Skip to main content
Entropy logoLink to Entropy
. 2021 Dec 20;23(12):1700. doi: 10.3390/e23121700

Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures

Shanying Lin 1,*, Heming Jia 2,*, Laith Abualigah 3,4, Maryam Altalhi 5
Editor: Ercan Kuruoglu
PMCID: PMC8700578  PMID: 34946006

Abstract

Image segmentation is a fundamental but essential step in image processing because it dramatically influences posterior image analysis. Multilevel thresholding image segmentation is one of the most popular image segmentation techniques, and many researchers have used meta-heuristic optimization algorithms (MAs) to determine the threshold values. However, MAs have some defects; for example, they are prone to stagnate in local optimal and slow convergence speed. This paper proposes an enhanced slime mould algorithm for global optimization and multilevel thresholding image segmentation, namely ESMA. First, the Levy flight method is used to improve the exploration ability of SMA. Second, quasi opposition-based learning is introduced to enhance the exploitation ability and balance the exploration and exploitation. Then, the superiority of the proposed work ESMA is confirmed concerning the 23 benchmark functions. Afterward, the ESMA is applied in multilevel thresholding image segmentation using minimum cross-entropy as the fitness function. We select eight greyscale images as the benchmark images for testing and compare them with the other classical and state-of-the-art algorithms. Meanwhile, the experimental metrics include the average fitness (mean), standard deviation (Std), peak signal to noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM), and Wilcoxon rank-sum test, which is utilized to evaluate the quality of segmentation. Experimental results demonstrated that ESMA is superior to other algorithms and can provide higher segmentation accuracy.

Keywords: multilevel thresholding image segmentation, slime mould algorithm, minimum cross-entropy, meta-heuristics

1. Introduction

Image segmentation is fundamental and challenging work in computer vision, pattern recognition, and image processing. It is widely used in various fields, such as ship target segmentation and medical image processing [1]. The main goal of segmentation is to divide the image into homogeneous classes. The elements of each class share common attributes such as grayscale, feature, color, intensity, or texture [2,3,4,5]. In the literature, there are four standard image segmentation methods, which can be divided into (1) clustering-based methods, (2) region-based methods, (3) graph-based methods, (4) thresholding-based methods. Among the existing methods, one of the most widespread techniques is multilevel thresholding, which is widely used owing to its ease of implementation, high performance, and robustness compared with other methods [6]. Image thresholding techniques can be classified into two categories: Bilevel and multilevel. In the prior category, the image is separated into two homogeneous foreground and background areas using a single threshold value. The latter segment-techniques segment divides an image into more than two regions based on pixel intensities known as histogram [7]. Bilevel thresholding can solve simple image segmentation problems involving only two grey levels. However, the bilevel cannot be suitable for complicated and high-grade images. Therefore, the multilevel thresholding technique is the primary method for real-world applications [8]. Generally speaking, selecting threshold values is crucial when segmenting an image because of the enormous image thresholds. Consequently, it is formulated into an optimization problem, which includes parametric or nonparametric methods [9].

The parametric approach considers that each image class can be defined using probability density distributions, but this technique is computationally expensive. By contrast, the nonparametric approach uses criteria to separate the pixels into homogeneous regions, and then the thresholds are determined using statistical measures (entropy or variance) [10]. Over the years, many works in the literature have proposed some of these criteria. Among them, Otsu’s technique maximizes the between-class variance of each segmented class to achieve the optimal thresholds [11]. Kapur’s approach used the entropy of the histogram as a formula to obtain the optimal thresholds [12]. Li et al. [13] presented the minimum cross-entropy to minimize the cross-entropy between the original and segmented image to get the optimal thresholds values.

Notwithstanding, these approaches have limitations; for example, they are computationally expensive, significantly when the number of thresholds is increased. Therefore, multilevel thresholding is considered a particular challenge that needs to be optimized. For these reasons, meta-heuristic methods are commonly utilized in the related literature to solve these problems [14].

MAs are inspired by nature, including areas such as physics, biology, and social behavior. Owing to their easy implementation, flexibility, and high performance, many scholars have used them to determine the optimal values for real-world problems [15,16,17,18,19,20]. Over the past years, many meta-heuristic algorithms have been proposed. For instance, Particle Swarm Optimization (PSO) [21], Differential Evolution (DE) [22], Genetic Algorithm [23], Teaching-Learning-based Optimization (TLBO) [24], Simulated Annealing (SA) [25], Gravity Search Algorithm (GSA) [26], and Ant Colony Optimization Algorithm (ACO) [27]. Other than these classic algorithms, many novel MAs have been proposed in the literature and widely used in different domains, such as Gray Wolf Optimization (GWO) [28], Whale Optimization Algorithm (WOA) [29], Salp Swarm Algorithm (SSA) [30], Sine Cosine Algorithm (SCA) [31], Arithmetic Optimization Algorithm (AOA) [32], Aquila Optimizer (AO) [33], Multi-Verse Optimization (MVO) [34], Slime Mould Algorithm (SMA) [35], and Remora Optimization Algorithm (ROA) [36].

In the literature, many works show the efficiency of MAs in obtaining optimal thresholds; the following are a few outstanding research works. Jia et al. [37] proposed an improved moth-flame optimization for color image segmentation using Otsu’s between-class variance and Kapur’s entropy as objective functions. The proposed method was compared with FPA, ACO, PSO, etc. Wu et al. [38] presented an ameliorated teaching-learning-based optimization based on a random learning method for multilevel thresholding using Kapur’s entropy and Otsu’s between-class variance. Pare et al. [39] proposed a color image multilevel segmentation strategy based on the Bat algorithm and Renyi’s entropy as the criterion to tackle the problems of multi-thresholding. Zhao et al. [40] presented a variant of SMA based on diffusion mechanism and association strategy for CT image segmentation. In this work, Renyi’s entropy was the objective fitness function. All of these works are examples of meta-heuristic algorithms applied in multilevel thresholding image segmentation. Generally, they provide good results on some benchmark images. However, considering the No Free Lunch (NFL) theorem proposed by Wolpert in 1997 [41], no unique optimization algorithm is available for solving all optimization problems. Furthermore, all meta-heuristic algorithms have limitations that affect the optimization capability, such as showing low convergence speed and unbalancing the exploration and exploitation ability.

Slime mould algorithm (SMA) is a novel meta-heuristic algorithm proposed by Li et al. in 2020 [35], which is inspired by the oscillation mode and behavior of slime mould in foraging. Since SMA has few parameters and shows better performance in specific fields, many scholars utilize it to solve questions of reality, such as parameter optimization of the fuzzy system and feature selection [36,37]. However, similar to other MAs, SMA may fall into local optimal and slow convergence speed in some optimization problems. Thus, many contributed works are proposed to enhance the performance of SMA. Dhawale et al. [42] suggested an improved SMA based on a chaotic strategy for solving global optimization and constrained engineering problems. Mostafa et al. [43] presented a modified SMA by adaptive weight to estimate the PV panel parameters. Hassan et al. [44] proposed an improved SMA via sine and cosine operators for solving economic and emission dispatch problems. Ewees et al. [45] integrated the SMA and firefly algorithm to improve the performance for feature selection.

While these proposed improved versions of the SMA algorithm are better than the original SMA algorithm on specific problems, when solving multilevel thresholding image segmentation, the imbalance between exploration and exploitation is still an unavoidable problem. This paper proposes a novel variant of SMA (ESMA) with the Levy flight and quasi opposition-based learning to tackle these shortcomings and obtain high-quality threshold values in image segmentation. The improvement involves two primary approaches. Firstly, the Levy flight strategy is applied to improve the exploration capability of SMA. Moreover, a novel variant of opposition-based learning (OBL), called quasi opposition-based learning (QOBL), is utilized to improve the ability to jump out the local optimal and balance the exploration and exploitation. In the experimental phase, the proposed ESMA is then tested on the 23 benchmark functions and applied to solve the multilevel thresholding image segmentation problem.

Meanwhile, the ESMA is also used to compare with other MAs. Furthermore, for the field of image segmentation, we evaluated the image segmentation results using Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM). The experimental results illustrate that the proposed algorithm can produce high-quality results for benchmark functions and the image segmentation field.

Specifically, the main contributions of this paper can be summarized as follows:

  • ESMA based on Levy flight and quasi opposition-based learning for solving global optimization problems and multilevel thresholding image segmentation.

  • The optimization performance of ESMA is evaluated on 23 benchmark functions including unimodal and multimodal.

  • DSMA is applied for thresholding segmentation using minimum cross-entropy measure.

  • The segmentation quality is verified according to the PSNR, SSIM, FSIM, and statistical test.

  • The performance of DSMA is compared with several classical and state-of-the-art optimization algorithm.

The remainder of this paper can be organized as follows: Section 2 describes a brief overview of SMA, Levy flight, quasi opposition-based learning, and maximum cross-entropy measure. Section 3 provides the details of the proposed algorithm. The experimental results are discussed and analyzed in detail in Section 4 and Section 5. Finally, the conclusion and future work are discussed in Section 6.

2. Preliminaries

This section presents the main inspiration and mathematical model of the slime mould algorithm (SMA). Next, the improvement strategy including Levy flight, and quasi opposition-based learning will be described. Finally, we will describe the minimum cross-entropy measure.

2.1. Slime Mould Algorithm

The slime mould algorithm (SMA) is a meta-heuristic optimization algorithm proposed recently by Li et al. [35], which is inspired by the oscillation behavior of slime mould in foraging. Slime mould achieves positive and negative feedback according to the quality of the food source. If the quality of the food source is high, the slime mould will use the region-limited search strategy. Meanwhile, if the food source is of low quality, the slime mould will leave this area and move to another food source in search space. Furthermore, SMA also has a slight chance of z to reinitialize the population in the search space.

Based on the above description, the updating process of slime mould can be expressed as in the following equation:

Xt+1=r2×UBLB+LB, r1<zXbt+vb×WXAtXBt, r3<pvc×Xt, r3p (1)

where z denotes the probability of slime mould reinitializing, which is 0.03; r1, r2, and r3 denote the random value in [0,1]; LB and UB represent the lower and upper bound of search space, respectively; t is the current iteration. Xbt represents global best solution; both XAt and XBt denote the random individual; vb ∈ [−a,a], and vc decreases linearly from one to zero. W represents the weight of slime mould.

The p can be calculated as follows:

p=tanhSiDF (2)

where i ∈ 1,2, …, N, S(i) is the sequence representing the fitness of search agents. DF indicates the best fitness obtained by the slime mould.

vb can be calculated as follows:

vb=[a,a] (3)
a=arctanh(tT+1) (4)

where T represents the maximum iteration.

Note that the coefficient W is an essential parameter, which simulates the oscillation frequency of slime mould under different food sources. The W can be calculated as follows:

WSmellIndexi=1+r4×logbFSibFwF+1,condition1r4×logbFSibFwF+1,others (5)
SmellIndex=sort(S) (6)

where r4 is a random value in [0,1]; bF and wF represent the best fitness and worst fitness obtained currently, respectively; condition indicates the rank first half of the search agent of S(i). The pseudo-code of SMA is shown in Algorithm 1.

Algorithm 1 Pseudo-code of SMA
Initialize the positions of search agent;
While current iteration < maximum iteration do
  Check if any search agent goes beyond the search space and amend it;
  Calculate the fitness of all slime mould;
  For each search agent do
   Update positions by Equation (1);
  End For
  t = t + 1;
End While
Return the best solution;

2.2. Levy Flight

Numerous studies reveal that the flight trajectories of many flying animals are consistent with characteristics typical of Levy flight. Levy flight is a class of non-Gaussian random walk that follows Levy distribution [46,47]. It performs occasional long-distance walking with frequent short-distance steps, as shown in Figure 1. The mathematical formula for Levy flight is as follows:

Levy=0.01×r5×σr61β (7)
σ=Γ1+β×sinπβ2Γ1+β2×β×2β121β (8)

where r4 and r5 are random values in [0,1], and β is a constant equal to 1.5.

Figure 1.

Figure 1

Levy distribution and 2D Levy trajectory.

2.3. Quasi Opposition-Based Learning

2.3.1. Opposition-Based Learning

Opposition-based learning (OBL) is an efficient search approach to avoid premature convergence, which was proposed by Tizhoosh in 2005 [48]. The main idea of OBL is to generate the opposite solution in the search space, then evaluate the original solution and its opposite solution by the objective function, respectively. Next, the best solution will be retained and go into the next iteration. Typically, the OBL strategy has high opportunities to provide closer optimal solutions than random ones.

We assume x to be an actual number in one dimension. Its opposite number xobl can be calculated by:

xobl=LB+UBx (9)

2.3.2. Quasi Opposition-Based Learning

Based on the above description, a variant of OBL called quasi opposition-based learning (QOBL) was proposed by Rahnamayan et al. [49]. Unlike OBL, the QOBL strategy applied a quasi-opposite solution rather than the opposite solution. Therefore, the QOBL approach is more effective in finding globally optimal solutions than the previous strategy. On the basic theory of opposite solution, the quasi-opposite solution can be calculated by:

xqobl=rand(LB+UB2,xobl) (10)

To understand the above theory more clearly, Figure 2 illustrates the original solution x, its opposite solution xobl, and its quasi-opposite solution xqobl.

Figure 2.

Figure 2

Diagram of OBL and QOBL.

2.4. Minimum Cross-Entropy

In 1968, cross-entropy was proposed by Kullback [50]. Cross-entropy measures the difference information between two probability distributions P=p1, p2,  , pN and Q=q1, q2,  , qN, defined by:

DP, Q=i=1Npilogpiqi (11)

In this work, we utilized minimum cross-entropy as a fitness function to find the optimal threshold value. The lower value of cross-entropy means less uncertainty and greater homogeneity. Let I be the origin grey image and h(i) be its histogram. Then, the thresholded image Ith can be calculated as follows:

Ith=μ(1, th),if I(x,y)<thμ(th, L+1),if I(x,y)th (12)

where th denotes the threshold and divides the image into two different regions (foreground and background), and μ(a,b) can be calculated by:

μ(a,b)=i=ab1ih(i)i=ab1h(i) (13)

The cross-entropy can be computed by:

fcross(th)=i=1th1ih(i)logiμ(1, th)+i=thLih(i)logiμ(th, L+1) (14)

The above objective functions are utilized to calculate the threshold value for bilevel thresholding. Thus it can be extended to a multilevel strategy. Yin [51] proposed a faster technique to obtain the threshold values for the digital image. The formula is as follows:

fcross(th)=i=1Lih(i)logii=1th1ih(i)log(μ(1, th))i=thLih(i)log(μ(th, L+1)) (15)

where the above formula is based on thresholds th=[th1,th2,,thnt], which contain nt different threshold values, by:

fcross(th)=i=1Lih(i)log(i)i=1ntHi (16)

where nt represents the total number of thresholds and Hi can be defined as follows:

H1=i=1th11ih(i)log(μ(1, th1)) (17)
Hk=i=thk1thk1ih(i)log(μ(thk1, thk)), 1<k<nt (18)
Hnt=i=thntLih(i)log(μ(thnt, L+1)) (19)

3. The Proposed Algorithm

3.1. Details of ESMA

The standard slime mould algorithm is a simple and efficient approach to solving specific optimization problems. However, based on the NFL theorem, no unique optimization algorithm is available for solving all optimization problems. Furthermore, SMA may be trapped into local optimal and show unperfected convergence speed for specific problems such as multilevel thresholding image segmentation. In order to improve the search ability and balance exploration and exploitation, in this paper, we propose an enhanced slime mould algorithm (ESMA) to improve the optimization performance. The improvement involves two major methods. Firstly, the Levy flight was used to enhance the exploration ability of SMA, which can be calculated by:

Xt+1=r2×UBLB+LB, r1<zXb+vb×W×XAXB×Levy, r3<pvc×Xi, r3p (20)

Secondly, quasi opposition-based learning was used to enhance the exploitation ability of SMA and balance the exploration and exploitation capability. The pseudo-code of ESMA is shown in Algorithm 2, and Figure 3 illustrates the flowchart of the proposed algorithm.

Algorithm 2 Pseudo-code of ESMA
Initialize the positions of search agent;
While current iteration < maximum iteration do
  Check if any search agent goes beyond the search space and amend it;
  Calculate the fitness of all slime mould;
  For each search agent, do
   Update positions by Equation (20);
  End For
  Apply QOBL strategy by Equation (10);
  Select the best position into next iteration by greedy strategy;
  t = t + 1;
End While
Return the best solution;

Figure 3.

Figure 3

The flowchart of ESMA.

3.2. Computational Complexity Analysis

As can be seen, the ESMA mainly contains three components: Initialization phase, fitness evaluation, and position update procedure. In the initialization phase, the complexity can be expressed as O(N×D), where N represents the population size, and D denotes the dimension size of problems. Besides, the proposed algorithm evaluates the fitness of all slime mould with the complexity of O(N). The position update phase in the ESMA requires O(N×D). During the position updating phase, we utilize the QOBL to improve the exploitation ability and balance the exploration and exploitation; thus the QOBL strategy requires O(N×D). In summary, the total computation complexity of ESMA can be expressed as O(N×D×T) for T iterations. So, it can be concluded that both the SMA and ESMA have the same computational complexity wise.

4. Experimental Results and Discussion

4.1. Definition of 23 Benchmark Functions

To evaluate the exploration ability, exploitation ability, and escaping from the local optima ability of ESMA, twenty-three benchmark functions, including unimodal (F1–F7), multimodal (F8–F13), and fixed-dimension multimodal (F14–F23), are introduced [52]. The description of these functions is shown in Table 1, Table 2 and Table 3. As can be seen, the unimodal benchmark functions have only one global optimal value, which is suitable for evaluating the algorithms’ exploitation capability. Unlike unimodal functions, the multimodal and fixed-dimension benchmark functions have multiple local optimal values and only one optimal global value; it is suitable for evaluating the exploration ability and escaping from local minima.

Table 1.

Unimodal benchmark functions.

Function Dim Range fmin
F1(x)=i=1nxi2 30 [−100,100] 0
F2(x)=i=1nxi+i=1nxi 30 [−10,10] 0
F3(x)=i=1n(j1ixj)2 30 [−100,100] 0
F4(x)=maxi{xi,1in} 30 [−100,100] 0
F5(x)=i=1n1[100(xi+1xi2)2+(xi1)2] 30 [−30,30] 0
F6(x)=i=1n(xi+5)2 30 [−100,100] 0
F7(x)=i=1nixi4+random[0,1) 30 [−1.28,1.28] 0

Table 2.

Multimodal benchmark functions.

Function Dim Range fmin
F8(x)=i=1nxisin(xi) 30 [−500,500] −12,569.487
F9(x)=i=1n[xi210cos(2πxi)+10] 30 [−5.12,5.12] 0
F10(x)=20exp(0.21ni=1nxi2)exp(1ni=1ncos(2πxi))+20+e 30 [−32,32] 0
F11(x)=14000i=1nxi2i=1ncos(xii)+1 30 [−600,600] 0
F12(x)=πn{10sin(πy1)+i=1n1(yi1)2[1+10sin2(πyi+1)]+(yn1)2}+i=1nu(xi,10,100,4),where yi=1+xi+14,u(xi,a,k,m)=k(xia)mxi>a0a<xi<ak(xia)mxi<a 30 [−50,50] 0
F13(x)=0.1(sin2(3πx1)+i=1n(xi1)2[1+sin2(3πxi+1)]+(xn1)2[1+sin2(2πxn)])+i=1nu(xi,5,100,4) 30 [−50,50] 0

Table 3.

Fixed-dimension multimodal benchmark functions.

Function Dim Range fmin
F14(x)=(1500+j=1251j+i=12(xiaij)6)1 2 [−65,65] 0.998
F15(x)=i=111[aix1(bi2+bix2)bi2+bix3+x4]2 4 [−5,5] 0.00030
F16(x)=4x122.1x14+13x16+x1x24x22+x24 2 [−5,5] −1.0316
F17(x)=(x25.14π2x12+5πx16)2+10(118π)cosx1+10 2 [−5,5] 0.398
F18(x)=[1+(x1+x2+1)2(1914x1+3x1214x2+6x1x2+3x22)]×[30+(2x13x2)2×(1832x2+12x12+48x236x1x2+27x22)] 2 [−2,2] 3
F19(x)=i=14ciexp(j=13aij(xjpij)2) 3 [−1,2] −3.86
F20(x)=i=14ciexp(j=16aij(xjpij)2) 6 [0,1] −3.32
F21(x)=i=15[(Xai)(Xai)T+ci]1 4 [0,10] −10.1532
F22(x)=i=17[(Xai)(Xai)T+ci]1 4 [0,10] −10.4028
F23(x)=i=110[(Xai)(Xai)T+ci]1 4 [0,10] −10.5363

To verify the performance of the proposed ESMA, we compared it with seven other algorithms including slime mould algorithm (SMA) [35], remora optimization algorithm (ROA) [36], arithmetic optimization algorithm (AOA) [32], aquila optimizer (AO) [33], salp swarm algorithm (SSA) [30], whale optimization algorithm (WOA) [29], and sine cosine algorithm (SCA) [31]. These classical and state-of-the-art algorithms are proved to equip with excellent performance on some optimization problems. The details of these algorithms are listed as follows:

  • SMA [35] was proposed by Li et al. in 2020 and simulates the behavior and morphological process of slime mould during foraging.

  • ROA [36] was proposed by Jia et al. in 2021 and simulates the parasitic behavior of remora.

  • AOA [32] was proposed by Abualigah et al. in 2021 and is inspired by the arithmetic operator in mathematics.

  • AO [33] was proposed by Abualigah et al. in 2021 and is inspired by the Aquila’s behaviors in nature during the process of catching the prey.

  • SSA [30] was proposed by Mirjalili et al. in 2017 and is inspired by the swarming behavior of salps when navigating and foraging in oceans.

  • WOA [29] was proposed by Mirjalili et al. in 2016 and mimics the social behavior of humpback whales.

  • SCA [31] was proposed by Mirjalili et al. in 2016 and is inspired by the sine function and cosine function in nature.

Table 4 illustrates the parameter setting of each algorithm. For all the algorithms included in the comparison, we set the population size N = 30, dimension size D = 30, and maximum iteration T = 500; all the tests had 30 independent runs. Furthermore, we extract the average results, standard deviations, and statistical tests to evaluate the performance; the best results will be listed in bold font.

Table 4.

Parameter settings for the comparative algorithms.

Algorithm Parameters
SMA [35] z = 0.03
ROA [36] c = 0.1
AOA [32] α = 5; μ = 0.5;
AO [33] U = 0.00565; c = 10; ω = 0.005; α = 0.1; δ = 0.1;
SSA [30] c1 = [1,0]; c2∈[0,1]; c3∈[0,1]
WOA [29] a1 = [2,0]; a2 = [−1,−2]; b = 1
SCA [31] a = [2,0]

4.2. Statistical Results on 23 Benchmark Functions

The statistical results on 23 benchmark functions can be seen in Table 5. From this table, it can be clearly seen that the ESMA is superior to other algorithms in most benchmark functions. For unimodal benchmark functions (F1–F7), ESMA can obtain theoretical optimal for F1 and F3, while others algorithms cannot find the optimal solution. While ESMA cannot find the theoretical optimal for F4, F5, and F7, the convergence accuracy and robustness are better than other algorithms. In general, the exploitation ability of SMA is enhanced by applying the QOBL strategy. For the multimodal benchmark functions and fixed-dimension multimodal benchmark functions, ESMA also provides more competitive results than others. ESMA can obtain the theoretical optimal for F8, F9, F11, F14, F16, F17, F19, and F21–F23. For F10, F12, F13, and F15, ESMA gets the optimal global solution compared to others. Consequently, it can be concluded that ESMA always maintains high convergence accuracy and high robustness compared to other algorithms on such benchmark functions.

Table 5.

Simulation results for 23 benchmark functions.

Function ESMA SMA ROA AOA AO SSA WOA SCA
F1 Mean 0.00 × 10+00 3.83 × 10−320 5.93× 10−323 2.05× 10−13 1.19 × 10−104 1.31 × 10−07 2.30 × 10−68 2.25 × 10+01
Std 0.00 × 10+00 0.00 × 1000 0.00 × 1000 1.12 × 10−12 6.49 × 10−104 1.15 × 10−07 1.26 × 10−67 6.73 × 10+01
F2 Mean 1.12 × 10−188 1.68 × 10−148 6.68 × 10−162 0.00 × 10+00 2.45 × 10−53 1.96 × 10+00 3.57 × 10−52 1.84 × 10−02
Std 0.00 × 10+00 9.20 × 10−148 3.61 × 10−161 0.00 × 10+00 1.34 × 10−52 1.49 × 10+00 8.24 × 10−52 3.52 × 10−02
F3 Mean 0.00 × 10+00 3.03 × 10−285 5.68 × 10−286 3.47 × 10−03 3.16 × 10−97 1.66 × 10+03 4.50 × 10+04 1.04 × 10+04
Std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 8.24 × 10−03 1.73 × 10−96 1.32 × 10+03 1.64 × 10+04 5.62 × 10+03
F4 Mean 5.48 × 10−222 9.79 × 10−161 2.33 × 10−153 2.62 × 10−02 3.78 × 10−53 1.13 × 10+01 5.27 × 10+01 3.50 × 10+01
Std 0.00 × 10+00 5.08 × 10−160 1.27 × 10−152 2.02 × 10−02 2.07 × 10−52 2.92 × 10+00 2.75 × 10+01 1.48 × 10+01
F5 Mean 3.79 × 10−03 6.04 × 10+00 2.71 × 10+01 2.83 × 10+01 4.02 × 10−03 1.78 × 10+02 2.79 × 10+01 9.83 × 10+04
Std 2.33 × 10−03 1.01 × 10+01 4.41 × 10−01 4.22 × 10−01 7.30 × 10−03 3.08 × 10+02 4.92 × 10−01 1.99 × 10+05
F6 Mean 5.80 × 10−07 6.08 × 10−03 9.77 × 10−02 3.08 × 10+00 9.27 × 10−05 1.71 × 10−07 3.71 × 10−01 1.26 × 10+01
Std 1.76 × 10−07 3.84 × 10−03 1.04 × 10−01 3.20 × 10−01 1.26 × 10−04 1.50 × 10−07 2.29 × 10−01 1.02 × 10+01
F7 Mean 5.24 × 10−05 1.84 × 10−04 1.48 × 10−04 5.37 × 10−05 7.57 × 10−05 1.61 × 10−01 4.74 × 10−03 9.19 × 10−02
Std 4.96 × 10−05 1.50 × 10−04 1.27 × 10−04 4.21 × 10−05 7.75 × 10−05 7.12 × 10−02 6.51 × 10−03 1.01 × 10−01
F8 Mean −1.26 × 10+04 −1.26 × 10+04 −1.24 × 10+04 −5.20 × 10+03 −8.88 × 10+03 −7.34 × 10+03 −1.03 × 10+04 −3.72 × 10+03
Std 4.07 × 10−03 3.91 × 10−01 4.39 × 10+02 4.69 × 10+02 3.74 × 10+03 6.61 × 10+02 2.01 × 10+03 2.65 × 10+02
F9 Mean 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 5.79 × 10+01 4.11 × 10+00 4.28 × 10+01
Std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.87 × 10+01 2.25 × 10+01 3.24 × 10+01
F10 Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 2.77 × 10+00 4.80 × 10−15 1.26 × 10+01
Std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 8.52 × 10−01 2.35 × 10−15 8.96 × 10+00
F11 Mean 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.78 × 10−02 0.00 × 10+00 9.69 × 10−01
Std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.23 × 10−02 0.00 × 10+00 3.69 × 10−01
F12 Mean 2.18 × 10−05 4.44 × 10−03 1.04 × 10−02 4.99 × 10−01 2.64 × 10−06 6.84 × 10+00 2.53 × 10−02 2.92 × 10+05
Std 7.96 × 10−05 7.53 × 10−03 5.91 × 10−03 4.80 × 10−02 5.61 × 10−06 3.30 × 10+00 1.62 × 10−02 1.19 × 10+06
F13 Mean 3.62 × 10−07 5.78 × 10−03 2.25 × 10−01 2.83 × 10+00 1.99 × 10−05 1.56 × 10+01 5.31 × 10−01 4.50 × 10+04
Std 1.69 × 10−07 5.70 × 10−03 1.51 × 10−01 1.08 × 10−01 3.79 × 10−05 1.47 × 10+01 2.84 × 10−01 1.76 × 10+05
F14 Mean 9.98 × 10−01 9.98 × 10−01 4.45 × 10+00 9.54 × 10+00 2.50 × 10+00 1.10 × 10+00 2.12 × 10+00 2.25 × 10+00
Std 5.17 × 10−16 6.55 × 10−13 4.85 × 10+00 4.22 × 10+00 3.33 × 10+00 4.00 × 10−01 2.12 × 10+00 2.49 × 10+00
F15 Mean 6.07 × 10−04 5.57 × 10−04 4.23 × 10−04 1.80 × 10−02 4.89 × 10−04 2.92 × 10−03 5.83 × 10−04 8.49 × 10−04
Std 2.67 × 10−04 2.83 × 10−04 2.92 × 10−04 2.86 × 10−02 3.29 × 10−04 5.93 × 10−03 3.84 × 10−04 2.32 × 10−04
F16 Mean −1.03 × 10+00 −1.03 × 10+00 −1.03 × 10+00 −1.03 × 10+00 −1.03 × 10+00 −1.03 × 10+00 −1.03 × 10+00 −1.03 × 10+00
Std 7.70 × 10−15 3.95 × 10−10 5.90 × 10−08 1.65 × 10−07 3.69 × 10−04 4.13 × 10−14 1.32 × 10−09 4.90 × 10−05
F17 Mean 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 4.00 × 10−01
Std 2.82 × 10−13 2.77 × 10−08 4.26 × 10−06 8.49 × 10−08 2.67 × 10−04 9.08 × 10−15 5.79 × 10−06 2.15 × 10−03
F18 Mean 1.02 × 10+01 3.00 × 10+00 3.00 × 10+00 1.02 × 10+01 3.03 × 10+00 3.00 × 10+00 3.00 × 10+01 3.00 × 10+00
Std 1.21 × 10+01 7.33 × 10−11 6.72 × 10−05 1.21 × 10+01 2.65 × 10−02 1.90 × 10−13 4.08 × 10−05 2.37 × 10−04
F19 Mean −3.86 × 10+00 −3.86 × 10+00 −3.86 × 10+00 −3.85 × 10+00 −3.85 × 10+00 −3.86 × 10+00 −3.83 × 10+00 −3.85 × 10+00
Std 1.85 × 10−11 5.00 × 10−07 2.07 × 10−03 6.68 × 10−03 9.15 × 10−03 6.05 × 10−10 1.40 × 10−01 1.17 × 10−02
F20 Mean −3.26 × 10+00 −3.25 × 10+00 −3.28 × 10+00 −3.06 × 10+00 −3.17 × 10+00 −3.23 × 10+00 −3.18 × 10+00 −2.86 × 10+00
Std 3.05 × 10−02 5.96 × 10−02 6.88 × 10−02 9.11 × 10−02 7.18 × 10−02 5.77 × 10−02 1.88 × 10−01 4.10 × 10−01
F21 Mean −1.02 × 10+01 −1.02 × 10+01 −1.01 × 10+01 −3.47 × 10+00 −1.01 × 10+01 −7.73 × 10+00 −8.03 × 10+00 −2.73 × 10+00
Std 5.52 × 10−08 3.30 × 10−04 1.25 × 10−02 1.24 × 10+00 3.68 × 10−02 3.32 × 10+00 2.89 × 10+00 2.28 × 10+00
F22 Mean −1.04 × 10+01 −1.04 × 10+01 −1.04 × 10+01 −4.00 × 10+00 −1.04 × 10+01 −8.42 × 10+00 −7.67 × 10+00 −2.86 × 10+00
Std 5.77 × 10−08 3.07 × 10−04 1.58 × 10−02 1.51 × 10+00 9.40 × 10−03 3.14 × 10+00 3.54 × 10+00 1.77 × 10+00
F23 Mean −1.05 × 10+01 −1.05 × 10+01 −1.05 × 10+01 −3.97 × 10+00 −1.05 × 10+01 −8.00 × 10+00 −6.60 × 10+00 −3.31 × 10+00
Std 3.17 × 10−08 3.92 × 10−04 1.94 × 10−02 1.63 × 10+00 2.59 × 10−02 3.47 × 10+00 3.32 × 10+00 1.98 × 10+00

4.3. Wilcoxon Rank-Sum Test

In order to verify the non-incidentalness of the experimental results, this paper carried out the Wilcoxon rank-sum test (WRS). WRS is a nonparametric statistical test used to test the statistical performance between the proposed algorithm and comparison group on different benchmark functions [53]. WRS is based here on a 5% significant level, if the p-values obtained are less than 0.05, it indicates that there is a significant difference between them; otherwise, the difference is not obvious. The p-values obtained by algorithms are listed in Table 6. From this table, we can see that ESMA provides the statistically significant results compared with other algorithms.

Table 6.

The results of the Wilcoxon rank-sum test were obtained by algorithms on 23 benchmark functions.

Function ESMA vs.
SMA ROA AOA AO SSA WOA SCA
F1 3.51 × 10−01 3.97 × 10−02 6.87 × 10−07 6.87 × 10−07 6.87 × 10−07 6.87 × 10−07 6.87 × 10−07
F2 2.33 × 10−05 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06
F3 1.64 × 10−01 6.87 × 10−07 6.87 × 10−07 6.87 × 10−07 6.87 × 10−07 6.87 × 10−07 6.87 × 10−07
F4 1.92 × 10−05 3.36 × 10−06 3.36 × 10−06 3.36 × 10−06 3.36 × 10−06 3.36 × 10−06 3.36 × 10−06
F5 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 2.15 × 10−03 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06
F6 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 2.23 × 10−04 3.39 × 10−06 3.39 × 10−06
F7 2.02 × 10−02 1.98 × 10−01 4.81 × 10−01 1.46 × 10−01 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06
F8 5.05 × 10−06 4.02 × 10−05 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06
F9 NaN NaN 2.54 × 10−06 NaN 6.87 × 10−07 1.64 × 10−02 6.87 × 10−07
F10 NaN NaN 6.87 × 10−07 NaN 6.87 × 10−07 2.10 × 10−04 6.87 × 10−07
F11 NaN NaN 6.87 × 10−07 NaN 6.87 × 10−07 1.64 × 10−01 6.87 × 10−07
F12 5.74 × 10−05 3.39 × 10−06 3.39 × 10−06 2.79 × 10−02 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06
F13 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 5.74 × 10−05 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06
F14 2.19 × 10−06 2.19 × 10−06 2.18 × 10−06 2.19 × 10−06 1.23 × 10−03 2.19 × 10−06 2.19 × 10−06
F15 7.72 × 10−01 1.99 × 10−01 1.25 × 10−01 4.64 × 10−02 1.28 × 10−02 5.90 × 10−01 1.89 × 10−04
F16 3.37 × 10−06 3.37 × 10−06 3.37 × 10−06 3.37 × 10−06 7.72 × 10−04 3.37 × 10−06 3.37 × 10−06
F17 3.37 × 10−06 3.37 × 10−06 3.37 × 10−06 3.37 × 10−06 2.41 × 10−04 3.37 × 10−06 3.37 × 10−06
F18 1.35 × 10−01 7.72 × 10−01 5.07 × 10−01 7.72 × 10−01 3.69 × 10−03 7.72 × 10−01 7.72 × 10−01
F19 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 2.79 × 10−05 3.39 × 10−06 3.39 × 10−06
F20 3.69 × 10−03 3.69 × 10−03 3.10 × 10−02 3.69 × 10−03 5.45 × 10−03 8.97 × 10−03 3.39 × 10−06
F21 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.62 × 10−01 3.39 × 10−06 3.39 × 10−06
F22 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 5.45 × 10−03 3.39 × 10−06 3.39 × 10−06
F23 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 3.39 × 10−06 5.45 × 10−03 3.39 × 10−06 3.39 × 10−06

4.4. Convergence Behavior Analysis

The convergence behavior of some benchmark functions is shown in Figure 4. On the unimodal benchmark functions, ESMA can achieve the highest accuracy and faster convergence speed. Especially for F1 and F3, while SMA can find the optimal solution, the convergence speed is slower than ESMA. For F2 and F4, ESMA finally converges to the optimal solution, while other algorithms either converge slowly or cannot converge to the optimal solution. For F5 and F7, while ESMA does not find the theoretical optimal solution, it still converges to the global optimal solution. On the multimodal benchmark functions, ESMA still shows the fastest convergence speed on most functions. While the global optimal solution is not found in some functions, it still has good performance compared with other algorithms. On the fixed dimensional multimodal functions, ESMA shows a faster convergence speed in the initial stage than others, and it also has a good convergence speed.

Figure 4.

Figure 4

Figure 4

Convergence curve of algorithms obtained on 23 benchmark functions.

Generally, ESMA can obtain competitive results compared to other algorithms, such as the fastest convergence speed and highest convergence accuracy.

4.5. Qualitative Metrics Analysis

To evaluate the optimization performance of ESMA, Figure 5 illustrates the qualitative metrics, which include the 2D shape of benchmark functions (first column), search history of individuals (second column), trajectory (third column), average fitness (fourth column), and convergence curve (fifth column). For the first column, the 2D view of benchmark functions is described and shows the complexity of different functions. The second column illustrates the search history of the search agent from the first to the last iteration; it can be seen that the proposed ESMA is able to find the areas where the fitness values are the lowest. The trajectory of the first agent in the first dimension is described in the third column. We can see that the search agent oscillates continuously in the search space, which shows that the search agent widely studies the most promising fields and better solutions. The fourth column denotes the average fitness history. It can be seen that the fitness curve is decreasing, which indicates that the quality of the population is improving at each iteration. The last column is the convergence curve, which reveals that populations find the best solution after each iteration.

Figure 5.

Figure 5

Figure 5

Qualitative metrics on some functions.

5. Experimental Results on Multilevel Thresholding

This section introduces the experimental details of the proposed algorithm ESMA applied to the multilevel thresholding image segmentation. First, the benchmark images and the experimental setup are presented in Section 5.1. Furthermore, the results of the algorithms in fitness, PSNR, SSIM, and FSIM are also analyzed. This section also shows the statistical analysis used to compare the proposed algorithm with other competitive algorithms.

5.1. Experiment Setup

In this paper, the benchmark greyscale images, including Lena, Baboon, Butterfly, etc., are used to evaluate the performance of the proposed algorithm ESMA’s image segmentation [54]. All the benchmark images and their histogram images are represented in Figure 6. To guarantee the fairness of the experiment, all the algorithms are evaluated 30 times per image, and the maximum iteration T is 500; the number of population size N is 30. The number of thresholds values [nTh = 4, 6, 8, 10].

Figure 6.

Figure 6

Benchmark images.

5.2. Evaluation Measurements

In this paper, three common evaluation methods are used to illustrate the performance of the algorithm and the quality of image segmentation, namely PSNR, FSIM, and SSIM, which are defined as follows:

5.2.1. PSNR

Peak Signal to Noise Ratio (PSNR) is an image quality evaluation metric used to evaluate the similarity between the original image and the segmented image [55]. The PSNR is calculated as:

PSNR=20log10255RMSE (21)
RMSE=i=1Mj=1N((I(i,j)Seg(i,j))2)M×N (22)

where I and Seg denote the original image and segmented image with M × N, respectively; RMSE is the root mean square error.

5.2.2. SSIM

Structural Similarity (SSIM) is a common metric used to measure the structural similarity between the original image and the segmented image [3], and is defined as:

SSIM(I,Seg)=(2μIμSeg+c1)(2σI,Seg+c2)(μI2+μSeg2+c1)(σI2+σSeg2+c2) (23)

where μI and μSeg indicate the mean intensity of the original image and its segmented image; σI and σSeg denote the standard deviation of the original image and its segmented image; σI,Seg is the covariance of the original image and the segmented image. c1 and c2 are constant.

5.2.3. FSIM

Feature Similarity (FSIM) is used to estimate the structural similarity between the original image and the segmented image [56], and is defined as:

FSIM=ωΩSL(ω)PCm(ω)ωΩPCm(ω) (24)
SL(ω)=SPC(ω)SG(ω) (25)
SPC(ω)=2PC1(ω)PC2(ω)+T1PC12(ω)+PC22(ω)+T1 (26)
SG(ω)=2G1(ω)G2(ω)+T2G12(ω)+G22(ω)+T2 (27)

where Ω indicates the entire image domain; PC1 and PC2 represent the phase consistency of the original image and its segmented image, respectively; G1 and G2 represent the gradient magnitude of the original image and segmented image, respectively. T1 and T2 both are constant.

5.3. Experimental Result Analysis

This section mainly compares ESMA with seven optimization algorithms: SMA, ROA, AOA, AO, SSA, WOA, and SCA. All the algorithms run independently 30 times, and the average value (mean) and standard deviation (Std) are selected as the evaluation indexes, in which the best values are marked in bold.

Table A1 illustrates the optimal threshold values obtained by different algorithms on the benchmark images. It can be seen that when the number of thresholds is equal to 4 and 6, the thresholds obtained by most algorithms are roughly the same. However, the results are quite different when the thresholds are extended to 8 and 10, especially for SCA and AOA.

Table A2 represents the average fitness values and their Std obtained by all algorithms on the benchmark images. In general, the lower value of the average fitness denotes the better quality of segmentation. It can be seen that the fitness value of ESMA is better than most algorithms. For example, when the tank image is segmented with ten threshold levels, the fitness value obtained by ESMA ranks first, which is greatly improved compared with the SMA. Experimental results show that ESMA has better performance and strong applicability in segmenting multilevel threshold images.

Table A3 shows the PSNR results obtained by all algorithms. As mentioned above, it is suitable to evaluate the similarity between the segmented image and the original image, where a higher average value indicates a better segmentation quality. From the attained results, however, there are only small differences between the ESMA and other compared algorithms in threshold values 4 and 6. However, the PSNR values significantly increase when the threshold values are increasing. It can be observed that, for most benchmark images, the proposed ESMA significantly produces more favorable and reliable results than the original SMA and other compared algorithms, which provides better PSNR results for most benchmark images, for example, when images Lena, Baboon, Tank, Cameraman, and Pirate are tackled with 10 threshold levels. Obviously, the PSNR values are highest, and AO and WOA are ranked second and third, respectively. When segmenting Lena and Baboon images, ESMA showed the best PSNR value among all thresholds. Generally, ESMA presents the best performance with the images Lena, Baboon, Peppers, Tank, and House.

Table A4 illustrates the SSIM value obtained from different algorithms. As is possible to obverse, when the threshold is equal to 4, the SSIM results of each algorithm are roughly the same. Then, as the number of threshold values increases, the value of SSIM continues to increase, ESMA can obtain more original image information than other algorithms. For example, when the threshold value is equal to 4, the SSIM value obtained by ESMA for Baboon is 0.8041. When the number of thresholds increases to 10, the SSIM is 0.9395. Furthermore, when the threshold is equal to 6, 8, and 10, the segmentation quality of ESMA is better than most comparison algorithms, especially for segmenting Baboon, Butterfly, and House. In the case of Cameraman, the best SSIM results were obtained by ROA in the threshold values 4, 6, and 8. Overall, ESMA ranked first in segmentation quality.

Table A5 shows the FSIM values obtained by different algorithms, where a higher value represents the best quality of the segmentation. We can see that the SMA and ROA show significant performance in Baboon, Butterfly, and Cameraman. Both AOA and SCA are not shown a significant performance for any of the images. The proposed ESMA can achieve good results in segmenting most images. For example, when the House image is processed using eight each threshold level, the value of FSIM is significant. Therefore, in most cases, the algorithm proposed in this paper can extract the interesting target from the image more accurately.

Table A6 represents the p-value obtained by Wilcoxon rank-sum test with 5% significance level. It can be seen from the results that ESMA is significantly different from ROA, AOA, SSA, and SCA, which means that the proposed algorithm ESMA has been improved considerably. However, there is no significant difference at Lena for level 4. When comparing ESMA and WOA, there are significant differences in other images except for Butterfly, House, and Pepper.

Table 7 shows the image segmentation results of the proposed algorithm ESMA for different thresholds, in which the obtained optimal threshold is marked with a red vertical line. This table shows how the thresholds divide an image into several different classes and how the objects are segmented from the background.

Table 7.

The segmented images obtained by ESMA.

Image nTh = 4 nTh = 6 nTh = 8 nTh = 10
Lena graphic file with name entropy-23-01700-i001.jpg graphic file with name entropy-23-01700-i002.jpg graphic file with name entropy-23-01700-i003.jpg graphic file with name entropy-23-01700-i004.jpg
graphic file with name entropy-23-01700-i005.jpg graphic file with name entropy-23-01700-i006.jpg graphic file with name entropy-23-01700-i007.jpg graphic file with name entropy-23-01700-i008.jpg
Baboon graphic file with name entropy-23-01700-i009.jpg graphic file with name entropy-23-01700-i010.jpg graphic file with name entropy-23-01700-i011.jpg graphic file with name entropy-23-01700-i012.jpg
graphic file with name entropy-23-01700-i013.jpg graphic file with name entropy-23-01700-i014.jpg graphic file with name entropy-23-01700-i015.jpg graphic file with name entropy-23-01700-i016.jpg
Butterfly graphic file with name entropy-23-01700-i017.jpg graphic file with name entropy-23-01700-i018.jpg graphic file with name entropy-23-01700-i019.jpg graphic file with name entropy-23-01700-i020.jpg
graphic file with name entropy-23-01700-i021.jpg graphic file with name entropy-23-01700-i022.jpg graphic file with name entropy-23-01700-i023.jpg graphic file with name entropy-23-01700-i024.jpg
Peppers graphic file with name entropy-23-01700-i025.jpg graphic file with name entropy-23-01700-i026.jpg graphic file with name entropy-23-01700-i027.jpg graphic file with name entropy-23-01700-i028.jpg
graphic file with name entropy-23-01700-i029.jpg graphic file with name entropy-23-01700-i030.jpg graphic file with name entropy-23-01700-i031.jpg graphic file with name entropy-23-01700-i032.jpg
Tank graphic file with name entropy-23-01700-i033.jpg graphic file with name entropy-23-01700-i034.jpg graphic file with name entropy-23-01700-i035.jpg graphic file with name entropy-23-01700-i036.jpg
graphic file with name entropy-23-01700-i037.jpg graphic file with name entropy-23-01700-i038.jpg graphic file with name entropy-23-01700-i039.jpg graphic file with name entropy-23-01700-i040.jpg
House graphic file with name entropy-23-01700-i041.jpg graphic file with name entropy-23-01700-i042.jpg graphic file with name entropy-23-01700-i043.jpg graphic file with name entropy-23-01700-i044.jpg
graphic file with name entropy-23-01700-i045.jpg graphic file with name entropy-23-01700-i046.jpg graphic file with name entropy-23-01700-i047.jpg graphic file with name entropy-23-01700-i048.jpg
Cameraman graphic file with name entropy-23-01700-i049.jpg graphic file with name entropy-23-01700-i050.jpg graphic file with name entropy-23-01700-i051.jpg graphic file with name entropy-23-01700-i052.jpg
graphic file with name entropy-23-01700-i053.jpg graphic file with name entropy-23-01700-i054.jpg graphic file with name entropy-23-01700-i055.jpg graphic file with name entropy-23-01700-i056.jpg
Pirate graphic file with name entropy-23-01700-i057.jpg graphic file with name entropy-23-01700-i058.jpg graphic file with name entropy-23-01700-i059.jpg graphic file with name entropy-23-01700-i060.jpg
graphic file with name entropy-23-01700-i061.jpg graphic file with name entropy-23-01700-i062.jpg graphic file with name entropy-23-01700-i063.jpg graphic file with name entropy-23-01700-i064.jpg

Figure 7 summarizes the segmentation experimental results of fitness, PSNR, SSIM, and FSIM based on the objective function. From this figure, we can see that the segmentation performance of ESMA is significantly improved compared with original SMA, and ROA and WOA are ranked second and third, respectively.

Figure 7.

Figure 7

Summary of Fitness, PSNR, SSIM, and FSIM number of best cases for all thresholds obtained by algorithms.

According to the above evaluation metrics and statistical test, the proposed ESMA has a better segmentation quality than other compared algorithms. Thus, the proposed ESMA can be effectively applied to the field of image segmentation.

6. Conclusions and Future Work

In this paper, an enhanced slime mould algorithm (ESMA) is proposed for global optimization and multilevel thresholding image segmentation. In order to improve the performance of SMA, we use two strategies. First, the Levy flight strategy is used to enhance the exploration ability. Second, quasi opposition-based learning is used to enhance the exploitation ability and balance the exploration and exploitation. To evaluate the performance of ESMA, ESMA and some state-of-the-art algorithms were tested on the 23 benchmark functions, and the results indicate that the ESMA is superior to others. This shows that the above two strategies can effectively help SMA avoid falling into optimal local state and improve the global search ability of the population. In addition, we applied ESMA to multilevel thresholding image segmentation, and minimum cross-entropy is selected as the fitness function. The experimental evaluation metrics determined the mean fitness, standard deviation, PSNR, SSIM, FSIM and Wilcoxon rank-sum test. Experimental results show that the ESMA method is superior to other image segmentation methods in PSNR, FSIM, SSIM, and statistical tests.

While the proposed work is valuable in the image segmentation field, it is necessary to extend the benchmark images and increase the number of thresholds to obtain more reliable results. In addition, we will also seek to hybridize the ESMA with other MAs to improve the segmentation results when solving real-world applications, such as ship target segmentation and medical image segmentation. Meanwhile, other objective functions can be selected to realize multilevel thresholding image segmentation.

Appendix A

Table A1.

The best thresholds obtained by algorithms.

Image nTh ESMA SMA ROA AOA AO SSA WOA SCA
Lena 4 71 109 141 177 71 109 141 177 71 109 141 177 78 112 147 200 71 109 141 177 71 109 141 177 71 109 141 177 78 105 142 181
6 60 86 113
137 160 187
60 85 112
137 160 187
60 86 113
137 160 187
17 47 53
91 134 176
60 86 113
137 160 187
60 86 113
137 160 187
60 86 113
137 160 187
58 87 105
136 153 186
8 52 69 90 111
130 147 166 191
50 65 84 102
121 142 163 189
2 52 70 93
116 139 161 188
62 87 109 122
142 164 182 189
52 69 90 111
130 147 166 191
52 69 90 111
130 147 166 191
52 69 90 111
130 147 166 191
1 53 76 101
121 137 165 189
10 48 60 75 91 107
122 137 152 169 193
50 65 83 100 117
134 149 165 184 203
47 59 73 90 106
121 137 152 169 193
17 45 55 68 78
110 141 155 170 201
3 50 64 82 99
116 134 151 169 193
49 62 78 95 110
126 141 155 172 194
2 50 65 83 100
117 135 151 169 193
1 47 50 71 77
92 110 138 164 187
Baboon 4 65 100 132 164 64 99 131 164 65 100 132 164 47 92 141 190 65 100 132 164 65 100 132 164 65 100 132 164 61 98 134 169
6 49 75 100
123 146 172
47 73 98
121 145 172
49 75 100
123 146 172
46 69 102
142 179 179
49 75 100
123 146 172
49 75 100
123 146 172
49 75 100
123 146 172
38 56 83
114 135 158
8 40 63 83 103
122 140 160 180
34 55 74 94
114 133 154 177
39 61 81 101
119 137 158 179
70 94 118 154
157 184 190 194
38 61 81 101
119 137 158 179
39 62 82 102
121 139 159 180
39 61 81 101
119 137 158 179
1 1 26 59
88 113 137 175
10 32 52 69 86 102
117 132 149 167 185
25 46 62 79 96
113 129 146 164 182
9 40 59 77 95
112 128 145 164 183
28 41 64 89 114
125 156 180 200 229
35 56 74 92 110
127 144 163 182 253
35 56 74 92 110
127 144 163 182 244
8 40 59 77 95
112 128 145 164 183
1 2 2 43 72
91 116 130 146 170
Butterfly 4 70 97 125 161 70 97 125 161 70 97 125 161 69 108 147 226 70 97 125 161 70 97 125 161 70 97 125 161 64 90 119 163
6 61 83 103
127 153 180
61 83 103
127 153 181
61 83 103
127 153 180
42 66 75
96 135 154
61 82 103
127 153 180
61 82 103
127 153 180
61 82 103
127 153 181
1 62 85
111 136 169
8 54 69 82 98
115 136 158 181
54 69 82 98
115 136 157 181
54 69 82 98
115 136 158 181
27 52 80 115
130 151 161 233
54 69 82 98
115 135 158 181
54 69 84 100
115 135 157 180
50 69 83 99
115 135 158 181
1 47 74 96
114 138 164 183
10 26 54 69 83 96
111 127 143 160 182
31 50 68 83 96
111 127 142 160 182
26 54 69 83 96
111 127 143 160 182
35 44 56 57 66
91 104 136 158 202
2 44 57 70 84
100 115 135 158 180
12 54 69 83 96
111 127 142 160 182
33 54 66 82 97
112 127 142 161 182
1 55 61 68 88
105 112 128 149 174
Peppers 4 37 76 118 164 37 77 119 165 37 77 119 165 53 61 109 142 37 77 119 165 37 77 119 165 37 77 119 165 35 72 118 168
6 25 49 78
108 140 174
32 62 88
115 146 177
25 49 78
108 140 174
13 41 59
102 152 176
24 48 78
108 140 174
25 49 78
108 140 174
25 49 78
108 140 174
1 36 78
114 141 169
8 22 43 68 89
109 133 158 183
22 42 67 88
108 133 158 183
22 42 67 88
108 133 158 183
30 45 61 73
85 130 172 217
13 45 78 91
124 151 166 202
23 44 71 93
118 148 178 235
22 43 68 89
109 134 158 183
6 37 58 84
101 129 157 180
10 20 36 55 74 91
109 131 153 174 196
16 26 41 59 77
94 113 137 160 184
11 26 45 62 87
97 122 141 174 199
2 17 30 71 83
98 125 147 152 205
17 43 72 80 102
126 148 157 167 204
22 42 67 87 106
128 151 173 195 236
2 22 42 67 87
106 128 151 173 195
1 1 20 31 55
83 110 136 168 250
Tank 4 67 96 124 145 67 96 123 145 67 96 123 145 57 112 132 147 67 96 124 146 68 98 126 147 67 96 124 146 71 103 126 146
6 56 77 99
119 136 151
1 64 91
115 135 151
56 77 98
119 136 151
78 92 128
146 175 213
56 77 98
118 135 150
56 77 99
119 136 149
55 77 99
118 136 151
14 63 91
115 131 147
8 55 74 93 109
123 138 147 156
52 71 90 106
122 135 147 156
2 55 76 95
114 128 141 152
50 89 119 126
150 196 200 241
1 3 56 77
99 118 136 149
55 76 95 114
129 142 152 251
54 75 93 111
127 139 149 159
1 1 51 72
94 119 128 149
10 47 63 78 92 106
119 130 142 151 159
1 3 52 71 87
103 118 133 145 157
28 55 72 88 102
116 129 140 150 159
15 26 48 67 78
108 137 143 162 224
6 31 57 78 98
119 136 151 212 217
55 76 95 113 129
141 153 211 220 255
43 55 73 88 100
116 129 139 151 158
1 18 35 51 67
93 106 123 146 155
House 4 63 90 115 157 63 90 115 157 63 90 115 157 63 104 161 217 63 90 115 157 63 90 115 157 63 90 115 157 60 85 116 154
6 61 85 106
122 141 173
63 89 113
138 170 207
63 89 113
138 170 207
33 66 88
114 137 156
63 89 113
138 170 207
63 89 113
138 170 207
63 89 113
138 170 207
2 68 97
115 156 218
8 55 72 90 109
124 142 172 207
57 75 92 110
124 142 172 207
55 72 90 109
124 142 172 207
6 38 76 97
141 162 180 214
55 73 91 110
124 142 172 207
12 59 78 96
116 138 170 207
55 72 90 109
124 142 172 207
1 1 65 95
118 135 162 207
10 51 67 80 94 109
121 130 146 173 207
2 51 66 80 95
111 125 143 172 207
6 51 67 81 96
112 125 143 172 207
57 76 94 102 124
144 165 169 182 221
32 51 67 81 95
112 125 143 172 207
13 55 72 90 109
124 142 172 207 244
55 72 90 110 124
142 171 189 199 218
1 58 80 90 109
131 150 184 205 224
Cameraman 4 29 76 125 158 29 76 125 158 29 76 125 158 16 40 91 140 29 76 125 158 29 76 125 158 29 76 125 158 27 78 135 167
6 23 49 85
121 148 173
23 49 85
121 148 173
23 49 85
121 148 173
7 21 43
78 116 153
23 49 85
121 148 173
23 49 85
121 148 173
23 48 85
120 148 173
21 43 93
124 149 175
8 23 47 80 112
135 155 173 202
15 26 50 83
115 138 158 177
23 47 80 112
135 155 173 202
23 52 105 112
129 148 161 172
23 47 80 112
134 155 173 202
15 26 50 82
114 137 157 177
23 48 81 112
135 155 173 202
1 1 20 45
86 124 147 171
10 14 25 47 75 102
122 141 158 174 202
14 23 39 60 88
116 137 156 173 202
14 21 34 56 86
115 137 156 173 202
33 53 76 91 141
159 168 241 250 253
14 28 52 80 105
123 141 156 172 200
14 25 49 82 113
135 155 173 197 230
14 23 39 61 89
117 138 157 174 202
1 15 20 38 57
91 127 145 163 219
Pirate 4 13 41 82 130 13 41 82 130 13 41 82 130 7 21 58 95 13 41 82 130 13 41 82 130 13 41 82 130 13 41 81 124
6 8 24 48
80 114 147
8 24 48
80 114 147
8 24 49
81 115 148
19 70 97
103 157 254
8 24 49
81 115 148
8 24 48
80 114 147
8 24 49
81 115 148
8 21 50
84 122 162
8 5 14 29 48
71 97 125 153
5 14 30 49
72 98 125 153
5 13 27 46
68 94 123 152
12 35 54 68
94 142 157 164
5 14 29 48
71 97 125 153
5 15 33 55
83 113 140 170
7 20 41 66
96 126 154 223
4 12 15 24
47 82 114 148
10 4 10 21 36 53
73 96 120 144 169
4 9 17 28 42
60 81 105 130 156
3 8 16 28 43
61 82 106 130 156
8 28 41 67 98
126 137 145 151 162
4 10 21 36 55
77 101 127 155 240
5 14 29 49 71
96 122 148 177 254
5 14 29 49 72
97 123 148 183 210
1 4 12 29 41
71 83 114 136 163

Table A2.

The fitness values obtained by algorithms.

Image nTh ESMA SMA ROA AOA AO SSA WOA SCA
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
Lena 4 0.4611 0 0.4611 0 0.4611 0 0.7091 0.1235 0.4611 0 0.4611 0 0.4774 0.0621 0.513 0.0796
6 0.245 0.0063 0.249 0.0142 0.2481 0.004 0.4945 0.0972 0.2567 0.0264 0.2473 0.0045 0.2481 0.014 0.3337 0.0464
8 0.1512 0.0017 0.1634 0.0174 0.1569 0.0019 0.3348 0.063 0.1557 0.0127 0.1624 0.0169 0.1556 0.0127 0.243 0.0337
10 0.1048 0.0015 0.1199 0.0169 0.1093 0.0087 0.2594 0.0366 0.1083 0.0081 0.113 0.01 0.1122 0.0119 0.1921 0.0238
Baboon 4 0.4962 0 0.4962 0 0.4962 0 0.7593 0.1236 0.4962 0 0.4962 0 0.4962 0 0.5342 0.0598
6 0.2781 0.0001 0.2785 0.0003 0.2782 0 0.4957 0.0791 0.281 0.0151 0.2783 0.0001 0.2806 0.0131 0.3507 0.0404
8 0.178 0.0004 0.1805 0.0054 0.1784 0.0037 0.3544 0.0477 0.1789 0.0073 0.1868 0.0165 0.1783 0.004 0.2683 0.0396
10 0.1229 0.0004 0.1293 0.0075 0.123 0.0017 0.2625 0.0311 0.1248 0.0071 0.1387 0.0149 0.1256 0.0081 0.2136 0.0275
Butterfly 4 0.3968 0 0.3968 0 0.3968 0 0.7151 0.1365 0.3968 0 0.3968 0 0.4116 0.0561 0.4669 0.0886
6 0.229 0.0043 0.2297 0.0184 0.2348 0.0278 0.4595 0.0859 0.229 0.0134 0.2292 0.0135 0.2372 0.0298 0.3061 0.0367
8 0.1356 0.0141 0.1413 0.0181 0.1385 0.0224 0.305 0.0517 0.1389 0.007 0.1383 0.0157 0.138 0.0165 0.2219 0.0258
10 0.0853 0.0039 0.1069 0.0157 0.0923 0.0097 0.244 0.0463 0.0926 0.0088 0.1059 0.0151 0.0969 0.015 0.1774 0.0244
Peppers 4 0.704 0 0.704 0 0.704 0 1.0897 0.1784 0.704 0 0.704 0 0.704 0 0.7277 0.015
6 0.4019 0.0027 0.4007 0.0019 0.3997 0.0003 0.6925 0.0853 0.3998 0.0003 0.4002 0.0013 0.3997 0.0001 0.4913 0.0585
8 0.2456 0.0001 0.2481 0.0059 0.246 0.0025 0.4845 0.067 0.2459 0.0001 0.256 0.0237 0.2459 0.0001 0.3663 0.0361
10 0.1755 0.0057 0.1779 0.0128 0.1793 0.0003 0.3631 0.0607 0.1792 0.0001 0.1931 0.0196 0.1792 0.0002 0.2913 0.0317
Tank 4 0.1992 0.0001 0.1993 0.0001 0.1992 0 0.3468 0.0542 0.1992 0 0.1992 0.0001 0.2026 0.0182 0.2184 0.0292
6 0.106 0.0012 0.1153 0.015 0.1069 0.0002 0.2579 0.0519 0.1127 0.0136 0.1171 0.0161 0.1106 0.0114 0.1694 0.0246
8 0.0707 0.0022 0.0816 0.0148 0.0797 0.0078 0.1962 0.0468 0.0709 0.0058 0.0774 0.0089 0.0726 0.0092 0.1395 0.0196
10 0.045 0.0048 0.0655 0.0126 0.049 0.006 0.1462 0.029 0.0524 0.0072 0.0612 0.0098 0.0521 0.0063 0.1024 0.0173
House 4 0.3302 0.0093 0.3302 0 0.3345 0.0237 0.478 0.0713 0.3302 0 0.3302 0 0.3302 0.0001 0.3512 0.0313
6 0.1816 0.0245 0.1606 0 0.1658 0.0197 0.3072 0.0429 0.1634 0.0153 0.1632 0.0142 0.1632 0.0142 0.2239 0.0329
8 0.0964 0.0127 0.1018 0.0131 0.1009 0.0155 0.2271 0.034 0.0966 0.0078 0.1031 0.0128 0.1025 0.0134 0.1552 0.0198
10 0.0665 0.0019 0.0773 0.0112 0.0669 0.0028 0.1686 0.0292 0.0705 0.0065 0.0715 0.0053 0.0714 0.0057 0.1246 0.0194
Cameraman 4 0.5385 0 0.5385 0 0.5385 0 0.7752 0.1214 0.5385 0 0.5385 0 0.5385 0 0.5506 0.0067
6 0.3032 0 0.3033 0 0.3033 0.0001 0.5071 0.076 0.3033 0 0.3105 0.0166 0.3033 0.0002 0.3682 0.0478
8 0.2031 0.0042 0.2061 0.0063 0.2077 0.0117 0.3548 0.0569 0.2041 0.0021 0.2046 0.0015 0.2049 0.0087 0.2823 0.0431
10 0.1368 0.0103 0.1396 0.0152 0.139 0.0088 0.2832 0.0426 0.1387 0.0061 0.1427 0.013 0.1383 0.0054 0.2299 0.0209
Pirate 4 1.0403 0 1.0403 0 1.0403 0 1.6838 0.3576 1.0403 0 1.0403 0 1.0403 0 1.0588 0.0117
6 0.5845 0.0045 0.5822 0.0016 0.5815 0 1.1018 0.2407 0.5815 0 0.5937 0.0458 0.5815 0.0001 0.6456 0.0341
8 0.3593 0.0023 0.3599 0.0026 0.3576 0.0002 0.8182 0.1572 0.3577 0.0004 0.3904 0.0317 0.3576 0.0002 0.4814 0.0636
10 0.2413 0.0058 0.2499 0.0056 0.2445 0.0007 0.6187 0.1055 0.2461 0.0095 0.3038 0.023 0.2443 0.0006 0.3821 0.0403

Table A3.

The PSNR values obtained by algorithms.

Image nTh ESMA SMA ROA AOA AO SSA WOA SCA
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
Lena 4 18.7867 0 18.7867 0 18.7867 0 17.9115 0.7829 18.7867 0 18.7867 0 18.7211 0.257 18.5889 0.4204
6 21.1436 0.3611 20.9155 0.201 20.9023 0.0791 19.6602 1.0424 20.9171 0.2101 20.9881 0.2528 20.888 0.0102 20.7039 0.8201
8 23.3637 0.1453 23.2477 0.5122 23.3548 0.1958 21.3528 1.3934 23.2899 0.2038 23.3507 0.5784 23.3314 0.3472 22.7486 1.2342
10 25.3269 0.329 24.9085 0.8677 25.255 0.5987 22.5184 1.6544 25.0865 0.5052 24.667 0.4771 25.3044 0.6412 23.8616 1.4136
Baboon 4 20.7335 0.0247 20.7335 0.0247 20.7215 0.0157 18.8128 1.0221 20.7215 0.0157 20.7163 0 20.7198 0.0131 20.4913 0.5255
6 24.195 0.0307 24.1869 0.0354 24.1523 0 21.2006 0.9268 24.1063 0.2569 24.1673 0.02 24.1101 0.2313 22.936 0.6118
8 26.5418 0.0426 26.4394 0.2024 26.5412 0.1283 22.8569 0.9407 26.5353 0.1962 26.3104 0.4386 26.5417 0.1499 24.4069 0.707
10 28.3939 0.07 27.9523 0.3452 28.3236 0.1161 24.3764 0.6605 28.2776 0.2594 27.7754 0.5268 28.2071 0.3548 25.566 0.6591
Butterfly 4 19.384 0 19.384 0 19.384 0 17.3819 1.7028 19.384 0 19.3918 0.0237 19.3124 0.2727 18.8569 0.8241
6 23.027 0.3381 22.6981 0.3791 22.4712 0.1428 20.1249 1.5871 22.4572 0.1907 22.7495 0.4085 22.4194 0.3011 21.7811 1.2288
8 25.2782 0.4232 25.1357 0.5241 25.281 0.464 22.6981 1.1545 25.2233 0.2508 25.0719 0.5173 25.6065 0.5072 23.4691 0.959
10 27.8053 0.9404 26.9718 1.0735 27.7339 0.9339 23.6315 1.6794 26.9143 1.088 26.6992 1.2001 27.8357 0.9296 24.9351 1.0205
Peppers 4 20.3048 0 20.2961 0.0175 20.3048 0 18.4579 1.0843 20.3048 0 20.3033 0.0079 20.3048 0 20.1694 0.2803
6 23.1363 0.1851 23.0465 0.131 22.9841 0.0193 20.6058 0.9365 22.9847 0.0241 23.0143 0.097 22.9755 0.0182 22.1766 0.5925
8 25.4398 0.0251 25.3289 0.2152 25.4282 0.0478 22.2705 0.9964 25.4386 0.0236 25.2324 0.4713 25.4277 0.0225 23.3841 0.5773
10 26.7164 0.213 26.6864 0.3272 26.9926 0.0468 23.7216 1.1374 27.0096 0.0336 26.5867 0.4785 26.986 0.0382 24.3768 0.5042
Tank 4 23.621 0.1847 23.5904 0.1884 23.6233 0.1601 21.0197 1.3991 23.631 0.1665 23.619 0.1653 23.5073 0.4685 23.1379 0.8407
6 27.1319 0.1967 26.5793 0.8502 27.1103 0.1303 22.6586 1.6433 26.734 0.7977 26.4843 0.9135 26.9133 0.5067 24.8651 0.8758
8 29.1754 0.3681 28.6313 0.9286 28.6987 0.3745 24.7671 1.168 28.6371 0.375 28.55 0.6137 28.6097 0.4403 26.1582 1.0087
10 31.0145 0.325 29.9936 0.8134 30.9248 0.7471 25.8087 1.3187 30.1609 0.6403 29.7464 1.014 30.8067 0.5992 28.0394 1.0181
House 4 19.6568 0 19.6568 0 19.6148 0.2299 18.4479 1.8064 19.6568 0 19.6568 0 19.6602 0.0129 19.3939 0.6208
6 22.8143 0.1219 22.7241 0.0352 22.5672 0.5813 21.1436 1.3549 22.6941 0.0906 22.6359 0.4089 22.6515 0.4135 21.6748 1.216
8 24.6994 0.0803 24.4874 0.4175 24.6165 0.3892 22.5041 1.6702 24.642 0.2449 24.4491 0.4135 24.6646 0.2606 24.1296 1.4269
10 25.9749 0.1114 25.6998 0.3883 26.0617 0.1936 23.7466 1.467 26.0764 0.5714 25.8552 0.4539 26.0151 0.2245 24.7753 1.5695
Cameraman 4 21.4059 0 21.4059 0 21.4059 0 19.2516 1.3089 21.4059 0 21.4059 0 21.4021 0.0142 21.1921 0.4044
6 23.905 0 23.9124 0.019 23.911 0.0177 21.3045 1.2432 23.9102 0.0178 23.8265 0.1787 23.9187 0.0413 22.9911 0.8038
8 25.5199 0.4548 25.411 0.4505 25.5124 0.4735 23.1434 1.1121 25.5978 0.395 25.7295 0.315 25.6113 0.4191 24.1015 0.7116
10 27.5098 0.3286 27.1335 0.5009 27.1949 0.439 24.3376 1.1574 27.487 0.3557 27.3671 0.4647 27.303 0.2443 24.9613 0.8164
Pirate 4 20.9183 0 20.9183 0 20.9183 0 19.2525 1.2367 20.9183 0 20.9183 0 20.9183 0 20.8557 0.2473
6 23.7017 0.2661 23.8158 0.0891 23.8575 0 21.3707 1.4619 23.8542 0.0126 23.7243 0.3979 23.8606 0.0172 22.846 0.5803
8 25.7016 0.2009 25.5707 0.233 25.7204 0.0341 22.6917 1.4888 25.7117 0.07 25.4364 0.4623 25.7148 0.0309 24.092 0.7173
10 27.1522 0.3278 27.0123 0.2586 27.1135 0.0535 23.5524 1.3516 27.112 0.1902 26.5997 0.3443 27.1225 0.0353 25.0381 0.6051

Table A4.

The SSIM values obtained by algorithms.

Image nTh ESMA SMA ROA AOA AO SSA WOA SCA
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
Lena 4 0.649 0 0.649 0 0.649 0 0.6311 0.0414 0.649 0 0.649 0 0.6484 0.0045 0.6465 0.0112
6 0.7284 0.0077 0.7232 0.0049 0.7236 0.0033 0.6904 0.0484 0.7236 0.0047 0.725 0.0055 0.723 0.0007 0.7131 0.0239
8 0.7814 0.0025 0.779 0.0126 0.7812 0.004 0.7327 0.0463 0.7793 0.0044 0.7813 0.0145 0.7814 0.0082 0.7656 0.031
10 0.8208 0.007 0.8158 0.0174 0.8256 0.0103 0.7652 0.0474 0.8223 0.0088 0.8115 0.0104 0.8252 0.0115 0.7935 0.0352
Baboon 4 0.8041 0.0002 0.8041 0.0002 0.8041 0.0001 0.7359 0.0338 0.8041 0.0001 0.8041 0 0.8041 0.0001 0.7937 0.0159
6 0.8766 0.0006 0.8764 0.0011 0.8762 0 0.8052 0.0255 0.8752 0.005 0.8761 0.0005 0.8754 0.0043 0.8511 0.0127
8 0.917 0.0012 0.9144 0.0029 0.9158 0.0017 0.8461 0.0232 0.9157 0.0028 0.9125 0.0062 0.916 0.0021 0.8806 0.0124
10 0.9395 0.0013 0.9351 0.0045 0.9388 0.0013 0.8778 0.0116 0.939 0.003 0.933 0.0068 0.9381 0.0043 0.8992 0.0124
Butterfly 4 0.6746 0 0.6746 0 0.6746 0 0.589 0.069 0.6746 0 0.6745 0.0003 0.6721 0.0094 0.6512 0.0318
6 0.786 0.0076 0.7779 0.0086 0.7737 0.0038 0.6924 0.0584 0.7734 0.0051 0.7796 0.01 0.7719 0.0085 0.748 0.0329
8 0.8496 0.0056 0.8438 0.0125 0.8474 0.0112 0.777 0.0309 0.8496 0.0053 0.8437 0.0119 0.8525 0.0081 0.7987 0.0223
10 0.8996 0.0115 0.8816 0.0175 0.897 0.0129 0.8022 0.037 0.8866 0.015 0.8776 0.019 0.8963 0.0139 0.8325 0.0205
Peppers 4 0.6714 0.0007 0.6717 0.0006 0.6714 0 0.632 0.0293 0.6714 0 0.6715 0.0003 0.6714 0 0.6699 0.0062
6 0.7371 0.0048 0.7397 0.0033 0.7411 0.0005 0.6915 0.024 0.7413 0.0004 0.7403 0.0026 0.7415 0.0005 0.7271 0.0153
8 0.7873 0.0006 0.7867 0.0019 0.7872 0.0004 0.7291 0.0246 0.787 0.0006 0.7823 0.0107 0.787 0.0005 0.7623 0.0131
10 0.8231 0.0011 0.8213 0.0037 0.8224 0.0007 0.7613 0.0274 0.8226 0.0004 0.8099 0.0107 0.8226 0.0006 0.7836 0.0139
Tank 4 0.777 0.0033 0.7759 0.0039 0.7756 0.0033 0.6936 0.0404 0.7741 0.0044 0.7759 0.0041 0.7728 0.0124 0.7632 0.0248
6 0.8682 0.0036 0.8601 0.014 0.8694 0.0034 0.7351 0.0509 0.8631 0.0137 0.8584 0.0152 0.8656 0.0098 0.8027 0.0257
8 0.9206 0.0049 0.8965 0.0163 0.9108 0.0089 0.7926 0.0373 0.9072 0.0086 0.8999 0.011 0.9074 0.0096 0.8406 0.0199
10 0.9307 0.0077 0.9153 0.0134 0.9338 0.0074 0.8221 0.0371 0.9275 0.0102 0.9188 0.0118 0.931 0.0073 0.8763 0.0234
House 4 0.7912 0 0.7912 0 0.7896 0.0083 0.735 0.0517 0.7912 0 0.7912 0 0.7912 0.0009 0.7798 0.0199
6 0.8424 0.0088 0.8354 0.0008 0.8339 0.005 0.7814 0.0527 0.8349 0.0016 0.8345 0.0032 0.8348 0.0034 0.8218 0.0174
8 0.8904 0.0011 0.8848 0.0116 0.8875 0.0114 0.8289 0.029 0.889 0.0067 0.8823 0.0126 0.888 0.0071 0.8591 0.0131
10 0.9205 0.0033 0.9129 0.0093 0.920 0.0035 0.8466 0.0328 0.9171 0.0059 0.9142 0.0069 0.9193 0.0055 0.8778 0.019
Cameraman 4 0.6955 0 0.6955 0 0.6955 0 0.6788 0.0488 0.6955 0 0.6955 0 0.6954 0.0003 0.6897 0.0167
6 0.7361 0 0.7361 0.0003 0.7361 0.0003 0.7071 0.0263 0.7361 0.0003 0.7334 0.0061 0.7361 0.0008 0.7254 0.0164
8 0.787 0.0221 0.786 0.0193 0.7883 0.0218 0.7477 0.0387 0.7799 0.0176 0.7686 0.0104 0.7756 0.0176 0.7715 0.0321
10 0.8412 0.0065 0.8364 0.0101 0.8395 0.007 0.7831 0.0548 0.8398 0.0103 0.823 0.0236 0.8395 0.0081 0.8193 0.0343
Pirate 4 0.6868 0 0.6868 0 0.6868 0 0.6198 0.0332 0.6868 0 0.6868 0 0.6868 0 0.6841 0.0043
6 0.7765 0.0027 0.7759 0.0015 0.7762 0 0.6947 0.0318 0.7762 0 0.7736 0.01 0.7761 0.0005 0.7723 0.0084
8 0.8421 0.0026 0.8419 0.0021 0.8435 0.0003 0.7365 0.0281 0.8434 0.0006 0.8301 0.0111 0.8435 0.0003 0.8173 0.0133
10 0.8746 0.0011 0.8748 0.0016 0.8761 0.0007 0.7752 0.0232 0.8757 0.0027 0.8571 0.0069 0.8762 0.0006 0.842 0.0102

Table A5.

The FSIM values obtained by algorithms.

Image nTh ESMA SMA ROA AOA AO SSA WOA SCA
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
Lena 4 0.855 0 0.855 0 0.855 0 0.8215 0.0183 0.855 0 0.855 0 0.8531 0.0075 0.8495 0.0119
6 0.8933 0.0131 0.8999 0.0074 0.9013 0.004 0.8535 0.0181 0.8979 0.009 0.8987 0.0093 0.9017 0.0031 0.8765 0.0089
8 0.9100 0.0008 0.9068 0.007 0.9091 0.0019 0.8791 0.0179 0.9079 0.0025 0.9096 0.0078 0.9096 0.0046 0.8974 0.0113
10 0.9233 0.0012 0.9233 0.0097 0.9258 0.0087 0.8947 0.0187 0.924 0.0062 0.9218 0.0037 0.9273 0.0092 0.9115 0.0157
Baboon 4 0.9268 0.0004 0.9268 0.0004 0.9266 0.0003 0.8948 0.0222 0.9266 0.0003 0.9265 0 0.9266 0.0002 0.9226 0.0108
6 0.9602 0.0005 0.9602 0.0009 0.9591 0 0.9248 0.0192 0.9587 0.0025 0.9597 0.0006 0.9587 0.0022 0.9473 0.0076
8 0.9769 0.0011 0.9766 0.0015 0.9771 0.0005 0.9445 0.0144 0.9771 0.0012 0.976 0.0027 0.977 0.0008 0.9613 0.0098
10 0.9859 0.0006 0.9851 0.0016 0.9861 0.0006 0.9576 0.0135 0.9861 0.0011 0.984 0.0023 0.9857 0.0015 0.9684 0.007
Butterfly 4 0.8454 0 0.8454 0 0.8454 0 0.7915 0.0257 0.8454 0 0.8454 0 0.8433 0.008 0.832 0.018
6 0.902 0.0012 0.9006 0.0048 0.8996 0.0052 0.8441 0.029 0.9008 0.0046 0.9006 0.0047 0.8985 0.0081 0.8789 0.015
8 0.9352 0.004 0.9344 0.0061 0.9363 0.0054 0.8881 0.0178 0.9365 0.0029 0.9344 0.0057 0.9397 0.0056 0.9079 0.0129
10 0.9615 0.0083 0.9538 0.01 0.9613 0.008 0.9029 0.0227 0.9535 0.0097 0.9516 0.0109 0.9618 0.0084 0.9254 0.0129
Peppers 4 0.849 0 0.849 0 0.849 0 0.8141 0.0181 0.849 0 0.849 0 0.849 0 0.8465 0.0032
6 0.8992 0.0018 0.8983 0.0012 0.8977 0.0002 0.8529 0.0156 0.8977 0.0003 0.898 0.0008 0.8976 0.0003 0.8842 0.01
8 0.933 0.0006 0.931 0.0034 0.9328 0.0004 0.8818 0.0146 0.9329 0.0003 0.9298 0.0069 0.9328 0.0003 0.9039 0.0086
10 0.9498 0.0068 0.9511 0.0073 0.9578 0.0005 0.907 0.0173 0.9578 0.0004 0.9532 0.0068 0.9578 0.0004 0.9176 0.0099
Tank 4 0.9154 0.0025 0.9158 0.0023 0.9153 0.0023 0.8516 0.0258 0.9149 0.0021 0.9154 0.0021 0.9145 0.0079 0.9028 0.0129
6 0.9506 0.0021 0.9461 0.0087 0.9508 0.0022 0.8827 0.031 0.9468 0.0068 0.9446 0.0091 0.9487 0.0056 0.9287 0.0113
8 0.9672 0.0023 0.964 0.0079 0.9657 0.0033 0.9133 0.0192 0.9658 0.0044 0.9631 0.0049 0.9643 0.0038 0.9403 0.0107
10 0.9789 0.0018 0.9751 0.0056 0.9784 0.0041 0.9313 0.0171 0.9743 0.0049 0.9724 0.0073 0.9787 0.0041 0.9556 0.0107
House 4 0.7969 0.0027 0.7962 0 0.7954 0.0045 0.7863 0.0214 0.7962 0 0.7962 0 0.7963 0.0006 0.7932 0.0097
6 0.867 0.0087 0.8747 0.0006 0.8728 0.0066 0.8262 0.0219 0.8734 0.0061 0.8736 0.0045 0.8739 0.0046 0.853 0.0159
8 0.9104 0.0052 0.9076 0.0068 0.909 0.0071 0.857 0.0193 0.9101 0.0038 0.9079 0.0058 0.9097 0.0041 0.8883 0.0107
10 0.9334 0.0018 0.9287 0.0066 0.9326 0.0023 0.8817 0.017 0.9315 0.0043 0.9317 0.0043 0.9344 0.0039 0.9019 0.012
Cameraman 4 0.8546 0 0.8546 0 0.8546 0 0.8227 0.0229 0.8546 0 0.8546 0 0.8546 0.0002 0.8506 0.0091
6 0.9023 0.0023 0.9028 0.0003 0.9028 0.0002 0.8601 0.0238 0.9027 0.0003 0.9007 0.0045 0.9028 0.0005 0.8855 0.0143
8 0.9211 0.0076 0.9197 0.0088 0.9213 0.009 0.8865 0.0173 0.9237 0.0084 0.9283 0.007 0.925 0.0089 0.9004 0.0102
10 0.9374 0.0037 0.9363 0.005 0.9366 0.0036 0.9037 0.0155 0.9394 0.0031 0.9396 0.0045 0.94 0.0018 0.913 0.0102
Pirate 4 0.8914 0 0.8914 0 0.8914 0 0.8501 0.0275 0.8914 0 0.8914 0 0.8914 0 0.8894 0.0046
6 0.9419 0.0039 0.9389 0.0016 0.9417 0 0.8933 0.0302 0.9417 0.0002 0.9396 0.0062 0.9417 0.0001 0.9243 0.0089
8 0.9603 0.002 0.9591 0.0022 0.9602 0.0002 0.9136 0.0266 0.9602 0.0006 0.9612 0.0055 0.9601 0.0002 0.941 0.0102
10 0.9726 0.0046 0.9737 0.0036 0.9766 0.0003 0.928 0.0236 0.9762 0.0021 0.9734 0.0038 0.9765 0.0002 0.9519 0.0073

Table A6.

The p-values obtained by algorithms.

Images nTh SMA ROA AOA AO SSA WOA SCA
Lena 4 NaN NaN 1.22 × 10−12 NaN NaN 3.34 × 10−01 1.22 × 10−12
6 4.44 × 10−02 4.70 × 10−04 1.75 × 10−11 3.27 × 10−02 6.45 × 10−02 1.45 × 10−01 1.75 × 10−11
8 3.38 × 10−05 8.56 × 10−02 2.47 × 10−11 8.62 × 10−01 3.48 × 10−02 1.10 × 10−01 2.47 × 10−11
10 1.28 × 10−08 7.05 × 10−03 2.31 × 10−11 4.17 × 10−01 1.32 × 10−04 1.10 × 10−01 2.31 × 10−11
Baboon 4 4.45 × 10−01 6.55 × 10−04 1.34 × 10−11 6.55 × 10−04 2.56 × 10−03 1.28 × 10−04 1.34 × 10−11
6 8.44 × 10−01 7.04 × 10−11 1.89 × 10−11 8.74 × 10−10 2.63 × 10−05 4.80 × 10−08 1.89 × 10−11
8 1.48 × 10−03 3.11 × 10−10 2.75 × 10−11 7.26 × 10−11 2.89 × 10−02 7.37 × 10−09 2.75 × 10−11
10 9.75 × 10−10 4.05 × 10−07 2.70 × 10−11 6.81 × 10−07 8.33 × 10−03 3.24 × 10−03 2.70 × 10−11
Butterfly 4 NaN NaN 1.21 × 10−12 1.09 × 10−02 4.18 × 10−02 3.34 × 10−01 1.21 × 10−12
6 3.13 × 10−02 1.14 × 10−02 2.20 × 10−11 1.06 × 10−03 4.71 × 10−01 5.30 × 10−01 2.20 × 10−11
8 7.74 × 10−02 1.04 × 10−03 2.65 × 10−11 6.82 × 10−02 4.69 × 10−02 9.47 × 10−01 2.65 × 10−11
10 4.91 × 10−06 3.64 × 10−03 1.44 × 10−11 1.04 × 10−02 2.49 × 10−06 2.85 × 10−04 1.44 × 10−11
Peppers 4 5.69 × 10−01 5.47 × 10−03 7.57 × 10−12 5.47 × 10−03 5.47 × 10−03 5.47 × 10−03 7.57 × 10−12
6 5.79 × 10−01 2.85 × 10−01 1.17 × 10−11 1.38 × 10−01 4.24 × 10−02 1.38 × 10−01 1.17 × 10−11
8 4.13 × 10−03 3.55 × 10−01 1.97 × 10−11 1.10 × 10−01 9.50 × 10−01 1.75 × 10−01 1.97 × 10−11
10 4.43 × 10−04 7.18 × 10−04 2.83 × 10−11 2.73 × 10−02 7.24 × 10−05 8.41 × 10−04 2.83 × 10−11
Tank 4 5.69 × 10−01 7.99 × 10−01 7.57 × 10−12 1.73 × 10−01 3.26 × 10−01 4.56 × 10−02 7.57 × 10−12
6 4.72 × 10−02 5.89 × 10−01 3.16 × 10−12 8.90 × 10−03 4.76 × 10−02 1.66 × 10−04 3.16 × 10−12
8 6.38 × 10−08 1.01 × 10−03 2.90 × 10−11 1.10 × 10−01 4.36 × 10−02 3.25 × 10−02 2.90 × 10−11
10 5.39 × 10−06 1.97 × 10−02 2.93 × 10−11 9.12 × 10−01 4.29 × 10−05 5.10 × 10−01 2.93 × 10−11
House 4 1.61 × 10−01 1.61 × 10−01 2.37 × 10−12 1.61 × 10−01 9.86 × 10−01 9.59 × 10−01 8.38 × 10−10
6 9.78 × 10−01 4.80 × 10−02 9.36 × 10−12 7.68 × 10−01 2.78 × 10−03 2.31 × 10−01 3.09 × 10−07
8 7.83 × 10−07 2.43 × 10−06 5.21 × 10−12 5.90 × 10−06 3.32 × 10−03 4.98 × 10−07 5.21 × 10−12
10 1.55 × 10−04 8.42 × 10−01 2.85 × 10−11 5.54 × 10−01 1.06 × 10−06 2.22 × 10−01 2.85 × 10−11
Cameraman 4 NaN NaN 1.21 × 10−12 NaN NaN 3.34 × 10−02 1.21 × 10−12
6 9.59 × 10−01 2.05 × 10−02 2.36 × 10−12 2.04 × 10−02 2.95 × 10−01 1.66 × 10−03 1.69 × 10−11
8 2.87 × 10−01 4.52 × 10−02 2.66 × 10−11 1.40 × 10−01 4.12 × 10−03 2.50 × 10−02 2.66 × 10−11
10 4.89 × 10−02 4.55 × 10−02 2.85 × 10−11 9.88 × 10−01 1.41 × 10−01 4.46 × 10−02 2.85 × 10−11
Pirate 4 NaN NaN 1.22 × 10−12 NaN NaN NaN 1.22 × 10−12
6 1.38 × 10−06 1.89 × 10−11 2.83 × 10−11 4.22 × 10−12 6.65 × 10−07 2.73 × 10−11 2.83 × 10−11
8 7.02 × 10−02 4.15 × 10−07 2.93 × 10−11 2.38 × 10−04 6.34 × 10−08 1.67 × 10−06 2.93 × 10−11
10 2.80 × 10−01 2.47 × 10−07 2.95 × 10−11 9.18 × 10−06 2.32 × 10−10 1.82 × 10−07 2.95 × 10−11

Author Contributions

S.L., methodology, software, validation, formal analysis, investigation, resources, writing—original draft preparation, funding acquisition; H.J., conceptualization, writing—review and editing, visualization, supervision; L.A., review and editing, supervision; M.A., review and editing. All authors have read and agreed to the published version of the manuscript.

Funding

This research is funded by the High-tech Ship Research Program (No. [2017]614 and No. [2018]473) from Ministry of Industry and Information Technology of China, Fujian Natural Science Foundation Project (2021J011128), Sanming University National Natural Science Foundation Breeding Project (PYT2105), Sanming University Introduces High-level Talents to Start Scientific Research Funding Support Project (20YG14). This study was financially supported via a funding grant by Deanship of Scientific Research, Taif University Researchers Supporting Project number (TURSP-2020/300), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Conflicts of Interest

The author declares no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Bhattacharyya S., Maulik U., Dutta P. Multilevel image segmentation with adaptive image context based thresholding. Appl. Soft Comput. 2011;11:946–962. doi: 10.1016/j.asoc.2010.01.015. [DOI] [Google Scholar]
  • 2.Malyszko D., Stepaniuk J. Adaptive multilevel rough entropy evolutionary thresholding. Inf. Sci. 2010;180:1138–1158. doi: 10.1016/j.ins.2009.11.034. [DOI] [Google Scholar]
  • 3.Li L., Sun L., Xue Y., Li S., Huang X., Mansour R.F. Fuzzy multilevel image thresholding based on improved coyote optimization algorithm. IEEE Access. 2021;9:33595–33607. doi: 10.1109/ACCESS.2021.3060749. [DOI] [Google Scholar]
  • 4.Esparza E.R., Calzada L.A.Z., Oliva D., Heidari A.A., Zaldivar D., Cisneros M.P., Foong L.K. An efficient harris hawks-inspired image segmentation method. Expert Syst. Appl. 2020;155:113428. doi: 10.1016/j.eswa.2020.113428. [DOI] [Google Scholar]
  • 5.Houssein E.H., Emam M.M., Ali A.A. An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Syst. Appl. 2021;185:115651. doi: 10.1016/j.eswa.2021.115651. [DOI] [Google Scholar]
  • 6.Bao X., Jia H., Lang C. A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation. IEEE Access. 2019;7:76529–76546. doi: 10.1109/ACCESS.2019.2921545. [DOI] [Google Scholar]
  • 7.Xing Z. An improved emperor penguin optimization based multilevel thresholding for color image segmentation. Knowl.-Based Syst. 2020;194:105570. doi: 10.1016/j.knosys.2020.105570. [DOI] [Google Scholar]
  • 8.Liu L., Zhao D., Yu F., Heidari A.A., Ru J., Chen H., Mafarja M., Turabieh H., Pan Z. Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation. Comput. Biol. Med. 2021;138:104910. doi: 10.1016/j.compbiomed.2021.104910. [DOI] [PubMed] [Google Scholar]
  • 9.Pare S., Kumar A., Bajaj V., Singh G.K. An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy. Appl. Soft Comput. 2017;61:570–592. doi: 10.1016/j.asoc.2017.08.039. [DOI] [Google Scholar]
  • 10.Lei B., Fan J. Multilevel minimum cross entropy thresholding: A comparative study. Appl. Soft Comput. 2020;96:106588. doi: 10.1016/j.asoc.2020.106588. [DOI] [Google Scholar]
  • 11.Duan L., Yang S., Zhang D. Multilevel thresholding using an improved cuckoo search algorithm for image segmentation. J. Supercomput. 2021;77:6734–6753. doi: 10.1007/s11227-020-03566-7. [DOI] [Google Scholar]
  • 12.Yan Z., Zhang J., Yang Z., Tang J. Kapur’s entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm. IEEE Access. 2020;9:41294–41319. doi: 10.1109/ACCESS.2020.3005452. [DOI] [Google Scholar]
  • 13.Li J., Tang W., Wang J., Zhang X. A multilevel color image thresholding scheme based on minimum cross entropy and alternating direction method of multipliers. Optik. 2019;183:30–37. doi: 10.1016/j.ijleo.2019.02.004. [DOI] [Google Scholar]
  • 14.Kandhway P., Bhandari A.K. Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer. Multimed. Tools Appl. 2019;78:22613–22641. doi: 10.1007/s11042-019-7506-7. [DOI] [Google Scholar]
  • 15.Wang S., Liu Q., Liu Y., Jia H., Abualigah L., Zheng R., Wu D. A hybrid SSA and SMA with mutation opposition-based learning for constrained engineering problems. Comput. Intell. Neurosci. 2021;2021:6379469. doi: 10.1155/2021/6379469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Wang S., Jia H., Liu Q., Zheng R. An improved hybrid aquila optimizer and harris hawks optimization for global optimization. Math. Biosci. Eng. 2021;18:7076–7109. doi: 10.3934/mbe.2021352. [DOI] [PubMed] [Google Scholar]
  • 17.Zheng R., Jia H., Abualigah L., Liu Q., Wang S. Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization. Processes. 2021;9:1774. doi: 10.3390/pr9101774. [DOI] [Google Scholar]
  • 18.Saafan M.M., Gendy E.M. IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems. Expert Syst. Appl. 2021;176:114901. doi: 10.1016/j.eswa.2021.114901. [DOI] [Google Scholar]
  • 19.Chen H., Li W., Yang X. A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Syst. Appl. 2020;158:113612. doi: 10.1016/j.eswa.2020.113612. [DOI] [Google Scholar]
  • 20.Khan T.A., Ling S.H. A novel hybrid gravitational search particle swarm optimization algorithm. Eng. Appl. Artif. Intel. 2021;102:104263. doi: 10.1016/j.engappai.2021.104263. [DOI] [Google Scholar]
  • 21.Li Y., Bai X., Jiao L., Xue Y. Partitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Appl. Soft Comput. 2017;56:345–356. doi: 10.1016/j.asoc.2017.03.018. [DOI] [Google Scholar]
  • 22.Storn R., Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. [DOI] [Google Scholar]
  • 23.Grefenstette J.J. Genetic algorithms and machine learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022614421909. [DOI] [Google Scholar]
  • 24.Rao R.V., Vakharia D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. [DOI] [Google Scholar]
  • 25.Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
  • 26.Rashedi E., Nezamabadi-pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. [DOI] [Google Scholar]
  • 27.Dorigo M., Birattari M., Stutzle T. Ant colony optimization. IEEE Comput Intell Mag. 2006;1:28–39. doi: 10.1109/MCI.2006.329691. [DOI] [Google Scholar]
  • 28.Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. [DOI] [Google Scholar]
  • 29.Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. [DOI] [Google Scholar]
  • 30.Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017;114:163–191. doi: 10.1016/j.advengsoft.2017.07.002. [DOI] [Google Scholar]
  • 31.Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016;96:120–133. doi: 10.1016/j.knosys.2015.12.022. [DOI] [Google Scholar]
  • 32.Abualigah L., Diabat A., Mirjalili S., Elaziz M.A., Gandomi A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021;376:113609. doi: 10.1016/j.cma.2020.113609. [DOI] [Google Scholar]
  • 33.Abualigah L., Yousri D., Elaziz M.A., Ewees A.A., Al-qaness M.A.A., Gandomi A.H. Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021;157:107250. doi: 10.1016/j.cie.2021.107250. [DOI] [Google Scholar]
  • 34.Mirjalili S., Mirjalili S.M., Hatamlou A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural. Comput. Appl. 2015;27:495–513. doi: 10.1007/s00521-015-1870-7. [DOI] [Google Scholar]
  • 35.Li S., Chen H., Wang M., Heidari A.A., Mirjalili S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020;111:300–323. doi: 10.1016/j.future.2020.03.055. [DOI] [Google Scholar]
  • 36.Jia H., Peng X., Lang C. Remora optimization algorithm. Expert Syst. Appl. 2021;185:115665. doi: 10.1016/j.eswa.2021.115665. [DOI] [Google Scholar]
  • 37.Jia H., Ma J., Song W. Multilevel thresholding segmentation for color image using modified moth-flame optimization. IEEE Access. 2019;7:44097–44134. doi: 10.1109/ACCESS.2019.2908718. [DOI] [Google Scholar]
  • 38.Wu B., Zhou J., Ji X., Yin Y., Shen X. An ameliorated teaching-learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance. Inf. Sci. 2020;533:72–107. doi: 10.1016/j.ins.2020.05.033. [DOI] [Google Scholar]
  • 39.Pare S., Bhandari A.K., Kumar A., Singh G.K. Renyi’s entropy and bat algorithm based color image multilevel thresholding. Mach. Intell. Signal Anal. 2018;748:71–84. [Google Scholar]
  • 40.Zhao S., Wang P., Heidari A.A., Chen H., Turabieh H., Mafarja M., Li C. Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease. Comput. Biol. Med. 2021;134:104427. doi: 10.1016/j.compbiomed.2021.104427. [DOI] [PubMed] [Google Scholar]
  • 41.Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. [DOI] [Google Scholar]
  • 42.Dhawale D., Kamboj V.K., Anand P. An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm. Eng. Comput. 2021:1–39. doi: 10.1007/s00366-021-01409-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Mostafa M., Rezk H., Aly M., Ahmed E.M. A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel. Sustain. Energy Techn. 2020;42:100849. doi: 10.1016/j.seta.2020.100849. [DOI] [Google Scholar]
  • 44.Hassan M.H., Kamel S., Abualigah L., Eid A. Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Syst. Appl. 2021;182:115205. doi: 10.1016/j.eswa.2021.115205. [DOI] [Google Scholar]
  • 45.Ewees A.A., Abualigah L., Yousri D., Algamal Z.Y., Al-qaness M.A.A., Ibrahim R.A., Abd Elaziz M. Improved slime mould algorithm based on firefly algorithm for feature selection: A case study on QSAR model. Eng. Comput. 2021:1–5. doi: 10.1007/s00366-021-01342-6. [DOI] [Google Scholar]
  • 46.Jensi R., Jiji G.W. An enhanced particle swarm optimization with levy flight for global optimization. Appl. Soft Comput. 2016;43:248–261. doi: 10.1016/j.asoc.2016.02.018. [DOI] [Google Scholar]
  • 47.Liu Y., Cao B. A novel ant colony optimization algorithm with levy flight. IEEE Access. 2020;8:67205–67213. doi: 10.1109/ACCESS.2020.2985498. [DOI] [Google Scholar]
  • 48.Tizhoosh H.R. Opposition-based learning: A new scheme for machine intelligence; Proceedings of the Computational Intelligence for Modelling, Control & Automation; Vienna, Austria. 28–30 November 2005. [Google Scholar]
  • 49.Rahnamayan S., Tizhoosh H.R., Salama M.M.A. Quasi-oppositional differential evolution; Proceedings of the IEEE Congress on Evolutionary Computation; Singapore. 25–28 September 2007. [Google Scholar]
  • 50.Kullback S. Information Theory and Statistics. Dover; New York, NY, USA: 1968. [Google Scholar]
  • 51.Yin P. Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl. Math. Comput. 2007;184:503–513. doi: 10.1016/j.amc.2006.06.057. [DOI] [Google Scholar]
  • 52.Li Y., Zhao Y., Liu J. Dynamic sine cosine algorithm for large-scale global optimization problems. Expert Syst. Appl. 2021;177:114950. doi: 10.1016/j.eswa.2021.114950. [DOI] [Google Scholar]
  • 53.Reda M., Elhosseini M., Haikal A., Badawy M. A novel cuckoo search algorithm with adaptive discovery probability based on double Mersenne numbers. Neural. Comput. Appl. 2021;33:16377–16402. doi: 10.1007/s00521-021-06236-8. [DOI] [Google Scholar]
  • 54.Houssein E.H., Hussain K., Abualigah L., Elaziz M.A., Alomoush W., Dhiman G., Djenouri Y., Cuevas E. An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowl.-Based Syst. 2021;229:107348. doi: 10.1016/j.knosys.2021.107348. [DOI] [Google Scholar]
  • 55.Khairuzzaman A.K., Chaudhury S. Masi entropy based multilevel thresholding for image segmentation. Multimed. Tools Appl. 2019;78:33573–33591. doi: 10.1007/s11042-019-08117-8. [DOI] [Google Scholar]
  • 56.Bhandari A.K., Kumar A., Chaudhary S., Singh G.K. A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Expert Syst. Appl. 2016;63:112–133. doi: 10.1016/j.eswa.2016.06.044. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.


Articles from Entropy are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES