; Dwairi R.; Colantoni A.; Ortenzi A.; et al. Metformin inhibits inflammatory signals in the gut by controlling AMPK and p38 MAP kinase activation. Clin. Sci. 2018, 132, 1155–1168. 10.1042/CS20180167. [DOI] [PubMed] [Google Scholar]
  323. Roy P. K.; Rashid F.; Bragg J.; Ibdah J. A. Role of the JNK signal transduction pathway in inflammatory bowel disease. WJG 2008, 14, 200. 10.3748/wjg.14.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  324. Hommes D.; Van Den Blink B.; Plasse T.; Bartelsman J.; Xu C.; Macpherson B.; Tytgat G.; Peppelenbosch M.; Van Deventer S. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease. Gastroenterology 2002, 122, 7–14. 10.1053/gast.2002.30770. [DOI] [PubMed] [Google Scholar]
  325. Pandey A.; Verma S.; Kumar V. L. Metformin maintains mucosal integrity in experimental model of colitis by inhibiting oxidative stress and pro-inflammatory signaling. Biomed. Pharmacother. 2017, 94, 1121–1128. 10.1016/j.biopha.2017.08.020. [DOI] [PubMed] [Google Scholar]
  326. Camacho-Barquero L.; Villegas I.; Sanchez-Calvo J. M.; Talero E.; Sanchez-Fidalgo S.; Motilva V.; Alarcon de la Lastra C. Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int. Immunopharmacol. 2007, 7, 333–342. 10.1016/j.intimp.2006.11.006. [DOI] [PubMed] [Google Scholar]
  327. Kohno H.; Suzuki R.; Sugie S.; Tanaka T. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer 2005, 5, 1–12. 10.1186/1471-2407-5-46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. Wang D.; DuBois R. N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010, 29, 781–788. 10.1038/onc.2009.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. Gochman E.; Mahajna J.; Shenzer P.; Dahan A.; Blatt A.; Elyakim R.; Reznick A. Z. The expression of iNOS and nitrotyrosine in colitis and colon cancer in humans. Acta Histochem. 2012, 114, 827–835. 10.1016/j.acthis.2012.02.004. [DOI] [PubMed] [Google Scholar]
  330. Chen L.; Wang J.; You Q.; He S.; Meng Q.; Gao J.; Wu X.; Shen Y.; Sun Y.; Wu X.; et al. Activating AMPK to restore tight junction assembly in intestinal epithelium and to attenuate experimental colitis by metformin. Front. Pharmacol. 2018, 9, 761. 10.3389/fphar.2018.00761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  331. Xue Y.; Zhang H.; Sun X.; Zhu M.-J. Metformin improves ileal epithelial barrier function in interleukin-10 deficient mice. PLoS One 2016, 11, e0168670. 10.1371/journal.pone.0168670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  332. Wu W.; Wang S.; Liu Q.; Shan T.; Wang Y. Metformin protects against LPS-induced intestinal barrier dysfunction by activating AMPK pathway. Mol. Pharmaceutics 2018, 15, 3272–3284. 10.1021/acs.molpharmaceut.8b00332. [DOI] [PubMed] [Google Scholar]
  333. El-Mahdy N. A.; El-Sayad M. E.-S.; El-Kadem A. H.; Abu-Risha S. E.-S. Metformin alleviates inflammation in oxazolone induced ulcerative colitis in rats: plausible role of sphingosine kinase 1/sphingosine 1 phosphate signaling pathway. Immunopharmacol. Immunotoxicol. 2021, 43, 192. 10.1080/08923973.2021.1878214. [DOI] [PubMed] [Google Scholar]
  334. Zhang W.; Xu J.-H.; Yu T.; Chen Q.-K. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed. Pharmacother. 2019, 118, 109131. 10.1016/j.biopha.2019.109131. [DOI] [PubMed] [Google Scholar]
  335. Lee H.; Lee Y.; Kim J.; An J.; Lee S.; Kong H.; Song Y.; Lee C.-K.; Kim K. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes 2018, 9, 155–165. 10.1080/19490976.2017.1405209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  336. Sukocheva O. A.; Furuya H.; Ng M. L.; Friedemann M.; Menschikowski M.; Tarasov V. V.; Chubarev V. N.; Klochkov S. G.; Neganova M. E.; Mangoni A. A.; et al. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol. Ther. 2020, 207, 107464. 10.1016/j.pharmthera.2019.107464. [DOI] [PubMed] [Google Scholar]
  337. Liang J.; Nagahashi M.; Kim E. Y.; Harikumar K. B.; Yamada A.; Huang W.-C.; Hait N. C.; Allegood J. C.; Price M. M.; Avni D.; et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 2013, 23, 107–120. 10.1016/j.ccr.2012.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. El-Daly S. M.; Omara E. A.; Hussein J.; Youness E. R.; El-Khayat Z. Differential expression of miRNAs regulating NF-κB and STAT3 crosstalk during colitis-associated tumorigenesis. Mol. Cell. Probes 2019, 47, 101442. 10.1016/j.mcp.2019.101442. [DOI] [PubMed] [Google Scholar]
  339. Kulkarni A. S.; Gubbi S.; Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020, 32, 15. 10.1016/j.cmet.2020.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  340. Sarkar D.; Fisher P. B. Molecular mechanisms of aging-associated inflammation. Cancer Lett. 2006, 236, 13–23. 10.1016/j.canlet.2005.04.009. [DOI] [PubMed] [Google Scholar]
  341. Lombard D. B.; Chua K. F.; Mostoslavsky R.; Franco S.; Gostissa M.; Alt F. W. DNA repair, genome stability, and aging. Cell 2005, 120, 497–512. 10.1016/j.cell.2005.01.028. [DOI] [PubMed] [Google Scholar]
  342. Andreotti D. Z.; do Nascimento Silva J.; Matumoto A. M.; Orellana A. M.; de Mello P. S.; Kawamoto E. M. Effects of physical exercise on autophagy and apoptosis in aged brain: Human and animal studies. Frontiers in Nutrition 2020, 7, 94. 10.3389/fnut.2020.00094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  343. Oh J.; Lee Y. D.; Wagers A. J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med. 2014, 20, 870–880. 10.1038/nm.3651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  344. Piskovatska V.; Storey K. B.; Vaiserman A. M.; Lushchak O. The use of metformin to increase the human healthspan. Adv. Exp. Med. Biol. 2020, 1260, 319–332. 10.1007/978-3-030-42667-5_13. [DOI] [PubMed] [Google Scholar]
  345. Tan C.-C.; Yu J.-T.; Tan M.-S.; Jiang T.; Zhu X.-C.; Tan L. Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol. Aging 2014, 35, 941–957. 10.1016/j.neurobiolaging.2013.11.019. [DOI] [PubMed] [Google Scholar]
  346. Ren J.; Sowers J. R.; Zhang Y. Metabolic stress, autophagy, and cardiovascular aging: from pathophysiology to therapeutics. Trends Endocrinol. Metab. 2018, 29, 699–711. 10.1016/j.tem.2018.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  347. Kim Y. C.; Guan K.-L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 2015, 125, 25–32. 10.1172/JCI73939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  348. Bhansali S.; Bhansali A.; Dutta P.; Walia R.; Dhawan V. Metformin upregulates mitophagy in patients with T2DM: A randomized placebo-controlled study. J. Cell. Mol. Med. 2020, 24, 2832–2846. 10.1111/jcmm.14834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  349. Babbar M.; Basu S.; Yang B.; Croteau D. L.; Bohr V. A. Mitophagy and DNA damage signaling in human aging. Mech. Ageing Dev. 2020, 186, 111207. 10.1016/j.mad.2020.111207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  350. Wang C.; Yang Y.; Zhang Y.; Liu J.; Yao Z.; Zhang C. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. BioSci. Trends 2018, 12, 605–612. 10.5582/bst.2018.01263. [DOI] [PubMed] [Google Scholar]
  351. Bingol B.; Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biol. Med. 2016, 100, 210–222. 10.1016/j.freeradbiomed.2016.04.015. [DOI] [PubMed] [Google Scholar]
  352. Rana A.; Rera M.; Walker D. W. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 8638–8643. 10.1073/pnas.1216197110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  353. Suwa M.; Egashira T.; Nakano H.; Sasaki H.; Kumagai S. Metformin increases the PGC-1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J. Appl. Physiol. 2006, 101, 1685–1692. 10.1152/japplphysiol.00255.2006. [DOI] [PubMed] [Google Scholar]
  354. Ren J.; Pulakat L.; Whaley-Connell A.; Sowers J. R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med. 2010, 88, 993–1001. 10.1007/s00109-010-0663-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  355. Sheng B.; Wang X.; Su B.; Lee H. g.; Casadesus G.; Perry G.; Zhu X. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J. Neurochem. 2012, 120, 419–429. 10.1111/j.1471-4159.2011.07581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  356. Kujoth G. C.; Hiona A.; Pugh T. D.; Someya S.; Panzer K.; Wohlgemuth S. E.; Hofer T.; Seo A.; Sullivan R.; Jobling W.; et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005, 309, 481–484. 10.1126/science.1112125. [DOI] [PubMed] [Google Scholar]
  357. Chen X.; Wu W.; Gong B.; Hou L.; Dong X.; Xu C.; Zhao R.; Yu Q.; Zhou Z.; Huang S.; et al. Metformin attenuates cadmium-induced neuronal apoptosis in vitro via blocking ROS-dependent PP5/AMPK-JNK signaling pathway. Neuropharmacology 2020, 175, 108065. 10.1016/j.neuropharm.2020.108065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  358. Chen B.; Teng Y.; Zhang X.; Lv X.; Yin Y. Metformin alleviated Aβ-induced apoptosis via the suppression of JNK MAPK signaling pathway in cultured hippocampal neurons. BioMed Res. Int. 2016, 2016, 1. 10.1155/2016/1421430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  359. Verheij M.; Ruiter G. A.; Zerp S. F.; van Blitterswijk W. J.; Fuks Z.; Haimovitz-Friedman A.; Bartelink H. The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis. Radiother. Oncol. 1998, 47, 225–232. 10.1016/S0167-8140(98)00007-3. [DOI] [PubMed] [Google Scholar]
  360. Jung T. W.; Lee M. W.; Lee Y. J.; Kim S. M. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway. Biochem. Biophys. Res. Commun. 2012, 417, 147–152. 10.1016/j.bbrc.2011.11.073. [DOI] [PubMed] [Google Scholar]
  361. Bridgeman S. C.; Ellison G. C.; Melton P. E.; Newsholme P.; Mamotte C. D. S. Epigenetic effects of metformin: from molecular mechanisms to clinical implications. Diabetes, Obes. Metab. 2018, 20, 1553–1562. 10.1111/dom.13262. [DOI] [PubMed] [Google Scholar]
  362. de Kreutzenberg S. V.; Ceolotto G.; Cattelan A.; Pagnin E.; Mazzucato M.; Garagnani P.; Borelli V.; Bacalini M.; Franceschi C.; Fadini G.; et al. Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial. Nutr., Metab. Cardiovasc. Dis. 2015, 25, 686–693. 10.1016/j.numecd.2015.03.007. [DOI] [PubMed] [Google Scholar]
  363. Arunachalam G.; Samuel S. M.; Marei I.; Ding H.; Triggle C. R. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br. J. Pharmacol. 2014, 171, 523–535. 10.1111/bph.12496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  364. Chen C.; Zhou M.; Ge Y.; Wang X. SIRT1 and aging related signaling pathways. Mech. Ageing Dev. 2020, 187, 111215. 10.1016/j.mad.2020.111215. [DOI] [PubMed] [Google Scholar]
  365. Li Q.; Jia S.; Xu L.; Li B.; Chen N. Metformin-induced autophagy and irisin improves INS-1 cell function and survival in high-glucose environment via AMPK/SIRT1/PGC-1α signal pathway. Food Sci. Nutr. 2019, 7, 1695–1703. 10.1002/fsn3.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  366. Liang D.; Zhuo Y.; Guo Z.; He L.; Wang X.; He Y.; Li L.; Dai H. SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie 2020, 170, 10–20. 10.1016/j.biochi.2019.12.001. [DOI] [PubMed] [Google Scholar]
  367. Blasiak J.; Glowacki S.; Kauppinen A.; Kaarniranta K. Mitochondrial and nuclear DNA damage and repair in age-related macular degeneration. Int. J. Mol. Sci. 2013, 14, 2996–3010. 10.3390/ijms14022996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  368. Xu G.; Wu H.; Zhang J.; Li D.; Wang Y.; Wang Y.; Zhang H.; Lu L.; Li C.; Huang S.; et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radical Biol. Med. 2015, 87, 15–25. 10.1016/j.freeradbiomed.2015.05.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  369. Fang J.; Yang J.; Wu X.; Zhang G.; Li T.; Wang X. e.; Zhang H.; Wang C. c.; Liu G. H.; Wang L. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 2018, 17, e12765. 10.1111/acel.12765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  370. Vazquez-Martin A.; Oliveras-Ferraros C.; Cufi S.; Martin-Castillo B.; Menendez J. A. Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA damage-like response. Cell Cycle 2011, 10, 1499–1501. 10.4161/cc.10.9.15423. [DOI] [PubMed] [Google Scholar]
  371. Storozhuk Y.; Hopmans S.; Sanli T.; Barron C.; Tsiani E.; Cutz J.; Pond G.; Wright J.; Singh G.; Tsakiridis T. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 2013, 108, 2021–2032. 10.1038/bjc.2013.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  372. Czornak K.; Chughtai S.; Chrzanowska K. H. Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair. J. Appl. Genet. 2008, 49, 383–396. 10.1007/BF03195638. [DOI] [PubMed] [Google Scholar]
  373. Garcia-Martin I.; Penketh R. J.; Janssen A. B.; Jones R. E.; Grimstead J.; Baird D. M.; John R. M. Metformin and insulin treatment prevent placental telomere attrition in boys exposed to maternal diabetes. PLoS One 2018, 13, e0208533. 10.1371/journal.pone.0208533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  374. Huang J.; Peng X.; Dong K.; Tao J.; Yang Y. The Association between Antidiabetic Agents and Leukocyte Telomere Length in the Novel Classification of Type 2 Diabetes Mellitus. Gerontology 2021, 67, 60–68. 10.1159/000511362. [DOI] [PubMed] [Google Scholar]
  375. de Zegher F.; Díaz M.; Ibáñez L. Association between long telomere length and insulin sensitization in adolescent girls with hyperinsulinemic androgen excess. JAMA pediatrics 2015, 169, 787–788. 10.1001/jamapediatrics.2015.0439. [DOI] [PubMed] [Google Scholar]
  376. Neumann B.; Baror R.; Zhao C.; Segel M.; Dietmann S.; Rawji K. S.; Foerster S.; McClain C. R.; Chalut K.; van Wijngaarden P.; et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell stem cell 2019, 25, 473–485. e8. 10.1016/j.stem.2019.08.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  377. Pavlidou T.; Marinkovic M.; Rosina M.; Fuoco C.; Vumbaca S.; Gargioli C.; Castagnoli L.; Cesareni G. Metformin delays satellite cell activation and maintains quiescence. Stem Cells Int. 2019, 2019, 1. 10.1155/2019/5980465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  378. Gan B.; Hu J.; Jiang S.; Liu Y.; Sahin E.; Zhuang L.; Fletcher-Sananikone E.; Colla S.; Wang Y. A.; Chin L.; et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010, 468, 701–704. 10.1038/nature09595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  379. Cufi S.; Vazquez-Martin A.; Oliveras-Ferraros C.; Martin-Castillo B.; Joven J.; Menendez J. A. Metformin against TGFβ-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle 2010, 9, 4461–4468. 10.4161/cc.9.22.14048. [DOI] [PubMed] [Google Scholar]
  380. Stearns-Reider K. M.; D’Amore A.; Beezhold K.; Rothrauff B.; Cavalli L.; Wagner W. R.; Vorp D. A.; Tsamis A.; Shinde S.; Zhang C.; et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 2017, 16, 518–528. 10.1111/acel.12578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  381. Han F.; Shu J.; Wang S.; Tang C.-e.; Luo F. Metformin inhibits the expression of biomarkers of fibrosis of EPCs in vitro. Stem Cells Int. 2019, 2019, 1. 10.1155/2019/9019648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  382. Kim H.; Yu M. R.; Lee H.; Kwon S. H.; Jeon J. S.; Han D. C.; Noh H. Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging Cell 2021, 20, e13317. 10.1111/acel.13317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  383. Feng Y.; Ke C.; Tang Q.; Dong H.; Zheng X.; Lin W.; Ke J.; Huang J.; Yeung S.-C.; Zhang H. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis. 2014, 5, e1088–e1088. 10.1038/cddis.2014.59. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from ACS Pharmacology & Translational Science are provided here courtesy of American Chemical Society

RESOURCES