Skip to main content
RSC Advances logoLink to RSC Advances
. 2021 Apr 7;11(22):13040–13046. doi: 10.1039/d1ra02297k

Catalytic enantioselective bromohydroxylation of cinnamyl alcohols

Jing Li 1, Yian Shi 1,2,
PMCID: PMC8697332  PMID: 35423889

Abstract

This work describes an effective enantioselective bromohydroxylation of cinnamyl alcohols with (DHQD)2PHAL as the catalyst and H2O as the nucleophile, providing a variety of corresponding optically active bromohydrins with up to 95% ee.


Optically active bromohydrins are obtained with up to 95% ee via asymmetric bromohydroxylation of cinnamyl alcohols with H2O as nucleophile.graphic file with name d1ra02297k-ga.jpg


Electrophilic halogenation of olefins allows installation of two stereogenic centers onto the C–C double bond and is one of the most important transformations in organic chemistry.1 Optically active halogen containing products resulting from asymmetric halogenation would serve as versatile chiral building blocks for organic synthesis. As a result, extensive efforts have been devoted to the development of asymmetric halogenation process. In recent years, great progress has been made in both intramolecular2,3 and intermolecular4,5 reaction processes with various types of olefins and nucleophiles. However, there are still challenges remaining to be addressed. In many cases, the developed catalytic systems often only apply to certain ranges of substrates and the reaction reactivity as well as selectivity can't be rationally adjusted. The substrate scope is also often difficult to be logically extended and requires much experimentation, largely due to the complexity of the reaction systems and the lack of clear understanding of the reaction mechanisms.

Halohydroxylation of olefins simply with H2O as nucleophile is a classic electrophilic addition reaction in organic chemistry and produces synthetically useful halohydrins (Scheme 1). Asymmetric version of such process has been challenging with only a few reports.6,7 As part of our general intertest in asymmetric halogenation,8 recently we have been investigating the intermolecular asymmetric reaction processes, particularly with unfunctionalized olefins, which has been a long standing challenging problem. During such studies, we have found that up to 92% ee could be achieved for the bromoesterification of unfunctionalized olefins with (DHQD)2PHAL (Scheme 2, eqn (a)).9 This work represents an early example of asymmetric halogenation for unfunctionalized olefins with high enantioselectivity. To our delight, high enantioselectivity can also be achieved for bromohydroxylation with H2O upon further investigation, giving optically active bromohydrins with up to 98% ee (Scheme 2, eqn (b)).10 In our efforts to expand the reaction scope of the asymmetric bromohydroxylation, we have found that cinnamyl alcohols are effective substrates, giving the corresponding bromohydrins with up to 95% ee. Herein, we report our preliminary studies on this subject.

Scheme 1. Asymmetric halohydroxylation of olefins.

Scheme 1

Scheme 2. Asymmetric oxybromination of olefins.

Scheme 2

Initial studies were carried out with (E)-3-(4-bromophenyl)prop-2-en-1-ol (1a) as substrate. Several bromine reagents were examined with 10 mol% (DHQD)2PHAL (3a) (Fig. 1) as the catalyst and 10 mol% (−)-camphorsulfonic acid (CSA) as additive in acetone/H2O (10 : 1) at −30 °C (Table 1, entries 1–5). N-Bromobenzamide gave the highest ee (76%) (Table 1, entry 5). Among the catalysts investigated (Table 1, entries 5–9), (DHQD)2PHAL (3a) was the choice of the catalyst with N-bromobenzamide. Solvent studies (Table 1, entries 5 and 10–15) showed that the highest ee (83%) was obtained with CH3CN/H2O (10 : 1) (Table 1, entry 10). Addition of 10 mol% (−)-CSA increased both yield and ee (Table 1, entry 10 vs. 16). The best result was obtained with (−)-CSA among the additives examined (Table 1, entry 10 vs. entries 17–21). Slightly higher ee (85%) but lower yield was obtained when the reaction temperature was lowered to −40 °C (Table 1, entry 22 vs. 10).

Fig. 1. Selected examples of catalyst examined.

Fig. 1

Studies on reaction conditionsa.

graphic file with name d1ra02297k-u1.jpg
Entry Cat. Br source Additive Solvent Yieldb (ee)c %
1 3a NBS (−)-CSA Acetone/H2O (10 : 1) 79 (65)
2 3a DBDMH (−)-CSA Acetone/H2O (10 : 1) 76 (62)
3 3a TBCO (−)-CSA Acetone/H2O (10 : 1) 55 (7)
4 3a MeCONHBr (−)-CSA Acetone/H2O (10 : 1) 48 (67)
5 3a PhCONHBr (−)-CSA Acetone/H2O (10 : 1) 59 (76)
6 3b PhCONHBr (−)-CSA Acetone/H2O (10 : 1) 18 (6)
7 3c PhCONHBr (−)-CSA Acetone/H2O (10 : 1) 9 (0)
8 3d PhCONHBr (−)-CSA Acetone/H2O (10 : 1) 35 (−57)
9 3e (quinidine) PhCONHBr (−)-CSA Acetone/H2O (10 : 1) 31 (0)
10 3a PhCONHBr (−)-CSA CH3CN/H2O (10 : 1) 70 (83)
11 3a PhCONHBr (−)-CSA EtOAc/H2O (10 : 1) 16 (67)
12 3a PhCONHBr (−)-CSA TFE/H2O (10 : 1) 43 (51)
13 3a PhCONHBr (−)-CSA DCM/H2O (10 : 1) 13 (70)
14d 3a PhCONHBr (−)-CSA CH3CN/H2O (5 : 1) 66 (82)
15e 3a PhCONHBr (−)-CSA CH3CN/H2O (20 : 1) 68 (81)
16 3a PhCONHBr CH3CN/H2O (10 : 1) 36 (77)
17 3a PhCONHBr (+)-CSA CH3CN/H2O (10 : 1) 63 (82)
18 3a PhCONHBr PhCO2H CH3CN/H2O (10 : 1) 34 (77)
19 3a PhCONHBr 1-NapCO2H CH3CN/H2O (10 : 1) 32 (77)
20 3a PhCONHBr p-TsOH CH3CN/H2O (10 : 1) 68 (80)
21 3a PhCONHBr AlCl3 CH3CN/H2O (10 : 1) 39 (57)
22f 3a PhCONHBr (−)-CSA CH3CN/H2O (10 : 1) 49 (85)
a

Reactions were carried out with substrate 1a (0.30 mmol), catalyst (0.030 mmol), additive (0.030 mmol), and Br source (0.36 mmol) in solvent/H2O (10 : 1) (3.0 mL + 0.3 mL) at −30 °C for 72 h unless otherwise noted.

b

Isolated yield.

c

Determined by chiral HPLC analysis.

d

CH3CN/H2O (5 : 1) (3.0 mL + 0.6 mL).

e

CH3CN/H2O (20 : 1) (3.0 mL + 0.15 mL).

f

At −40 °C for 168 h.

With the optimized reaction conditions in hand, the substrate scope was subsequently investigated with 10 mol% (DHQD)2PHAL (3a), N-bromobenzamide (1.2 eq.), and 10 mol% (−)-CSA in CH3CN/H2O (10 : 1) at −30 °C. As shown in Table 2, the bromohydroxylation can be extended to various cinnamyl alcohols, giving the corresponding bromohydrins in 46–87% yields and 55–95% ee's (Table 2, entries 1–17). The reaction outcome was significantly influenced by the substituent on the phenyl group. In general, the enantioselectivity increased as a substituent was introduced onto the phenyl group. For mono-substituted substrates, it appeared that higher ee was obtained with the para-substituent (Table 2, entry 5 vs. 6 vs. 7). Up to 90% ee was achieved with p-Ph substituted cinnamyl alcohol (Table 2, entry 4). For 4-substituted substrates, the enantioselectivity remained similar when a second Me group was introduced to the 3 position (Table 2, entries 9–12). However, significantly higher ee's were obtained when the Me group was introduced to the 2-position, giving the corresponding bromohydrins in 90–95% ee (Table 2, entries 13–17). With 2-Me, 4-Br-substituted cinnamyl alcohol (1m), MeOH was also found to be effective nucleophile, giving the corresponding bromoether (2r) in 75% yield and 90% ee (Table 2, entry 18). A similar ee but lower yield was obtained when the hydroxyl group was replaced with the MeO group, giving the bromohydrin (2s) in 31% yield and 80% ee (Table 2, entry 19). The exact reason for this difference is not clear at this moment.

Asymmetric bromohydroxylation of cinnamyl alcoholsa.

graphic file with name d1ra02297k-u2.jpg
Entry Substrate Product Yieldb (%) eec (%)
graphic file with name d1ra02297k-u3.jpg graphic file with name d1ra02297k-u4.jpg
1 X = p-Br, 1a 2a (X-ray) 70 83
2 X = p-Cl, 1b 2b 64 80
3 X = p-F, 1c 2c 75 76
4d X = p-Ph, 1d 2d 87 90
5 X = p-Me,1e 2e (X-ray) 76 82
6 X = m-Me,1f 2f 71 62
7 X = o-Me,1g 2g 77 70
8 X = H,1h 2h 46 55
graphic file with name d1ra02297k-u5.jpg graphic file with name d1ra02297k-u6.jpg
9 X = Br, 1i 2i 70 80
10 X = Cl, 1j 2j 71 80
11 X = F, 1k 2k 84 80
12 X = Me, 1l 2l 73 82
graphic file with name d1ra02297k-u7.jpg graphic file with name d1ra02297k-u8.jpg
13 X = Br, 1m 2m 72 95
14 X = Cl, 1n 2n 78 94
15 X = F, 1o 2o 83 91
16 X = Ph, 1p 2p 84 94
17 X = Me, 1q 2q 87 90
18e graphic file with name d1ra02297k-u9.jpg graphic file with name d1ra02297k-u10.jpg 75 90
19 graphic file with name d1ra02297k-u11.jpg graphic file with name d1ra02297k-u12.jpg 31 80
a

Reactions were carried out with substrate 1 (0.50 mmol), (DHQD)2PHAL (0.050 mmol), (−)-CSA (0.050 mmol), and PhCONHBr (0.60 mmol) in CH3CN (5.0 mL) and water (0.50 mL) at −30 °C for 72 h unless otherwise noted.

b

Isolated yield.

c

Determined by chiral HPLC analysis. For entry 1, the absolute configuration was determined by comparing the optical rotation of the corresponding epoxide with the reported one11 upon treatment with K2CO3 in acetone (Scheme 3). For others, the absolute configurations were tentatively assigned by analogy.

d

The reaction was carried out at −40 °C for 168 h.

e

MeOH was used as nucleophile.

The absolute configuration of bromohydrin 2a was determined by converting it to the corresponding epoxide 4 with K2CO3 (Scheme 3) and comparing the optical rotation of the epoxide with the reported one.11 The bromohydroxylation reaction can also be carried out on a relatively large scale. For example, 1.1341 g of bromohydrin 2m was obtained in 70% yield with 95% ee (Scheme 4). As shown in Scheme 5, bromohydrin 2m can be converted to bromoacetal 5 in 86% yield without loss of the ee. Sulfide 6 was obtained in 65% yield and 95% ee when 2m was reacted with sodium thiophenolate.

Scheme 3. Determination of absolute configuration of bromohydrin 2a.

Scheme 3

Scheme 4. Bromohydroxylation on gram scale.

Scheme 4

Scheme 5. Synthetic transformations of bromohydrin 2m.

Scheme 5

Optically active bromoether like 2r could also serve as useful intermediates for further transformations (Scheme 6). Treating 2r with NaN3 in DMF at 80 °C gave azide 7 in 50% yield and 90% ee with inversion of configuration. The bromide of 2r could also be converted to chloride 8 in 90% ee while the yield was somewhat low. Epoxide 9 was obtained in 87% yield and 90% ee by treatment of 2r with NaOH in dioxane and water. When 2r was reacted with PhSNa in DMF at 80 °C, sulfide 10 was isolated in 73% yield and 90% ee. The reaction likely proceeded via epoxide 9. The synthetic application is further illustrated in Scheme 7. Azide 11 and chloride 12 were obtained from 9 in 80% and 78% yield, respectively, without erosion of the optical activity.12

Scheme 6. Synthetic transformations of bromoether 2r.

Scheme 6

Scheme 7. Synthetic transformations of epoxide 9.

Scheme 7

A precise understanding of the reaction mechanism awaits further study. As previously described,10 two possible transition state models are outlined in Fig. 2. The substrate is likely docked in the chiral pocket through π,π-stacking with quinoline of the catalyst. Such π,π-interaction appeared to be enhanced by the substituents on the phenyl groups, consequently leading to the significant increase of the enantioselectivity. In model A, N-bromobenzamide was activated by both the tertiary amine of the catalyst and additive (−)-CSA to increase its electrophility toward the double bond of the reacting substrate. In model B, the tertiary amine of the catalyst could first be protonated by additive (−)-CSA, and N-bromobenzamide would subsequently be activated by the resulting quaternary ammonium salt via hydrogen bonding.

Fig. 2. Two possible transition state models.

Fig. 2

Conclusions

In summary, bromohydroxylation of olefins is a classic and important electrophilic addition reaction in organic chemistry. Asymmetric version of this reaction process has been challenging. In this work, we have found that cinnamyl alcohols are effective substrates for asymmetric bromohydroxylation with (DHQD)2PHAL as catalyst, (−)-CSA additive, PhCONHBr as bromine source, and H2O as nucleophile, providing the corresponding optically active bromohydrins with up to 95% ee. The resulting bromohydrin and related bromoether can be transformed into various highly functionalized molecules with maintained ee's. The current reaction process represents a significant progress in asymmetric bromohydroxylation. Further understanding reaction mechanism, developing more effective catalyst system, and expanding the substrate scope are currently underway.

Conflicts of interest

There are no conflicts to declare.

Supplementary Material

RA-011-D1RA02297K-s001
RA-011-D1RA02297K-s002

Acknowledgments

We gratefully acknowledge the National Natural Science Foundation of China (21632005) and Changzhou University for the financial support. We also thank Miao Zhao at Changzhou University for some experimental contributions.

Electronic supplementary information (ESI) available: Experimental, characteriza-tion data, X-ray structures of 2a, 2e, and 12, HPLC data for determination of enantiomeric excesses, and NMR spectra. CCDC 1941798, 1963482, and 2027431. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d1ra02297k

Notes and references

  1. For leading reviews on halogenations of olefins, see: ; (a) Dowle M. D. Davies D. I. Synthesis and synthetic utility of halolactones. Chem. Soc. Rev. 1979;8:171. doi: 10.1039/CS9790800171. [DOI] [Google Scholar]; (b) Li G. Kotti S. R. S. S. Timmons C. Recent development of regio- and stereoselective aminohalogenation reaction of alkenes. Eur. J. Org. Chem. 2007:2745. doi: 10.1002/ejoc.200600990. [DOI] [Google Scholar]; (c) Cresswell A. J. Eey S. T.-C. Denmark S. E. Catalytic, stereoselective dihalogenation of alkenes: challenges and opportunities. Angew. Chem., Int. Ed. 2015;54:15642. doi: 10.1002/anie.201507152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. For leading reviews on intramolecular asymmetric halogenation of olefins, see: ; (a) Chen G. Ma S. Enantioselective halocyclization reactions for the synthesis of chiral cyclic compounds. Angew. Chem., Int. Ed. 2010;49:8306. doi: 10.1002/anie.201003114. [DOI] [PubMed] [Google Scholar]; (b) Castellanos A. Fletcher S. P. Current methods for asymmetric halogenation of olefins. Chem.–Eur. J. 2011;17:5766. doi: 10.1002/chem.201100105. [DOI] [PubMed] [Google Scholar]; (c) Tan C. K. Zhou L. Yeung Y.-Y. Organocatalytic enantioselective halolactonizations: strategies of halogen activation. Synlett. 2011:1335. [Google Scholar]; (d) Hennecke U. New catalytic approaches towards the enantioselective halogenation of alkenes. Chem.–Asian J. 2012;7:456. doi: 10.1002/asia.201100856. [DOI] [PubMed] [Google Scholar]; (e) Denmark S. E. Kuester W. E. Burk M. T. Catalytic, asymmetric halofunctionalization of alkenes-a critical perspective. Angew. Chem., Int. Ed. 2012;51:10938. doi: 10.1002/anie.201204347. [DOI] [PMC free article] [PubMed] [Google Scholar]; (f) Murai K. Fujioka H. Recent progress in organocatalytic asymmetric halocyclization. Heterocycles. 2013;87:763. doi: 10.3987/REV-12-762. [DOI] [Google Scholar]; (g) Chemler S. R. Bovino M. T. Catalytic aminohalogenation of alkenes and alkynes. ACS Catal. 2013;3:1076. doi: 10.1021/cs400138b. [DOI] [PMC free article] [PubMed] [Google Scholar]; (h) Tan C. K. Yeung Y.-Y. Recent advances in stereoselective bromofunctionalization of alkenes using N-bromoamide reagents. Chem. Commun. 2013;49:7985. doi: 10.1039/C3CC43950J. [DOI] [PubMed] [Google Scholar]; (i) Tripathi C. B. Mukherjee S. Catalytic enantioselective halocyclizations beyond lactones: emerging routes to enantioenriched nitrogenous heterocycles. Synlett. 2014;25:163. [Google Scholar]; (j) Cheng Y. A. Yu W. Z. Yeung Y.-Y. Recent advances in asymmetric intra- and intermolecular halofunctionalizations of alkenes. Org. Biomol. Chem. 2014;12:2333. doi: 10.1039/C3OB42335B. [DOI] [PubMed] [Google Scholar]; (k) Zheng S. Schienebeck C. M. Zhang W. Wang H.-Y. Tang W. Cinchona alkaloids as organocatalysts in enantioselective halofunctionalization of alkenes and alkynes. Asian J. Org. Chem. 2014;3:366. doi: 10.1002/ajoc.201400030. [DOI] [Google Scholar]
  3. For leading references on intramolecular asymmetric halogenation of olefins, see: ; (a) Inoue T. Kitagawa O. Ochiai O. Shiro M. Taguchi T. Catalytic asymmetric iodocarbocyclization reaction. Tetrahedron Lett. 1995;36:9333. doi: 10.1016/0040-4039(95)02021-G. [DOI] [Google Scholar]; (b) Grossman R. B. Trupp R. J. The first reagent-controlled asymmetric halolactonizations. Dihydroquinidine–halogen complexes as chiral sources of positive halogen ion. Can. J. Chem. 1998;76:1233. doi: 10.1139/v98-153. [DOI] [Google Scholar]; (c) Kang S. H. Lee S. B. Park C. M. Catalytic enantioselective iodocyclization of γ-hydroxy-cis-alkenes. J. Am. Chem. Soc. 2003;125:15748. doi: 10.1021/ja0369921. [DOI] [PubMed] [Google Scholar]; (d) Wang M. Gao L. X. Mai W. P. Xia A. X. Wang F. Zhang S. B. Enantioselective iodolactonization catalyzed by chiral quaternary ammonium salts derived from cinchonidine. J. Org. Chem. 2004;69:2874. doi: 10.1021/jo035719e. [DOI] [PubMed] [Google Scholar]; (e) Sakakura A. Ukai A. Ishihara K. Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites. Nature. 2007;445:900. doi: 10.1038/nature05553. [DOI] [PubMed] [Google Scholar]; (f) Whitehead D. C. Yousefi R. Jaganathan A. Borhan B. An organocatalytic asymmetric chlorolactonization. J. Am. Chem. Soc. 2010;132:3298. doi: 10.1021/ja100502f. [DOI] [PMC free article] [PubMed] [Google Scholar]; (g) Zhang W. Zheng S. Liu N. Werness J. B. Guzei I. A. Tang W. Enantioselective bromolactonization of conjugated (Z)-enynes. J. Am. Chem. Soc. 2010;132:3664. doi: 10.1021/ja100173w. [DOI] [PubMed] [Google Scholar]; (h) Zhou L. Tan C. K. Jiang X. Chen F. Yeung Y.-Y. Asymmetric bromolactonization Using amino-thiocarbamate catalyst. J. Am. Chem. Soc. 2010;132:15474. doi: 10.1021/ja1048972. [DOI] [PubMed] [Google Scholar]; (i) Veitch G. E. Jacobsen E. N. Tertiary aminourea-catalyzed enantioselective iodolactonization. Angew. Chem., Int. Ed. 2010;49:7332. doi: 10.1002/anie.201003681. [DOI] [PMC free article] [PubMed] [Google Scholar]; (j) Murai K. Matsushita T. Nakamura A. Fukushima S. Shimura M. Fujioka H. Asymmetric bromolactonization catalyzed by a C3-symmetric chiral trisimidazoline. Angew. Chem., Int. Ed. 2010;49:9174. doi: 10.1002/anie.201005409. [DOI] [PubMed] [Google Scholar]; (k) Hennecke U. Müller C. H. Fröhlich R. Enantioselective haloetherification by asymmetric opening of meso-halonium ions. Org. Lett. 2011;13:860. doi: 10.1021/ol1028805. [DOI] [PubMed] [Google Scholar]; (l) Chen Z.-M. Zhang Q.-W. Chen Z.-H. Li H. Tu Y.-Q. Zhang F.-M. Tian J.-M. Organocatalytic asymmetric halogenation/semipinacol rearrangement: highly efficient synthesis of chiral α-oxa-quaternary β-haloketones. J. Am. Chem. Soc. 2011;133:8818. doi: 10.1021/ja201794v. [DOI] [PubMed] [Google Scholar]; (m) Lozano O. Blessley G. Campo T. M. D. Thompson A. L. Giuffredi G. T. Bettati M. Walker M. Borman R. Gouverneur V. Organocatalyzed enantioselective fluorocyclizations. Angew. Chem., Int. Ed. 2011;50:8105. doi: 10.1002/anie.201103151. [DOI] [PubMed] [Google Scholar]; (n) Rauniyar V. Lackner A. D. Hamilton G. L. Toste F. D. Asymmetric electrophilic fluorination using an anionic chiral phase-transfer catalyst. Science. 2011;334:1681. doi: 10.1126/science.1213918. [DOI] [PubMed] [Google Scholar]; (o) Denmark S. E. Burk M. T. Enantioselective bromocycloetherification by Lewis base/chiral Brønsted acid cooperative catalysis. Org. Lett. 2012;14:256. doi: 10.1021/ol203033k. [DOI] [PMC free article] [PubMed] [Google Scholar]; (p) Dobish M. C. Johnston J. N. Achiral counterion control of enantioselectivity in a Brønsted acid catalyzed iodolactonization. J. Am. Chem. Soc. 2012;134:6068. doi: 10.1021/ja301858r. [DOI] [PMC free article] [PubMed] [Google Scholar]; (q) Bovino M. T. Chemler S. R. Catalytic enantioselective alkene aminohalogenation/cyclization involving atom transfer. Angew. Chem., Int. Ed. 2012;51:3923. doi: 10.1002/anie.201109044. [DOI] [PMC free article] [PubMed] [Google Scholar]; (r) Paull D. H. Fang C. Donald J. R. Pansick A. D. Martin S. F. Bifunctional catalyst promotes highly enantioselective bromolactonizations to generate stereogenic C-Br Bonds. J. Am. Chem. Soc. 2012;134:11128. doi: 10.1021/ja305117m. [DOI] [PMC free article] [PubMed] [Google Scholar]; (s) Lee H. J. Kim D. Y. Catalytic enantioselective bromolactonization of alkenoic acids in the presence of palladium complexes. Tetrahedron Lett. 2012;53:6984. doi: 10.1016/j.tetlet.2012.10.051. [DOI] [Google Scholar]; (t) Tungen J. E. Nolsøe J. M. J. Hansen T. V. Asymmetric iodolactonization utilizing chiral squaramides. Org. Lett. 2012;14:5884. doi: 10.1021/ol302798g. [DOI] [PubMed] [Google Scholar]; (u) Ikeuchi K. Ido S. Yoshimura S. Asakawa T. Inai M. Hamashima Y. Kan T. Catalytic desymmetrization of cyclohexadienes by asymmetric bromolactonization. Org. Lett. 2012;14:6016. doi: 10.1021/ol302908a. [DOI] [PubMed] [Google Scholar]; (v) Zeng X. Miao C. Wang S. Xia C. Sun W. Asymmetric 5-endo chloroetherification of homoallylic alcohols toward the synthesis of chiral β-chlorotetrahydrofurans. Chem. Commun. 2013;49:2418. doi: 10.1039/C2CC38436A. [DOI] [PubMed] [Google Scholar]; (w) Romanov-Michailidis F. Guénée L. Alexakis A. Enantioselective organocatalytic fluorination-induced Wagner–Meerwein rearrangement. Angew. Chem., Int. Ed. 2013;52:9266. doi: 10.1002/anie.201303527. [DOI] [PubMed] [Google Scholar]; (x) Tripathi C. B. Mukherjee S. Catalytic enantioselective iodoetherification of oximes. Angew. Chem., Int. Ed. 2013;52:8450. doi: 10.1002/anie.201304173. [DOI] [PubMed] [Google Scholar]; (y) Yin Q. You S.-L. Enantioselective chlorocyclization of indole derived benzamides for the synthesis of spiro-indolines. Org. Lett. 2013;15:4266. doi: 10.1021/ol4020943. [DOI] [PubMed] [Google Scholar]; (z) Armstrong A. Braddock D. C. Jones A. X. Clark S. Catalytic asymmetric bromolactonization reactions using (DHQD)2PHAL-benzoic acid combinations. Tetrahedron Lett. 2013;54:7004. doi: 10.1016/j.tetlet.2013.10.043. [DOI] [Google Scholar]; (aa) Xie W. Jiang G. Liu H. Hu J. Pan X. Zhang H. Wan X. Lai Y. Ma D. Highly enantioselective bromocyclization of tryptamines and its application in the synthesis of (-)-chimonanthine. Angew. Chem., Int. Ed. 2013;52:12924. doi: 10.1002/anie.201306774. [DOI] [PubMed] [Google Scholar]; (ab) Han X. Dong C. Zhou H.-B. C 3 -Symmetric cinchonine-squaramide-catalyzed asymmetric chlorolactonization of styrene-type carboxylic acids with 1,3-dichloro-5,5-dimethylhydantoin: an efficient method to chiral isochroman-1-ones. Adv. Synth. Catal. 2014;356:1275. doi: 10.1002/adsc.201300915. [DOI] [Google Scholar]; (ac) Zhu C.-L. Tian J.-S. Gu Z.-Y. Xing G.-W. Xu H. Iron(II)-catalyzed asymmetric intramolecular olefin aminochlorination using chloride ion. Chem. Sci. 2015;6:3044. doi: 10.1039/C5SC00221D. [DOI] [PMC free article] [PubMed] [Google Scholar]; (ad) Cai Y. Zhou P. Liu X. Zhao J. Lin L. Feng X. Diastereoselectively switchable asymmetric haloaminocyclization for the synthesis of cyclic sulfamates. Chem.–Eur. J. 2015;21:6386. doi: 10.1002/chem.201500454. [DOI] [PubMed] [Google Scholar]; (ae) Yu Y.-M. Huang Y.-N. Deng J. Catalytic asymmetric chlorocyclization of 2-vinylphenylcarbamates for Synthesis of 1,4-Dihydro-2H-3,1-benzoxazin-2-one Derivatives. Org. Lett. 2017;19:1224. doi: 10.1021/acs.orglett.7b00272. [DOI] [PubMed] [Google Scholar]; (af) Nishiyori R. Tsuchihashi A. Mochizuki A. Kaneko K. Yamanaka M. Shirakawa S. Design of chiral bifunctional dialkyl sulfide catalysts for regio-, diastereo-, and enantioselective bromolactonization. Chem.–Eur. J. 2018;24:16747. doi: 10.1002/chem.201803703. [DOI] [PubMed] [Google Scholar]; (ag) Nishikawa Y. Hamamoto Y. Satoh R. Akada N. Kajita S. Nomoto M. Miyata M. Nakamura M. Matsubara C. Hara O. Enantioselective bromolactonization of trisubstituted olefinic acids catalyzed by chiral pyridyl phosphoramides. Chem.–Eur. J. 2018;24:18880. doi: 10.1002/chem.201804630. [DOI] [PubMed] [Google Scholar]; (ah) Wang W. He H. Gan M. Wang H. Wang Y. Jiang X. Enantioselective syntheses of α-exo-methylene-lactones via organocatalytic halolactonization. Adv. Synth. Catal. 2019;361:4797. doi: 10.1002/adsc.201900728. [DOI] [Google Scholar]; (ai) Cao Q. Luo J. Zhao X. Chiral sulfide catalysis for desymmetrizing enantioselective chlorination. Angew. Chem., Int. Ed. 2019;58:1315. doi: 10.1002/anie.201811621. [DOI] [PubMed] [Google Scholar]
  4. For leading reviews on intermolecular asymmetric halogenation of olefins, see: ; (a) Chen J. Zhou L. Recent progress in the asymmetric intermolecular halogenation of alkenes. Synthesis. 2014:586. [Google Scholar]; (b) Landry M. L. Burns N. Z. Catalytic enantioselective dihalogenation in total synthesis. Acc. Chem. Res. 2018;51:1260. doi: 10.1021/acs.accounts.8b00064. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Cai Y. Liu X. Zhou P. Feng X. Asymmetric catalytic halofunctionalization of α,β-unsaturated carbonyl compounds. J. Org. Chem. 2019;84:1. doi: 10.1021/acs.joc.8b01951. [DOI] [PubMed] [Google Scholar]
  5. For leading references on intermolecular asymmetric halogenation of olefins, see: ; (a) Cai Y. Liu X. Hui Y. Jiang J. Wang W. Chen W. Lin L. Feng X. Catalytic asymmetric bromoamination of chalcones: highly efficient synthesis of chiral α-Bromo-β-Amino ketone derivatives. Angew. Chem., Int. Ed. 2010;49:6160. doi: 10.1002/anie.201002355. [DOI] [PubMed] [Google Scholar]; (b) Cai Y. Liu X. Jiang J. Chen W. Lin L. Feng X. Catalytic asymmetric chloroamination reaction of α,β-unsaturated γ-keto esters and chalcones. J. Am. Chem. Soc. 2011;133:5636. doi: 10.1021/ja110668c. [DOI] [PubMed] [Google Scholar]; (c) Cai Y. Liu X. Li J. Chen W. Wang W. Lin L. Feng X. Asymmetric iodoamination of chalcones and 4-aryl-4-oxobutenoates catalyzed by a complex based on scandium(III) and a N,N’-dioxide ligand. Chem.–Eur. J. 2011;17:14916. doi: 10.1002/chem.201102453. [DOI] [PubMed] [Google Scholar]; (d) Nicolaou K. C. Simmons N. L. Ying Y. Heretsch P. M. Chen J. S. Enantioselective dichlorination of allylic alcohols. J. Am. Chem. Soc. 2011;133:813. doi: 10.1021/ja202555m. [DOI] [PMC free article] [PubMed] [Google Scholar]; (e) Li G.-X. Fu Q.-Q. Zhang X.-M. Jiang J. Tang Z. First asymmetric intermolecular bromoesterification catalyzed by chiral Brønsted acid. Tetrahedron: Asymmetry. 2012;23:245. doi: 10.1016/j.tetasy.2012.02.016. [DOI] [Google Scholar]; (f) Alix A. Lalli C. Retailleau P. Masson G. Highly enantioselective electrophilic α-bromination of enecarbamates: chiral phosphoric acid and calcium phosphate salt catalysts. J. Am. Chem. Soc. 2012;134:10389. doi: 10.1021/ja304095z. [DOI] [PubMed] [Google Scholar]; (g) Zhang W. Liu N. Schienebeck C. M. Zhou X. Izhar I. I. Guzei I. A. Tang W. Enantioselective intermolecular bromoesterification of allylic sulfonamides. Chem. Sci. 2013;4:2652. doi: 10.1039/C3SC50446H. [DOI] [Google Scholar]; (h) Cai Y. Liu X. Zhou P. Kuang Y. Lin L. Feng X. Iron-catalyzed asymmetric haloamination reactions. Chem. Commun. 2013;49:8054. doi: 10.1039/C3CC44421J. [DOI] [PubMed] [Google Scholar]; (i) Hu D. X. Shibuya G. M. Burns N. Z. Catalytic enantioselective dibromination of allylic alcohols. J. Am. Chem. Soc. 2013;135:12960. doi: 10.1021/ja4083182. [DOI] [PubMed] [Google Scholar]; (j) Qi J. Fan G.-T. Chen J. Sun M.-H. Dong Y.-T. Zhou L. Catalytic enantioselective bromoamination of allylic alcohols. Chem. Commun. 2014;50:13841. doi: 10.1039/C4CC05772D. [DOI] [PubMed] [Google Scholar]; (k) Hu D. X. Seidl F. J. Bucher C. Burns N. Z. Catalytic chemo-, regio-, and enantioselective bromochlorination of allylic alcohols. J. Am. Chem. Soc. 2015;137:3795. doi: 10.1021/jacs.5b01384. [DOI] [PubMed] [Google Scholar]; (l) Landry M. L. Hu D. X. Mckenna G. M. Burns N. Z. Catalytic enantioselective dihalogenation and the selective synthesis of (-)-deschloromytilipin A and (-)-danicalipin A. J. Am. Chem. Soc. 2016;138:5150. doi: 10.1021/jacs.6b01643. [DOI] [PMC free article] [PubMed] [Google Scholar]; (m) Huang W.-S. Chen L. Zheng Z.-J. Yang K.-F. Xu Z. Cui Y.-M. Xu L.-W. Catalytic asymmetric bromochlorination of aromatic allylic alcohols promoted by multifunctional Schiff base ligands. Org. Biomol. Chem. 2016;14:7927. doi: 10.1039/C6OB01306F. [DOI] [PubMed] [Google Scholar]; (n) Lebée C. Blanchard F. Masson G. Highly enantioselective intermolecular iodo- and chloroamination of enecarbamates catalyzed by chiral phosphoric acids or calcium phosphate salts. Synlett. 2016;27:559. [Google Scholar]; (o) Guo S. Cong F. Guo R. wang L. Tang P. Asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with a new trifluoromethoxylation reagent. Nat. Chem. 2017;9:546. doi: 10.1038/nchem.2711. [DOI] [PubMed] [Google Scholar]; (p) Soltanzadeh B. Jaganathan A. Yi Y. Yi H. Staples R. J. Borhan B. Highly regio- and enantioselective vicinal dihalogenation of allyl amides. J. Am. Chem. Soc. 2017;139:2132. doi: 10.1021/jacs.6b09203. [DOI] [PMC free article] [PubMed] [Google Scholar]; (q) Zhou P. Lin L. Chen L. Zhong X. Liu X. Feng X. Iron-catalyzed asymmetric haloazidation of α,β-unsaturated ketones: construction of organic azides with two vicinal stereocenters. J. Am. Chem. Soc. 2017;139:13414. doi: 10.1021/jacs.7b06029. [DOI] [PubMed] [Google Scholar]; (r) Burckle A. J. Gàl B. Seidl F. J. Vasilev V. H. Burns N. Z. Enantiospecific solvolytic functionalization of bromochlorides. J. Am. Chem. Soc. 2017;139:13562. doi: 10.1021/jacs.7b07792. [DOI] [PMC free article] [PubMed] [Google Scholar]; (s) Seidl F. J. Min C. Lopez J. A. Burns N. Z. Catalytic regio- and enantioselective haloazidation of allylic alcohols. J. Am. Chem. Soc. 2018;140:15646. doi: 10.1021/jacs.8b10799. [DOI] [PMC free article] [PubMed] [Google Scholar]; (t) Li N. Yu H. Wang R. Shen J. Wu W.-Q. Liu K. Sun T.-T. Zhang Z.-Z. Yao C.-Z. Yu J. Enantioselective intermolecular iodoacetalization of enol ethers catalyzed by chiral Co(III)-complex-templated Brønsted acids. Tetrahedron Lett. 2018;59:3605. doi: 10.1016/j.tetlet.2018.08.047. [DOI] [Google Scholar]; (u) Wedek V. Lommel R. V. Daniliuc C. G. Proft F. D. Hennecke U. Organocatalytic, enantioselective dichlorination of unfunctionalized alkenes. Angew. Chem., Int. Ed. 2019;58:9239. doi: 10.1002/anie.201901777. [DOI] [PubMed] [Google Scholar]; (v) Arai T. Horigane K. Suzuki T. K. Itoh R. Yamanaka M. Catalytic asymmetric iodoesterification of simple alkenes. Angew. Chem., Int. Ed. 2020;59:12680. doi: 10.1002/anie.202003886. [DOI] [PubMed] [Google Scholar]; (w) Steigerwald D. C. Soltanzadeh B. Sarkar A. Morgenstern C. C. Staples R. J. Borhan B. Ritter-enabled catalytic asymmetric chloroamidation of olefins. Chem. Sci. 2021;12:1834. doi: 10.1039/D0SC05224H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. For oxyfluorination of enamides, see: ; Honjo T. Phipps R. J. Rauniyar V. Toste F. D. A doubly axially chiral phosphoric acid catalyst for the asymmetric tandem oxyfluorination of enamides. Angew. Chem., Int. Ed. 2012;51:9684. doi: 10.1002/anie.201205383. [DOI] [PubMed] [Google Scholar]
  7. For halohydroxylation, see: ; (a) Soltanzadeh B. Jaganathan A. Staples R. J. Borhan B. Highly stereoselective intermolecular haloetherification and haloesterification of allyl amides. Angew. Chem., Int. Ed. 2015;54:9517. doi: 10.1002/anie.201502341. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Cao Y.-M. Lentz D. Christmann M. Synthesis of enantioenriched bromohydrins via divergent reactions of racemic intermediates from anchimeric oxygen borrowing. J. Am. Chem. Soc. 2018;140:10677. doi: 10.1021/jacs.8b06432. [DOI] [PubMed] [Google Scholar]; (c) Li W. Zhou P. Li G. Lin L. Feng X. Catalytic asymmetric halohydroxylation of α,β-unsaturated ketones with water as the nucleophile. Adv. Synth. Catal. 2020;362:1982. doi: 10.1002/adsc.202000080. [DOI] [Google Scholar]
  8. (a) Huang D. Wang H. Xue F. Guan H. Li L. Peng X. Shi Y. Enantioselective bromocyclization of olefins catalyzed by chiral phosphoric acid. Org. Lett. 2011;13:6350. doi: 10.1021/ol202527g. [DOI] [PubMed] [Google Scholar]; (b) Huang D. Liu X. Li L. Cai Y. Liu W. Shi Y. Enantioselective bromoaminocyclization of allyl N-tosylcarbamates catalyzed by a chiral phosphine-Sc(OTf)3 complex. J. Am. Chem. Soc. 2013;135:8101. doi: 10.1021/ja4010877. [DOI] [PubMed] [Google Scholar]; (c) Huang H. Pan H. Cai Y. Liu M. Tian H. Shi Y. Enantioselective 6-endo bromoaminocyclization of 2,4-dienyl N-tosylcarbamates catalyzed by a chiral phosphine oxide-Sc(OTf)3 complex. A dramatic additive effect. Org. Biomol. Chem. 2015;13:3566. doi: 10.1039/C5OB00001G. [DOI] [PubMed] [Google Scholar]; (d) Liu W. Pan H. Tian H. Shi Y. Enantioselective 6-exo-bromoaminocyclization of homoallylic N-tosylcarbamates catalyzed by a novel monophosphine-Sc(OTf)3 complex. Org. Lett. 2015;17:3956. doi: 10.1021/acs.orglett.5b01779. [DOI] [PubMed] [Google Scholar]; (e) Li Z. Shi Y. Chiral phosphine oxide-Sc(OTf)3 complex catalyzed enantioselective bromoaminocyclization of 2-benzofuranylmethyl N-tosylcarbamates. Approach to a novel class of optically active spiro compounds. Org. Lett. 2015;17:5752. doi: 10.1021/acs.orglett.5b02817. [DOI] [PubMed] [Google Scholar]; (f) Pan H. Huang H. Liu W. Tian H. Shi Y. Phosphine oxide-Sc(OTf)3 catalyzed highly regio- and enantioselective bromoaminocyclization of (E)-cinnamyl tosylcarbamates. An approach to a class of synthetically versatile functionalized molecules. Org. Lett. 2016;18:896. doi: 10.1021/acs.orglett.5b03459. [DOI] [PubMed] [Google Scholar]; (g) Tan X. Pan H. Tian H. Shi Y. Phosphine oxide-Sc(OTf)3 catalyzed enantioselective bromoaminocyclization of tri-substituted allyl N-tosylcarbamates. Sci. China: Chem. 2018;61:656. doi: 10.1007/s11426-017-9192-x. [DOI] [Google Scholar]
  9. Li L. Su C. Liu X. Tian H. Shi Y. Catalytic asymmetric intermolecular bromoesterification of unfunctionalized olefins. Org. Lett. 2014;16:3728. doi: 10.1021/ol501542r. [DOI] [PubMed] [Google Scholar]
  10. (a) Zhang X. Li J. Tian H. Shi Y. Catalytic asymmetric bromination of unfunctionalized olefins with H2O as a nucleophile. Chem.–Eur. J. 2015;21:11658. doi: 10.1002/chem.201502133. [DOI] [PubMed] [Google Scholar]; (b) Li J. Li Z. Zhang X. Xu B. Shi Y. Catalytic enantioselective bromohydroxylation of aryl olefins with flexible functionalities. Org. Chem. Front. 2017;4:1084. doi: 10.1039/C6QO00636A. [DOI] [Google Scholar]
  11. Gao Y. Hanson R. M. Klunder J. M. Ko S. Y. Masamune Hi. Sharpless K. B. Catalytic asymmetric epoxidation and kinetic resolution modified procedures including in situ derivatization. J. Am. Chem. Soc. 1987;109:5765. doi: 10.1021/ja00253a032. [DOI] [Google Scholar]
  12. The stereochemistry of 5–11 was tentatively assigned based on mechanistic considerations

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

RA-011-D1RA02297K-s001
RA-011-D1RA02297K-s002

Articles from RSC Advances are provided here courtesy of Royal Society of Chemistry

RESOURCES