Skip to main content
RSC Advances logoLink to RSC Advances
. 2021 Jan 21;11(7):4235–4236. doi: 10.1039/d0ra09758f

Catalyzed ring transformation of cyclic N-aryl-azadiperoxides with participation of α,ω-dithiols

Nataliya N Makhmudiyarova 1,, Kamil R Shangaraev 1, Irina R Ishmukhametova 1, Askhat G Ibragimov 1, Usein M Dzhemilev 1
PMCID: PMC8694348  PMID: 35424327

Abstract

Co(OAc)2-catalyzed ring transformation reaction of 10-aryl-7,8,12,13-tetraoxa-10-azaspiro[5.7]tridecanes with α,ω-dithiols (ethane-1,2-, propane-1,3-, butane-1,4-, pentane-1,5-, and hexane-1,6-dithiols, 3,6-dioxaoctane-1,8-dithiol) giving 3-aryl-1,5,3-dithiazacyclanes was studied.


Co(OAc)2-catalyzed ring transformation reaction of 10-aryl-7,8,12,13-tetraoxa-10-azaspiro[5.7]tridecanes with α,ω-dithiols giving 3-aryl-1,5,3-dithiazacyclanes was studied.graphic file with name d0ra09758f-ga.jpg


Cyclic peroxides attract attention for their antimalarial,1 antibacterial,2 and antitumor3 activities. Among numerous cyclic peroxides, heteroatomic cyclic peroxides occupy a special place owing to their high biological activities.4 The methods of synthesis of heteroatom-containing cyclic peroxides are limited. Recently,5–10 nitrogen- and sulfur-containing cyclic di- and triperoxides with antitumor activity have been synthesized.5–9 The development of efficient methods for the preparation of new cyclic hetero-di(tri)peroxides5–10 promotes active investigation of their transformations. It was shown that the reduction of silatriperoxycycloalkanes with PPh3 affords siladiperoxycycloalkanes;11 the reaction of spiro{adamantane-[2,3′]-(pentaoxacane)} with o-phenylenediamine results in the synthesis of benzodioxazocine.5 The implemented conversion of pentaoxacane with o-phenylenediamine to benzodioxazocine5 suggests that cyclic N-containing peroxides can be involved in reactions with binucleophilic reagents, in particular α,ω-dithiols, to give new heterocycles. In contrast to the previously described methods of synthesis5–10 and transformation of the peroxide ring,5,11 this work for the first time discusses the method of catalytic conversion of tetraoxazaspirotridecane to dithiazacycloalkanes.

It was shown by preliminary experiments that the reaction of 10-phenyl-7,8,12,13-tetraoxa-10-azaspiro[5.7]tridecane 1 with ethane-1,2-dithiol 2 does not proceed without a catalyst. The reaction of azadiperoxide 1 with ethane-1,2-dithiol 2 catalyzed by Sm(NO3)3·6H2O, H2SO4 or BF3·Et2O in THF as a solvent affords 3-phenyl-1,5,3-dithiazepane 8 in 10–15% yield (Scheme 1, Table 1). It was found that the yield of 3-phenyl-1,5,3-dithiazepane12 is affected by the nature of the catalyst. When the reaction is carried out in a polar solvent (MeOH) in the presence of catalytic amounts of Sm(NO3)3·6H2O, H2SO4 or BF3·Et2O, the yield of the target product 8 increases to 30%. In the presence of the Co(OAc)2 catalyst, the yield of heterocycle 8 is 85%. When AlCl3 or CuCl catalysts are used, the yields of heterocycle 8 are 55% and 75%, respectively (Table 1). Under these conditions, cyclohexanone is formed and O2 is released (Scheme 1). All reactions were carried out at room temperature for 20 h.

Scheme 1. Ring transformation reaction of 10-phenyl-7,8,12,13-tetraoxa-10-azaspiro[5.7]tridecane with α,ω-dithiols.

Scheme 1

Effect of the catalyst and solvent nature on the yield of 3-phenyl-1,5,3-dithiazacyclanes (∼20 °C, 20 h).

No. Compound [Cat] Solvent Yield, %
1 8 AlCl3 THF 45
2 8 AlCl3 MeOH 55
3 8 Co(OAc)2 THF 79
4 8 Co(OAc)2 MeOH 85
5 8 BF3·OEt2 THF 15
6 8 BF3·OEt2 MeOH 30
7 8 CuCl THF 68
8 8 CuCl MeOH 75
9 8 H2SO4 THF 13
10 8 H2SO4 MeOH 25
11 8 Sm(NO3)3·6H2O THF 10
12 8 Sm(NO3)3·6H2O MeOH 20
13 8 THF
14 8 MeOH
15 9 Co(OAc)2 MeOH 87
16 10 Co(OAc)2 MeOH 79
17 11 Co(OAc)2 MeOH 83
18 12 Co(OAc)2 MeOH 89
19 13 Co(OAc)2 MeOH 91

A probable pathway to the synthesis of 3-phenyl-1,5,3-dithiazepane 8 from 10-phenyl-7,8,12,13-tetraoxa-10-azaspiro[5.7]tridecane 1 includes13 coordination of the peroxide oxygen atom to the central atom of the catalyst, nucleophilic addition of ethane-1,2-dithiol to the resulting carbocation,14,15 and the subsequent ring closure giving heterocycle 8 (Scheme 2).

Scheme 2. Probable synthesis mechanism for 3-phenyl-1,5,3-dithiazepane 8.

Scheme 2

Under conditions including 5 mol% of Co(OAc)2, 20 °C, MeOH, and 20 h, 10-phenyl-7,8,12,13-tetraoxa-10-azaspiro[5.7]tridecane 1 was allowed to react with propane-1,3- 3, butane-1,4- 4, pentane-1,5- 5, and hexane-1,6-dithiols 6, which furnished the corresponding 3-phenyl-1,5,3-dithiaazacycloalkanes169–12 in 83–89% yields (Table 1). The ring transformation reaction of azadiperoxide 1 with 3,6-dioxa-1,8-octanedithiol 7 (monooxa derivative is shown in the scheme) under the conditions described above resulted in the synthesis of 6-phenyl-1,11-dioxa-4,8-dithia-6-azacyclotridecane1612 in 91% yield (Scheme 1).

The discovered ring transformation reaction of azadiperoxide 1 with ethane-1,2-dithiol 2 was also carried out for 10-aryl-7,8,12,13-tetraoxa-10-azaspiro[5.7]tridecanes 14–24, which produced 3-aryl-1,5,3-dithiazepanes1225–35 in 76–90% yields (Scheme 3).

Scheme 3. Ring transformation reaction of 10-aryl-7,8,12,13-tetraoxa-10-azaspiro[5.7]tridecanes with ethane-1,2-dithiol.

Scheme 3

In conclusion, we demonstrated that on treatment with α,ω-alkanedithiols and the Co(OAc)2 catalyst, azadiperoxides are converted to N-aryl-substituted 1,5,3-dithiazamacroheterocycles in high yields.

Conflicts of interest

The authors declare no conflict of interest.

Supplementary Material

RA-011-D0RA09758F-s001

Acknowledgments

The reported study was funded by RFBR according to the research project No. 20-33-90002/20.

Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ra09758f

Notes and references

  1. Slack R. Jacobine A. Posner G. Med. Chem. Commun. 2012;3:281. doi: 10.1039/C2MD00277A. [DOI] [Google Scholar]
  2. Vil' V. Yaremenko I. Ilovaisky A. Terent'ev A. Molecules. 2017;22:1881. doi: 10.3390/molecules22111881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Liu D. Liu J. Nat. Prod. Bioprospect. 2013;3:161. doi: 10.1007/s13659-013-0042-7. [DOI] [Google Scholar]; Crespo-Ortiz M. P. Wei M. Q. Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug. J. Biomed. Biotechnol. 2012:257597. doi: 10.1007/s13659-013-0042-7. [DOI] [Google Scholar]
  4. Tu Y. Nat. Med. 2011;17:1217. doi: 10.1038/nm.2471. [DOI] [PubMed] [Google Scholar]
  5. Tyumkina T. V. Makhmudiyarova N. N. Kiyamutdinova G. M. Meshcheryakova E. S. Bikmukhametov K. Sh. Abdullin M. F. Khalilov L. M. Ibragimov A. G. Dzhemilev U. M. Tetrahedron. 2018;74:1749. doi: 10.1016/j.tet.2018.01.045. [DOI] [Google Scholar]
  6. Makhmudiyarova N. N. Ishmukhametova I. R. Dzhemileva L. U. Tyumkina T. V. D'yakonov V. A. Ibragimov A. G. Dzhemilev U. M. RSC Adv. 2019;9:18923. doi: 10.1039/C9RA02950H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Makhmudiyarova N. N. Rakhimov R. Sh. Tyumkina T. V. Meshcheryakova E. S. Ibragimov A. G. Dzhemilev U. M. Russ. J. Org. Chem. 2019;5:620. doi: 10.1134/S1070428019050075. [DOI] [Google Scholar]
  8. Makhmudiyarova N. N. Shangaraev K. R. Dzhemileva L. U. Tuymkina T. V. Mescheryakova E. S. D'yakonov V. A. Ibragimov A. G. Dzhemilev U. M. RSC Adv. 2019;9:29949. doi: 10.1039/C9RA06372B. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Makhmudiyarova N. N. Ishmukhametova I. R. Dzhemileva L. U. D'yakonov V. A. Ibragimov A. G. Dzhemilev U. M. Molecules. 2020;25:1874. doi: 10.3390/molecules25081874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Makhmudiyarova N. N. Ishmukhametova I. R. Ibragimov A. G. Dhzemilev U. M. Dokl. Chem. 2020;492:93. doi: 10.1134/S001250082036001X. [DOI] [Google Scholar]
  11. Makhmudiyarova N. N. Ishmukhametova I. R. Ibragimov A. G. Russ. J. Org. Chem. 2020;10:1495. [Google Scholar]
  12. Murzakova N. N. Prokof'ev K. I. Tyumkina T. V. Ibragimov A. G. Russ. J. Org. Chem. 2012;48:588. doi: 10.1134/S1070428012040215. [DOI] [Google Scholar]
  13. (a) Oda S. Franke J. Krishce M. J. Chem. Sci. 2016;7:136. doi: 10.1039/C5SC03854E. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Vojacek S. Beese K. Alhalabi Z. Swyter S. Bodtke A. Schulzke C. C. Jung M. Sippl W. Link A. Arch. Pharm. 2017;350:e1700097. doi: 10.1002/ardp.201700097. [DOI] [PubMed] [Google Scholar]
  14. Wellmar U. J. Heterocyclic Chem. 1998;35:1531. doi: 10.1002/jhet.5570350653. [DOI] [Google Scholar]
  15. Krohn K. Cludius-Brandt S. Synthesis. 2010;8:1344. doi: 10.1055/s-0029-1218658. [DOI] [Google Scholar]
  16. Makhmudiyarova N. N. Mudarisova L. V. Meshcheryakova E. S. Ibragimov A. G. Dzhemilev U. M. Tetrahedron. 2015;71:259. doi: 10.1016/j.tet.2014.11.064. [DOI] [Google Scholar]
  17. Makhmudiyarova N. N. Khatmullina G. M. Rakhimov R. Sh. Meshcheryakova E. S. Ibragimov A. G. Dzhemilev U. M. Tetrahedron. 2016;72:3277. doi: 10.1016/j.tet.2016.04.055. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

RA-011-D0RA09758F-s001

Articles from RSC Advances are provided here courtesy of Royal Society of Chemistry

RESOURCES