Skip to main content
eLife logoLink to eLife
. 2021 Dec 15;10:e76247. doi: 10.7554/eLife.76247

Correction: Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants

Tetsuya Hisanaga, Shota Fujimoto, Yihui Cui, Katsutoshi Sato, Ryosuke Sano, Shohei Yamaoka, Takayuki Kohchi, Frédéric Berger, Keiji Nakajima
PMCID: PMC8673832  PMID: 34908524

Hisanaga T, Fujimoto S, Cui Y, Sato K, Sano R, Yamaoka S, Kohchi T, Berger F, Nakajima K. 2021. Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. eLife 10:e57090. doi: 10.7554/eLife.57090

Published 28 September 2021

We overlooked an important publication by Ortiz-Ramírez et al. (2017) implicating a role of a BELL family gene in sporophyte and spore formation in the moss Physcomitrium patens. Two more publications suggesting roles of Physcomitium BELL genes in sporophyte development and egg size regulation have been cited, but not highlighted well in our publication. We apologize for the lack of proper citation of the previous works.

The new citation:

Ortiz-Ramírez, C., Michard, E., Simon, A. A., Damineli, D. S. C., Hernández-Coronado, M., Becker, J. D. & Feijó, J. A. 2017. GLUTAMATE RECEPTOR-LIKE channels are essential for chemotaxis and reproduction in mosses. Nature 549: 91–95. DOI: 10.1038/nature23478, PMID: 28737761

#1 (Abstract)

Original text:

By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development.

Corrected text:

By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in sporophyte and spore formation, meristem maintenance and organogenesis during the later stages of diploid development.

#2 (Discussion)

Original text:

While our study revealed the striking conservation of KNOX/BELL functions between M. polymorpha and C. reinhardtii, this finding is somewhat unexpected from a phylogenetic viewpoint because KNOX/BELL proteins in the model bryophyte P. patens control sporophyte development, as do KNOX/BELL proteins in angiosperms.

Corrected text:

While our study revealed the striking conservation of KNOX/BELL functions between M. polymorpha and C. reinhardtii, this finding is somewhat unexpected from a phylogenetic viewpoint because KNOX/BELL proteins in the model bryophyte P. patens control sporophyte development, as do KNOX/BELL proteins in angiosperms, as well as egg size (Sakakibara et al., 2008, Horst et al., 2016, Ortiz-Ramírez et al., 2017).

#3 (Figure)

In the published article, expression of a BELL gene in P. patens eggs, reported by Horst et al., 2016, was not reflected in Figure. 7B. The corrected Figure 7B is shown now.

The corrected Figure 7B is shown here:

graphic file with name elife-76247-fig1.jpg

The originally published Figure 7B is also shown for reference:

graphic file with name elife-76247-fig2.jpg


Articles from eLife are provided here courtesy of eLife Sciences Publications, Ltd

RESOURCES