Skip to main content
Computational Intelligence and Neuroscience logoLink to Computational Intelligence and Neuroscience
. 2021 Dec 17;2021:1912859. doi: 10.1155/2021/1912859

A Novel Image Encryption Technique Based on Mobius Transformation

Muhammad Asif 1,, Sibgha Mairaj 2, Zafar Saeed 3, M Usman Ashraf 4, Kamal Jambi 5, Rana Muhammad Zulqarnain 1,
PMCID: PMC8709777  PMID: 34956343

Abstract

The nonlinear transformation concedes as S-box which is responsible for the certainty of contemporary block ciphers. Many kinds of S-boxes are planned by various authors in the literature. Construction of S-box with a powerful cryptographic analysis is the vital step in scheming block cipher. Through this paper, we give more powerful and worthy S-boxes and compare their characteristics with some previous S-boxes employed in cryptography. The algorithm program planned in this paper applies the action of projective general linear group PGL(2, GF(28)) on Galois field GF(28). The proposed S-boxes are constructed by using Mobius transformation and elements of Galois field. By using this approach, we will encrypt an image which is the preeminent application of S-boxes. These S-boxes offer a strong algebraic quality and powerful confusion capability. We have tested the strength of the proposed S-boxes by using different tests, BIC, SAC, DP, LP, and nonlinearity. Furthermore, we have applied these S-boxes in image encryption scheme. To check the strength of image encryption scheme, we have calculated contrast, entropy, correlation, energy, and homogeneity. The results assured that the proposed scheme is better. The advantage of this scheme is that we can secure our confidential image data during transmission.

1. Introduction

The notion of S-box was first introduced by applied scientist Claude Shannon in 1949, and afterward this notion has attracted the attention of many researchers. With the quick evolution of the network communication and massive data application, the security of the data has become more popular topic. The scholars have proposed a spread of the information encryption, privacy protection. In symmetric cryptography, the block encryption algorithm is used customarily, for example, in encryption (DES), AES, and other systems. In block cipher system, there is a predominant nonlinear component called substitution box. S-box plays a crucial role in the security of symmetric cryptosystem. AES is taken into account to be an efficient cryptosystem to a large extent. One of the important components of the AES is its prime S-box which is predicted on the inversion and transformation because of recognition of AES in the communication system; substitution box captivates traditional attention. However, the substitution box which is employed in AES is predetermined. The S-box is a nonlinear component of block cipher which creates confusion. The maintenance of information security has become an excellent challenge for the cryptography. Substitution boxes have been employed in many cryptosystems including encryption standard (DES), international data encryption algorithm (IDEA), and advanced encryption standard (AES). The security strength of substitution box determines the safety of the entire cryptosystem. It is therefore established that the substitution box is the important nonlinear component of the cryptographic system. Cryptography has unprecedented ways of the utilization of encryption capabilities to produce security of the data.

Many image encryption algorithms with S-box have been presented [18]. Liu et al. [6] explained the image encryption scheme using one-time S-boxes. Hussain and Gondal [5] gave an extended image encryption using chaotic coupled map and S-box transformation, the confusion-diffusion structure was assumed, the places of the pixels of the plain image were mixed up by a chaotic tent map, and after that delayed coupled map lattices and S-box transformation were used to puzzle the association between the original image and the cipher image. Zhang et al. [9] introduced an efficient chaotic image encryption based on alternate circular S-boxes, and a set of S-boxes were constructed by Chen chaotic system. Liu et al. [10, 11] developed the adaptive controller design and fuzzy synchronization for uncertain fractional order nonlinear system and fractional order chaotic systems. The scrutiny of AES is explained considering the high throughput, area efficiency, and elevated performance [12]. Khan et al. [13] introduced an efficient image encryption scheme based on double affine substitution box and chaotic system. Asif and Shah [14] explained the image encryption scheme using BCH codes. Alanazi et al. [15] explained cryptanalysis of novel image encryption scheme based on multiple chaotic substitution boxes. An approach to increasing multimedia security employing 3D mixed chaotic map and hybrid permutation substitution is explained by Naseer et al. [16, 17]. Khalid et al. [18] defined elliptic curve based image encryption scheme by using S-boxes. Cryptanalysis on S-box based on encryption method is clarified by Munir et al. [19]. Nonlinear component based on elliptic curve and power associative loop structure is defined by Haider et al. [20] and Hussain et al. [21], respectively.

The above presented studies are not enough to secure data in communication channel. To overcome this drawback, we proposed a novel approach using Mobius transformation. Existing studies deal only with one S-box for AES algorithm, but our proposed scheme is utilized to encrypt image using ten S-boxes. The rest of the paper is organized as follows: The elements of S-box are constructed by using elements of Galois field in Section 2, and the elements of Galois field are utilized in linear fractional transformation for S-boxes. In Section 3, analysis of S-boxes is carried out, and comparison with other S-boxes is also made. In Section 4, image encryption scheme is proposed by utilizing S-boxes, different tests are applied on encrypted image, and comparison of image encryption scheme with existing techniques is provided. The conclusion of the paper is presented in Section 5.

2. Construction of S-Box Using Galois Field

2.1. Galois Field

Any finite field is called Galois field. Nowadays, Galois field is used in many cryptographic algorithms for data security. A Galois filed extension is defined as

GFpm=Zpxfx, (1)

where f(x) is primitive irreducible polynomial of degree m.

2.2. Scheme for Construction of S-Box

A 16 × 16 S-box is constructed using the elements of Galois field. The total elements of the proposed S-box are 256, which are constructed by the action of PGL(2, GF(28)) on GF(28) [22]. Now, we have the Mobius transformation:

T:PGL2,GF28×GF28GF28,Tt=at+bct+d, (2)

where a, b, c, d, and tGF(28).

Here, T(t) are the values of GF(28) to construct the new S-box. This algorithm will stop working when a.db.c ≠ 0 does not exist. Moreover, after the change of the values in dividend and divisor, there is also a scenario where results of divisor are equal to zero. We additionally check this worth of unassisted degree rule that makes divisor zero; to overcome this type of error zero divisor, we assign the associated remaining value to conclude the values of substitution box. To find the elements, we substitute the value of t from 0 to 255 and convert t,  a,  b,  c,  d to binary form. Before control on the binary type, simply ones tend to delineate the values in form of polynomials. The terms from dividend and divisor of the unit being modified with the corresponding binary values “m” are interpreted as a particular primitive polynomial

Px=x8+x4+x3+x2+1. (3)

Here, P(x) is utilized for the construction of the elements of the GF(28) [23]. The mathematical methodology for GF(28) will be used in our further process. We can define GF(28)=2[x]/〈P(x)〉, where 2={0,1} and the polynomial P(x)=x8+x4+x3+x2+1 is the primitive irreducible polynomial.

Now, we construct the values of the transformed S-box by using Mobius transformation and elements of Galois field from Table 1. Here, we consider a=220, b=30, c=90,  and d=200,  where t=0 to 255.

Tt=220t+3090t+200. (4)

Table 1.

Elements of Galois field GF(28).

Exp. Decimal Polynomial
x 0 01 x 0
x 1 02 x 1
x 2 04 x 2
x 3 08 x 3
x 4 16 x 4
x 5 32 x 5
x 6 64 x 6
x 7 128 x 7
x 8 29 x 4+x3+x2+1
x 9 58 x 5+x4+x3+x
x 10 116 x 6+x5+x4+x2
x 11 232 x 7+x6+x5+x3
x 12 205 x 7+x6+x3+x2+1
x 13 135 x 7+x2+x+1
x 14 19 x 4+x+1
x 15 38 x 5+x2+x
x 16 76 x 6+x3+x2
x 17 152 x 7+x4+x3
x 18 45 x 5+x3 + x2+1
x 19 90 x 6+x4+x3+x
x 20 180 x 7+x5+x4+x2
x 21 117 x 6+x5+x4+x2+1
x 22 234 x 7+x6+x5+x3+x
x 23 201 x 7+x6+x3+1
x 24 143 x 7+x3+x2+x+1
x 25 3 x+1
x 26 6 x 2+x
x 27 12 x 3+x2
x 28 24 x 4+x3
x 29 48 x 5+x4
x 30 96 x 6+x5
x 31 192 x 7+x6
x 32 157 x 8+x7
x 33 39 x 5+x2+x+1
x 34 78 x 6+x3+x2+x
x 35 156 x 7+x4+x3+x2
x 36 37 x 5+x2+1
x 37 74 x 6+x3+x
x 38 148 x 7+x4+x2
x 39 53 x 5+x4+x2+1
x 40 106 x 6+x5+x3+x
x 41 212 x 7+x6+x4+x2
x 42 181 x 7+x5+x4+x2+1
x 43 119 x 6+x5+x4+x2+x+1
x 44 238 x 7+x6+x5+x3+x2+x
x 45 193 x 7+x6+1
x 46 159 x 7+x4+x3+x2+x+1
x 47 35 x 5+x+1
x 48 70 x 6+x2+x
x 49 140 x 7+x3+x2
x 50 5 x 2+1
x 51 10 x 3+x
x 52 20 x 4+x2
x 53 40 x 5+x3
x 54 80 x 6+x4
x 55 160 x 7+x5
x 56 93 x 6+x4+x3+x2+1
x 57 186 x 7+x5+x4+x3+x
x 58 105 x 6+x5+x3+1
x 59 210 x 7+x6+x4+x
x 60 185 x 7+x5+x4+x3+1
x 61 111 x 6+x5+x3+x2+x+1
x 62 223 x 7+x6+x4+x3+x2+x
x 63 161 x 7+x5+1
x 64 95 x 6+x4+x3+x2+x+1
x 65 190 x 7+x5+x4+x3+x2+x
x 66 97 x 6+x5+1
x 67 194 x 7+x6+x
x 68 153 x 7+x4+x3+1
x 69 47 x 5+x4+x2+x+1
x 70 94 x 6+x4+x3+x2+x
x 71 188 x 7+x5+x4+x3+x2
x 72 101 x 6+x5+x2+1
x 73 202 x 7+x6+x3+x
x 74 137 x 7+x3+1
x 75 15 x 3+x2+x+1
x 76 30 x 4+x3+x2+x
x 77 60 x 5+x4+x3+x2
x 78 120 x 6+x5+x4+x3
x 79 240 x 7+x6+x5+x4
x 80 253 x 7+x6+x5+x4+x3+x2+1
x 81 231 x 7+x6+x5+x2+x+1
x 82 211 x 7+x6+x2+x+1
x 83 187 x 7+x5+x4+x3+x+1
x 84 107 x 6+x5+x3+x+1
x 85 214 x 7+x6+x4+x2+x
x 86 177 x 7+x5+x4+1
x 87 127 x 6+x5+x4+x3+x2+x+1
x 88 254 x 7+x6+x5+x4+x3+x2+x
x 89 225 x 7+x6+x5+1
x 90 223 x 7+x6+x4+x3+x2+x+1
x 91 163 x 7+x5+x+1
x 92 91 x 6+x4+x3+x3+x+1
x 93 182 x 7+x5+x4+x2+x
x 94 113 x 6+x5+x4+1
x 95 226 x 7+x6+x3+x
x 96 217 x 7+x6+x4+x3+1
x 97 175 x 7+x5+x3+x2+x+1
x 98 67 x 6+x+1
x 99 134 x 7+x2+x
x 100 17 x 4+1
x 101 34 x 5+x
x 102 68 x 6+x2
x 103 136 x 7+x3
x 104 13 x 3+x2+1
x 105 26 x 4+x3+x
x 106 152 x 5+x4+x2
x 107 104 x 6+x5+x3
x 108 208 x 7+x6+x4
x 109 189 x 8+x7+x5
x 110 103 x 6+x5+x2+x+1
x 111 206 x 7+x6+x3+x2+x
x 112 129 x 7+1
x 113 31 x 4+x3+x2+x+1
x 114 62 x 5+x4+x3+x2+x
x 115 124 x 6+x5+x4+x3+x2
x 116 248 x 7+x6+x5+x4+x3
x 117 237 x 7+x6+x5+x3+x2+1
x 118 199 x 7+x6+x2+x+1
x 119 147 x 7+x4+x+1
x 120 59 x 5+x4+x3+x+1
x 121 118 x 6+x5+x4+x2+x
x 122 236 x 7+x6+x5+x3+x2
x 123 197 x 7+x6+x2+1
x 124 151 x 7+x4+x2+x+1
x125 51 x 5+x4+x+1
x126 102 x 6+x5+x2+x
x 127 204 x 7+x6+x3+x2
x 128 133 x 7+x2++1
x 129 23 x 4+x2+x+1
x 130 46 x 5+x3+x2+x
x 131 92 x 6+x4+x3+x2
x 132 184 x 7+x5+x4+x3
  x133 109 x 6+x5+x3+x2+1
  x134 218 x 7+x6+x4+x3+x
x135 169 x 7+x5+x3+1
x136 47 x 6+x3+x2+x+1
x137 94 x 7+x4+x3+x2+x
x 138 188 x 5+1
x 139 66 x 6+x
x 140 132 x 7+x2
x 141 21 x 4+x2+1
x 142 42 x 5+x3+x
x 143 84 x 6+x4+x2
x 144 168 x 7+x5+x3
x 145 77 x 6+x3+x2+1
x 146 154 x 7+x4+x3+x
x 147 41 x 5+x3+1
x 148 82 x 6+x4+x
x 149 164 x 7+x5+x2
x 150 85 x 6+x4+x2
x 151 170 x 7+x5+x3+x
x 152 73 x 6+x3+1
  x153 146 x 7+x4+x
x 154 57 x 5+x4+x3+1
x 155 114 x 6+x5+x4+x
x 156 228 x 7+x6+x5+x2
x 157 213 x 7+x6+x4+x2+1
x 158 183 x 7+x5+x4+x2+x+1
x 159 115 x 6+x5+x4+x+1
x 160 230 x 7+x6+x5+x2+x
x 161 209 x 7+x6+x4+1
x 162 191 x 7+x5+4+x3+x2+x+1
x 163 99 x 6+x5+x+1
x 164 198 x 7+x6+x2+x
x 165 145 x 7+x4+1
x 166 63 x 5+x4+x3+x2+x+1
x 167 126 x 6+x5+x4+x3+x2+x
x 168 252 x 7+x6+x5+x4+x3+x2
x 169 229 x 7+x6+x5+x2
x 170 215 x 7+x6+x4+x4+x+1
x 171 179 x 7+x5+x4+x+1
x 172 123 x 6+x5+x4+x3+x+1
x 173 246 x 7+x6+x5+x4+x2+x
x 174 241 x 7+x6+x5+x4+1
x 175 255 x 7+x6+x5+x4+x3+x2+x+1
x 176 227 x 7+x6+x5+x+1
x 177 219 x 7+x6+x4+x3+x+1
x 178 171 x 7+x5+x3+x+1
x 179 75 x 6+x3+x+1
x 180 150 x 7+x4+x2+x
x 181 49 x 5+x4+1
x 182 98 x 6+x5+x
x 183 196 x 7+x6+x2
x 184 149 x 7+x4+x2+1
x 185 55 x 5+x4+x2+x+1
x 186 110 x 6+x5+x3+x2+x
   x187 220 x 7+x6+x4+x3+x2
x 188 165 x 7+x5+x2+1
x 189 87 x 6+x4+x2+x+1
x 190 174 x 7+x5+x3+x2+x
x 191 65 x 6+1
x 192 130 x 7+x
x 193 25 x 4+x3+1
x 194 50 x 5+x4+x
x 195 100 x 6+x5+x2
x 196 200 x 7+x6+x3
x 197 141 x 7+x3+x2+1
x 198 7 x 2+x+1
x 199 14 x 3+x2+x
x 200 28 x 4+x3+x2
x 201 56 x 5+x4+x3
x 202 112 x 6+x5+x4
x 203 224 x 7+x6+x5
x 204 221 x 7+x6+x4+x3+x2+1
x 205 167 x 7+x5+x2+x+1
x 206 83 x 6+x4+x+1
x 207 166 x 7+x5+x2+x
x 208 81 x 6+x4+1
x 209 162 x 7+x5+x
x 210 89 x 6+x4+x3+1
x 211 178 x 7+x5+x4+x
x 212 121 x 6+x5+x4+x3+1
x 213 242 x 7+x6+x5+x4+x
x 214 249 x 7+x6+x5+x4+x3+1
x 215 239 x 7+x6+x5+x3+x2+x+1
x 216 195 x 7+x6+x+1
x 217 155 x 7+x4+x3+x+1
x 218 43 x 5+x3+x+1
x 219 86 x 6+x4+x2+x
x 220 172 x 7+x5+x3+x2
x 221 69 x 6+x2+1
x 222 138 x 7+x3+x
x 223 9 x 3+1
x 224 18 x 4+x
x 225 36 x 5+x2
x 226 72 x 6+x3
x 227 144 x 7+x4
x 228 61 x 5+x4+x3+x2+1
x 229 122 x 6+x5+x4+x3+x
x 230 244 x 7+x6+x5+x4+x2
x 231 245 x 7+x6+x5+x4+x2+1
x 232 247 x 7+x6+x5+x4+x2+x+1
x 233 243 x 7+x6+x5+x4+x+1
x 234 251 x 7+x6+x5+x4+x3+x+1
x 235 235 x 7+x6+x5+x3+x+1
x 236 203 x 7+x6+x3++x+1
x 237 139 x 7+x3++x+1
x 238 11 x 3+x+1
x 239 22 x 4+x2+x
x 240 44 x 5+x3+x2
x 241 88 x 6+x4+x3
x 242 176 x 7+x5+x4
x 243 125 x 6+x5+x4+x3+x2+1
x 244 250 x 7+x6+x5+x4+x3+x
x 245 233 x 7+x6+x5+x3+1
x 246 207 x 7+x6+x3+x2+x+1
x 247 131 x 7+x+1
x 248 27 x 4+x3+x+1
x 249 54 x 5+x4+x2+x+1
x 250 108 x 6+x5+x3+x2
x 251 216 x 7+x6+x4+x3
x 252 173 x 7+x5+x3+x2+1
x 253 71 x 6+x2+x+1
x 254 142 x 7+x3+x2+x
x 255 1 1

Here, t=0 to 255. We consider t=0; then,

T0=2200+30900+200. (5)

Converting each value into binary form, we will get the polynomial of the corresponding values. We can see the corresponding value of this polynomial in Table 1 in form of “x.”

T0=x7+x5+x3+1=10101001=169. (6)

Therefore, the first value of the transformed S-box is 169; by following the same procedure, we will compute the remaining elements of the S-box.

3. Analysis of Transformed S-Boxes and Their Comparison Support

Nonlinearity constitutes the quantity of bits which are necessarily altered to succeed in affine at the lowest distance. Therefore, for an outsize “m,” that calculation is going to be difficult. Now, we will mention the series of the function on Fⁿ with α, so the nonlinearity is defined as

Nf=2n112i=0,1,2,3,,2n1maxα,li, (7)
Bn=Bn1Bn1Bn1, (8)

The nonlinearity of these S-boxes should satisfy the following relation [24]:

Nf=2n2n/22=120,when n=8, (9)

120 is considered as an absolute nonlinearity value.

From Tables 211, we observe that from Table 12 the maximum nonlinearity of transformed S-box is equal to 107.3, which is better when compared to other S-boxes.

Table 2.

S-box in the form of 16 × 16 matrix.

135 225 225 71 210 134 105 135 62 188 139 181 160 242 34 194
179 119 182 126 107 129 222 232 57 126 147 0 119 181 34 105
62 42 164 75 204 221 181 111 222 19 111 45 197 35 132 210
108 186 73 44 181 171 51 134 77 188 63 107 46 81 119 47
192 88 134 172 248 94 119 242 240 221 174 57 17 242 253 17
165 135 237 215 98 24 8 208 74 134 192 210 239 171 72 142
177 158 247 147 246 148 12 71 251 254 107 181 51 213 121 164
143 132 88 160 253 223 36 34 215 252 13 244 33 120 15 179
73 33 232 125 36 223 126 80 2 17 47 172 225 1 200 235
171 160 254 80 144 252 246 200 232 235 46 52 120 246 106 219
15 173 95 14 108 245 95 74 160 240 25 120 33 252 72 208
14 239 64 138 141 8 212 12 3 106 197 125 204 25 232 35
225 248 108 120 60 17 242 250 90 36 17 34 77 42 237 194
81 148 177 108 212 52 212 81 247 100 64 24 38 244 77 174
235 252 60 210 213 208 139 129 45 219 33 98 138 201 7 141
38 188 181 165 208 121 2 126 140 171 13 188 182 36 250 143

Table 3.

S-box in the form of 16 × 16 matrix.

169 36 36 188 89 218 26 169 222 165 66 49 230 176 78 50
75 147 98 102 104 23 138 247 186 6 41 0 147 49 78 26
222 181 198 15 22 69 49 206 138 90 206 193 141 156 184 89
208 11 202 238 49 179 10 218 60 165 161 104 159 231 147 35
130 254 218 123 27 113 147 176 44 69 241 186 152 247 71 152
145 169 139 239 67 143 29 81 137 218 130 89 22 179 101 42
219 183 131 41 233 82 205 188 216 142 104 49 10 242 118 198
84 184 254 230 71 9 37 78 239 173 135 250 39 59 38 75
202 39 247 51 37 9 102 102 4 152 35 123 36 5 28 235
179 230 1 253 168 173 207 28 247 235 159 20 59 207 52 86
38 246 226 19 208 233 226 137 230 44 3 59 39 173 101 81
19 22 95 33 21 29 121 205 99 52 141 51 221 3 247 156
36 27 208 59 185 152 176 108 223 37 152 78 60 181 139 50
231 82 219 208 121 20 121 231 131 17 95 143 148 250 60 241
235 173 185 89 242 81 66 23 193 86 39 67 33 56 100 21
148 165 49 145 81 118 4 102 132 179 135 65 98 37 108 84

Table 4.

S-box in the form of 16 × 16 matrix.

69 222 6 216 134 50 52 69 94 3 222 210 167 168 88 146
186 65 249 89 213 97 83 29 244 46 174 234 65 139 108 52
162 157 199 189 102 118 87 122 83 69 122 19 152 198 19 116
18 234 252 173 87 102 63 50 136 3 159 159 171 80 149 66
218 98 166 109 192 86 149 61 20 118 213 244 33 61 12 228
176 135 190 111 141 220 61 115 171 174 218 1 154 60 220 8
202 86 249 174 19 176 177 216 113 202 143 210 63 44 135 199
228 19 98 203 12 217 57 88 111 181 14 250 176 179 94 186
45 176 89 230 203 217 89 90 42 33 66 190 6 121 6 69
102 167 202 90 159 191 49 6 175 208 171 185 155 7 146 193
94 183 205 170 18 19 205 171 203 20 156 179 192 181 220 115
170 32 102 72 161 61 115 177 121 188 152 230 102 156 89 198
182 192 106 155 129 113 168 233 189 203 228 108 136 157 190 146
184 176 202 106 160 185 160 80 11 37 102 220 254 250 173 213
208 191 129 134 44 198 222 97 19 193 192 141 72 59 148 161
254 137 139 176 198 159 42 46 37 60 44 137 249 57 233 230

Table 5.

S-box in the form of 16 × 16 matrix.

47 138 64 195 218 5 20 47 113 8 138 89 126 252 254 154
110 190 54 225 242 175 187 48 250 159 241 251 190 66 208 20
191 213 14 87 68 199 127 236 187 47 236 90 73 7 90 248
45 251 173 246 127 68 161 5 79 8 115 115 179 253 164 97
43 67 163 174 130 177 164 111 180 199 242 250 39 111 205 61
227 169 174 206 21 172 111 124 179 241 43 2 57 185 69 29
112 177 54 241 90 227 219 195 31 112 84 89 161 238 169 14
61 90 67 224 205 155 186 254 206 49 19 108 227 75 113 110
193 227 225 244 224 155 225 223 181 39 97 174 64 118 64 47
68 126 112 223 115 65 133 64 253 81 179 55 114 9 154 25
113 196 167 215 45 90 167 179 224 180 228 75 130 49 172 124
215 157 68 101 209 111 124 219 118 98 73 241 68 228 225 7
98 130 52 114 23 31 252 243 87 241 61 208 79 213 174 154
196 227 112 52 230 55 230 253 232 74 68 172 142 108 246 242
81 130 23 218 238 7 138 175 90 25 130 21 101 210 82 209
1 66 158 227 7 115 181 159 74 185 238 158 54 186 243 244

Table 6.

S-box in the form of 16 × 16 matrix.

14 131 198 2 103 102 227 14 219 187 162 18 206 88 163 75
234 130 85 242 138 232 61 60 157 122 170 17 130 65 70 227
219 172 182 182 22 192 7 235 61 36 231 37 111 96 160 253
2 17 26 70 7 47 235 249 86 187 104 5 160 21 27 232
243 117 54 237 146 24 27 175 58 215 54 157 16 175 187 55
39 5 73 161 30 130 84 187 74 54 143 253 65 26 218 75
4 24 175 170 177 33 152 2 51 213 138 18 235 124 5 182
59 160 117 188 187 152 145 163 161 124 160 142 131 55 193 20
26 131 230 159 52 152 242 115 45 16 232 237 198 169 133 36
47 206 32 115 5 166 177 133 60 43 160 153 6 177 254 45
193 2 140 191 197 70 114 74 188 58 242 55 9 124 218 187
191 65 145 157 212 84 75 152 169 254 111 159 22 242 230 96
131 146 134 6 183 51 88 171 182 52 55 130 86 172 202 75
2 33 4 134 25 153 37 21 175 19 145 130 67 142 70 54
43 166 183 103 7 225 162 242 37 45 141 30 157 183 183 212
67 32 65 39 225 104 10 171 46 26 160 32 85 145 171 59

Table 7.

S-box in the form of 16 × 16 matrix.

19 92 7 4 136 68 144 19 86 220 191 45 83 254 99 15
251 46 214 176 33 247 111 185 213 236 215 152 46 190 94 144
86 123 98 98 234 130 128 235 111 37 245 74 206 217 230 71
4 152 6 94 128 35 235 54 177 220 13 32 230 117 12 247
125 237 80 139 154 143 12 255 105 239 80 213 76 255 220 160
53 32 202 209 96 46 107 220 137 80 84 71 190 6 43 15
16 143 255 215 219 39 73 4 10 242 33 45 235 151 32 98
210 230 237 165 220 73 77 99 209 151 230 42 92 160 25 180
6 92 244 115 26 73 176 124 193 76 247 139 7 229 109 37
35 83 157 115 5 166 177 133 60 43 160 153 213 6 177 254
45 193 4 132 65 141 94 62 137 165 105 176 160 0 151 43
220 65 190 77 213 121 107 30 73 229 1 206 115 234 176 244
217 92 154 218 64 196 10 254 179 98 20 160 46 177 123 112
15 4 39 218 50 146 49 117 255 2 77 46 194 42 94 80
119 63 196 136 128 36 191 176 74 193 6 96 213 196 196 121
194 157 190 53 36 13 116 179 159 6 230 157 214 77 179 210

Table 8.

S-box in the form of 16 × 16 matrix.

94 143 242 59 55 207 84 180 238 15 216 174 179 241 214 9
44 100 118 62 11 190 13 185 63 74 132 81 193 95 57 49
244 189 158 194 237 141 69 121 232 12 199 172 90 51 203 20
128 245 58 252 119 85 101 221 48 30 51 254 111 112 188 100
162 150 37 145 27 19 67 50 94 123 168 215 28 12 167 9
45 4 240 196 35 182 244 214 70 223 169 210 213 196 62 121
211 196 82 72 158 215 202 229 48 189 217 63 62 48 137 192
53 196 98 65 161 223 85 34 194 222 58 176 59 170 94 203
30 83 63 152 3 103 175 110 99 87 205 87 29 25 162 94
105 208 148 109 86 147 43 246 34 5 49 184 251 69 24 249
121 243 151 63 241 114 196 252 66 204 0 58 136 12 180 217
16 99 106 175 196 211 210 79 92 187 229 162 33 107 207 87
126 251 237 197 216 131 220 239 183 205 183 248 29 96 217 209
230 31 126 46 252 112 215 14 162 196 212 190 120 22 243 128
113 115 89 131 114 50 241 186 53 42 161 41 14 2 2 220
31 83 1 98 108 172 169 71 20 88 87 48 101 47 99 10

Table 9.

S-box in the form of 16 × 16 matrix.

113 84 176 210 160 166 107 150 11 38 195 241 75 88 249 58
238 17 199 222 99 174 135 55 161 137 184 231 25 226 186 140
250 87 183 50 139 21 47 118 247 205 14 123 223 10 224 180
33 233 105 173 147 214 34 69 70 96 10 1 206 129 165 17
191 85 74 77 12 90 194 5 113 197 252 239 24 205 126 58
193 16 44 200 156 98 250 249 94 9 229 89 242 200 222 118
178 200 211 101 183 239 112 122 70 87 155 161 222 70 158 130
40 200 67 190 209 9 214 78 50 138 105 227 210 215 113 224
96 187 161 73 8 136 255 103 134 127 167 127 48 3 191 113
26 81 82 189 177 41 119 207 78 32 140 149 216 47 143 54
118 125 170 161 88 62 200 173 97 221 1 105 79 205 150 155
76 134 52 255 200 178 89 240 91 220 122 191 39 104 166 127
102 216 139 141 195 92 172 22 196 167 196 27 48 217 155 162
244 192 102 159 173 129 239 19 191 200 121 174 59 234 125 133
31 124 225 92 62 5 88 110 40 181 209 212 19 4 4 172
192 187 2 67 208 123 229 188 180 254 127 70 34 35 134 80

Table 10.

S-box in the form of 16 × 16 matrix.

30 245 179 8 179 0 131 143 253 100 175 140 18 95 38 245
213 252 192 120 233 138 148 89 55 11 249 230 180 123 187 172
91 127 197 228 26 243 180 81 116 210 36 195 186 20 232 104
161 30 186 135 163 173 160 48 247 75 240 7 186 181 38 201
186 249 152 220 223 7 94 170 217 30 39 92 206 162 160 163
43 0 103 195 163 204 184 119 159 3 207 75 109 131 27 207
135 231 246 80 10 127 27 97 211 73 97 238 76 188 70 77
17 47 179 249 187 177 227 44 197 71 29 72 159 234 136 34
118 63 109 61 68 70 175 217 41 75 34 238 214 74 94 157
166 155 29 171 34 1 20 14 190 91 196 26 8 162 181 132
33 159 2 131 151 160 153 118 195 89 140 200 23 25 63 174
82 63 190 210 23 218 148 171 12 42 158 203 15 85 32 28
176 156 12 2 235 213 1 62 169 219 172 125 76 130 4 158
137 200 126 227 41 52 96 111 32 36 243 38 187 3 62 31
44 186 223 107 218 112 141 71 176 251 5 194 84 171 134 151
215 132 186 12 254 155 9 186 14 131 105 100 144 236 145 19

Table 11.

S-box in the form of 16 × 16 matrix.

96 233 75 29 179 1 92 84 71 17 255 132 45 226 148 233
249 173 130 59 243 33 82 225 160 29 108 244 150 197 220 123
163 204 141 61 6 125 150 231 248 89 37 100 110 180 247 13
63 96 110 169 99 246 230 70 131 15 88 128 110 49 148 56
110 54 73 172 9 128 113 215 155 96 53 91 83 191 230 99
119 1 136 100 99 221 149 147 115 8 166 15 189 92 12 166
169 245 207 253 116 204 12 175 178 202 175 11 30 165 94 60
152 35 75 54 220 219 144 238 141 188 48 101 115 251 79 78
199 161 189 111 153 94 255 155 212 15 78 11 249 137 113 213
63 114 48 179 78 2 180 19 174 163 200 6 29 191 49 184
39 115 4 92 170 230 146 199 100 225 132 28 201 3 161 241
211 161 174 89 201 43 82 179 205 181 183 224 38 214 157 24
227 228 205 4 235 242 161 229 86 123 51 30 46 16 183 158
28 102 144 212 5 217 206 157 37 125 148 220 8 222 192 238
110 9 104 43 129 31 21 188 227 216 32 50 107 179 218 170
239 184 110 49 142 114 50 110 19 92 26 17 168 203 77 23

Table 12.

Assessment of nonlinearity.

S-boxes Nonlinearity
Transformed S-box 107.3
APA S-box [25] 112
S 8 Liu J S-box [26] 104.87
Hussain et al. [27] 104.75
Residue prime [28] 99.5

3.1. Strict Avalanche Criterion (SAC)

A median consequence of the resulting bits should be modified to 0.5. Once one input bit is executed, then the given alteration shows associated avalanche result. The given operate clutch an effective avalanche result if the method is replicate for all input bits also almost 50%  avalanche variable attain value 1. S-box fulfills the SAC if only 1 input bit is modified so that in the result 0.5 quantities of output bits are changed. For the function expression, f(x) ⊕ f(xα) is safe for the sequence α such that the weight of the α=1, so the function f :  F2nF2 fulfills SAC [29].

By considering the maximum values and minimum values, we observe that the average value of SAC from Table 13 is comparatively better and ∼0.5.

Table 13.

Comparison of strict avalanche criterion.

S-boxes Max. value Min. value
Transformed S-boxes 0.61 0.57
APA S-box [25] 0.56 0.437
S8 Liu J S-box [26] 0.59 0.429
Hussain et al. [27] 0.59 0.391
Residue prime [28] 0.67 0.343

3.2. Bit Independence Criterion (BIC)

This is another style of criterion for the S-box to calculate the worth outlined because the output Y and Z should be altered separately. A bit independence criterion is an appropriate property for each crypt analytical scheme, which was introduced by Webster and Tavares. It has been argued that the Boolean functions fy, fz(yz) are two different output bits of the S-box. If S-box encounters bit independence criterion, fyfz(yz, 1 ≤ y, zn) should be exceptionally nonlinear and are available as near as possible in order to satisfy strict avalanche criterion. We are able to conjointly attest the bit independence by evaluating nonlinearity and strict avalanche criterion of fyfz [30].

In Table 14 for comparison of BIC, we take minimum value; our minimum value is 101.3, which is better compared to S8 Liu J, Hussain et al., and residue prime S-boxes.

Table 14.

Assessment of BIC.

S-boxes Min. value
Transformed S-box 101.3
APA S-box [25] 112
S 8 Liu J S-box [26] 99
Hussain et al. [27] 100
Residue prime [28] 94

3.3. Linear Approximation Probability (LP)

It is determined as the highest worth of inequality of a happening. The uniformity of input bits should be the image of the uniformity of the output bits. At the level of input ith, input bit is evaluated severally and also its consequences part discovered within the output bits formula where 2m shows the quantity of pats belong to the constructed S-box and also the assortment of every feasible input bits to S-box, part is denoted by X, where Φ(x) and Φ(y) show input/output [15].

Table 15 shows that our transformed S-box against linear attacks is better when compared to residue prime S-box and identical to Hussain S-box.

Table 15.

Analysis of LP.

S-boxes Max. value
Transformed S-box 0.15
APA S-box [25] 0.062
S 8 Liu J S-box [26] 0.105
Hussain et al. [27] 0.125
Residue prime [28] 0.132

3.4. Differential Approximation Probability (DP)

The S-box is considered because it is a nonlinear component of block cipher. In the perfect situation, S-box shows the different consistency. Δx is considered as the input differential whereas Δy indicates the output differential. During the technique of immigrant, it has been noticed, what quantity chance that differential of the input bits is is separately mapped on differential at output bits. Associate degree input differential associated degree should separately map to output Δy. To calculate the differential uniformity, the DP of specified S-box can be explicit as follows:

DPΔx,Δy=number ofxXSxSxΔx=Δy2m. (10)

Here, x represents a set of the possible feasible input values and their number of components are denoted by 2m.

Table 16 shows that S-box maintains its maximum differential probability at 0.06 which is acceptable value for resistance against differential attacks.

Table 16.

Analysis of DP.

S-boxes Max. DP
Transformed S-box 0.06
APA S-box [25] 0.0156
S 8 Liu J S-box [26] 0.0390
Hussain et al. [27] 0.125
Residue prime [28] 0.281

4. Application of the Proposed S-Boxes

The most advanced encryption standard algorithm is used for image encryption data. We can encrypt any image by using AES in MATLAB. We will not get any information of the original image when the image is encrypted. From this, we can see that AES encryption algorithm can get the results of image encryption. The AES encryption system is symmetric; it has three types of key length of encryption: 128, 196, and 256 bits, with a packet size of 128 bits for all; and the algorithm has fantastic flexibility. Therefore, it is being used in software and also in hardware. In this 3-key length of AES algorithm, 128 bits' key length is commonly used. Under this key length, 10-time iterative computation is done in the internal algorithm. Additionally, in the final round, every round contains five portions: Sub Bytes, S-box, Shift Rows, Mix Columns, and Add Round Key. Here, we perform the digital image encryption and will get the date which uses encryption algorithm of AES. Then, digital image encrypted by using AES algorithm is realized in the MATLAB simulation.

From Figure 1, we can see that the host image is unpredictable when performing 1st round of AES, and this disorder in the picture increases as we perform other rounds. The feature of the image can also be described through gray histogram of image, which shows the number of occurrences of different pixel values. If the image contains a low contrast, then histogram will be narrow and will be focused in the middle of gray scale. From the result, it has been clear that AES algorithm has excellent effect for the encrypted image.

Figure 1.

Figure 1

Image encryption with histogram analysis.

4.1. Majority Logic Criterion for S-Boxes

The majority logic criterion is applicable within the evaluation procedure of S-boxes, employed in AES (advanced encryption standard). The strength of the proposed S-boxes is checked by statistical analyses. The essential component of statistical analysis used for the sake of majority logic criterion is derived from the results of the following:

  1. Contrast

  2. Correlation

  3. Energy

  4. Homogeneity

  5. Entropy

In the process of substitution, firstly data is altered into the form of encrypted data. On the other side, within the permutation process, the order of data material or contents is changed, which results in a different arrangement of the bits. The process of the substitution depends on the quantity of bits' n which makes the number of keys equal to 2ⁿ. The amalgamation of the permutation and the substitution of the data bit at the level of input make the encryption of the data stronger.

4.1.1. Contrast

The bulk of the contrast within the picture allows the viewer to brightly identify objects in a picture. Because the picture is encrypted, the amount of disorderness increases; as a result, it elevates the level of contrast to a really high value. Contrast is actually associated with the quantity of confusion which is created by the S-box within the original image. The mathematical depiction of contrast analysis is

contrast=ij2pi,j. (11)

Here i, j denotes the pixels of the image. Figure 2 shows the illustration of contrast.

Figure 2.

Figure 2

Illustration of contrast.

4.1.2. Correlation

Correlation elaborates the relation between the pixels in the image data. Correlation analysis is split into three different parts. It is performed on the following:

  1. Vertical and horizontal

  2. Diagonal formats

  3. General correlation

Additionally, for analysis on a partial region, the complete image is additionally included within the processing. This analysis calculates the correlation of the pixel to its neighbor by taking into consideration the pixels of complete image data.

If M, N identifies two matrix and Mmn, Nmn identifies the mean of the matrix elements, the for correlation is

correlation=mnMmnM¯NmnN¯mnMmnM¯2mnNmnN¯2. (12)

The correlation of the same image is one bit; if the correlations are equal, this does not mean that photographs are the same. Two different pictures may have the same correlation, but distribution of the pixel colors might be completely distinct as shown in Figure 3.

Figure 3.

Figure 3

Correlation of encrypted image.

4.1.3. Energy

The analysis of energy is employed to measure the encrypted image. The gray-level cooccurrence matrix is employed to conduct energy. The performance of previous substitution box is healthier than the previous S-box utilized in analysis. The mathematical representation of the energy is

energy=Pi,j2. (13)

4.1.4. Homogeneity

The data of image contains a natural distribution that is related to the contents of the corresponding image. We execute the homogeneity which calculates the closeness of the distributed components. This is often called gray-tone spatial dependency matrix. The GLCM represents the combination of the pixel brightness values or the gray-levels that are formed in a table. The frequency of gray levels is often illuminated from the table GLCM.

The homogeneity is often determined as

ijpi,j1+ij. (14)

Here, gray level cooccurrence matrices in the GLCM are mentioned by P(i, j).

4.1.5. Entropy

Entropy is often defined because of the randomness in the picture. The entropy of encrypted image is denoted as

entropy=i=1npxilogbpxi, (15)

where p(xi) have the histogram count. Figure 4 shows the comparison of higher and lower entropy. A superbly random image entropy has the value 8. Because the image gets foreseeable, entropy decreases. Therefore, in order to get good encrypted image, entropy must be closest to 8.

Figure 4.

Figure 4

Higher vs. lower entropy.

Here, Table 17 shows the majority logic criterion of S-boxes which satisfy all the criteria up to standard that can be used for the sake of communication.

Table 17.

Comparison of MLC.

S-boxes Entropy Contrast Correlation Energy Homogeneity
Host image [23] 7.6062 0.4896 0.9075 0.0785 0.8009
Proposed S-box 7.9972 11.2629 −0.0039 0.0159 0.3855
AES 7.73018 7.322085 0.087904 0.024477 0.483523
APA [29] 7.688383 7.736859 0.216816 0.022942 0.486265
Prime [26] 7.65955 6.368367 0.099634 0.026099 0.49848
Skipjack [31] 7.673853 6.805101 0.195849 0.026131 0.495087

The entropy measures the strength of image encryption scheme. If entropy is nearly equal to 8, this means that our image encryption scheme is good. If contrast is high, the strength of the encrypted image is more beneficial. Correlation close to zero as much as possible shows better encrypted image quality. If energy and homogeneity decrease and approximately equal zero, then the proposed image encryption scheme is better.

Table 17 shows that entropy of encrypted image is close to 8, contrast is very high, correlation and energy are close to zero, and homogeneity also decreases. From these tests and comparisons, we can say that the proposed image encryption scheme using 10 different S-boxes in different round is very good.

5. Conclusion

S-box is the consequential component in the algorithm of encryption melded into SPN that plays a crucial part. In this work, we utilize a technique for the construction of worthy S-box which is established because of the action of PGL(2, GF(28)) on a Galois field GF(28). This new constructed S-box relates to a special sort of Mobius transformation. It has been observed from the appraisal that representation scheme of new S-box is undemanding and straightforward for the software and hardware application. Furthermore, to analyze the capability of S-box, we have applied different tests, nonlinearity, BIC, SAC, LP, and DP. Then, we have used these S-boxes in image encryption and checked the strength of image encryption by applying different tests, contrast, correlation, entropy, energy, and homogeneity. We have compared the results with others; hence, we conclude that the proposed scheme produces efficient results compared to other ones. The comparison of LP, DP, strict avalanche criterion, and bit independence criterion with existing techniques assured that the proposed scheme for image encryption is better. In future, proposed S-boxes will be used for audio, video, and text encryption scheme. Proposed image encryption scheme is used for data security of different military intelligence agencies.

Acknowledgments

This paper is a part of a project funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. D.1432-26-611. The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Contributor Information

Muhammad Asif, Email: muhammad.asif@math.qau.edu.pk.

Rana Muhammad Zulqarnain, Email: ranazulqarnain7777@gmail.com.

Data Availability

No data were used to support the findings of this study.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  • 1.Belazi A., Abd El-Latif A. A., Belghith S. A novel image encryption scheme based on substitution-permutation network and chaos. Signal Processing . 2016;128:155–170. doi: 10.1016/j.sigpro.2016.03.021. [DOI] [Google Scholar]
  • 2.Hussain I., Shah T., Asif Gondal M. An efficient image encryption algorithm based on S8 S-box transformation and NCA map. Optics Communications . 2012;285(24):4887–4890. doi: 10.1016/j.optcom.2012.06.011. [DOI] [Google Scholar]
  • 3.Hussain I., Shah T., Gondal M. A. Image encryption algorithm based on PGL(2,GF(28)) S-boxes and TD-ERCS chaotic sequence. Nonlinear Dynamics . 2012;70(1):181–187. doi: 10.1007/s11071-012-0440-0. [DOI] [Google Scholar]
  • 4.Hussain I., Shah T., Gondal M. A., Mahmood H. A novel image encryption algorithm based on chaotic maps and GF (2 8) exponent transformation. Nonlinear Dynamics . 2013;72(1):399–406. doi: 10.1007/s11071-012-0723-5. [DOI] [Google Scholar]
  • 5.Hussain I., Gondal M. A. An extended image encryption using chaotic coupled map and S-box transformation. Nonlinear Dynamics . 2014;76(2):1355–1363. doi: 10.1007/s11071-013-1214-z. [DOI] [Google Scholar]
  • 6.Liu H., Kadir A., Gong P. A fast color image encryption scheme using one-time S-boxes based on complex chaotic system and random noise. Optics Communications . 2015;338:340–347. doi: 10.1016/j.optcom.2014.10.021. [DOI] [Google Scholar]
  • 7.Wang X., Wang Q. A novel image encryption algorithm based on dynamic S-boxes constructed by chaos. Nonlinear Dynamics . 2014;75(3):567–576. doi: 10.1007/s11071-013-1086-2. [DOI] [Google Scholar]
  • 8.Khan M. A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dynamics . 2015;82(1):527–533. doi: 10.1007/s11071-015-2173-3. [DOI] [Google Scholar]
  • 9.Zhang X., Mao Y., Zhao Z. An efficient chaotic image encryption based on alternate circular S-boxes. Nonlinear Dynamics . 2014;78(1):359–369. doi: 10.1007/s11071-014-1445-7. [DOI] [Google Scholar]
  • 10.Liu H., Li S., Li G., Wang H. Adaptive controller design for a class of uncertain fractional-order nonlinear systems: an adaptive fuzzy approach. International Journal of Fuzzy Systems . 2018;20(2):366–379. doi: 10.1007/s40815-017-0371-5. [DOI] [Google Scholar]
  • 11.Liu H., Chen Y., Li G., Xiang W., Xu G. Adaptive fuzzy synchronization of fractional-order chaotic (hyperchaotic) systems with input saturation and unknown parameters. Complexity . 2017;2017:16. doi: 10.1155/2017/6853826.6853826 [DOI] [Google Scholar]
  • 12.Rashi K., Manoj K. Optimized on system analysis using AES and X-tea. International Journal of Advanced Research in Computer Science and Software Engineering . 2013;3(2) [Google Scholar]
  • 13.Khan M., Jamal S. S., Hazzazi M. M., Ali K. M., Hussain I., Asif M. An efficient image encryption scheme based on double affine substitution box and chaotic system. Integration . 2021;81:108–122. doi: 10.1016/j.vlsi.2021.05.007. [DOI] [Google Scholar]
  • 14.Asif M., Shah T. BCH Codes with computational approach and its applications in image encryption. Journal of Intelligent and Fuzzy Systems . 2019;37(3):3925–3939. doi: 10.3233/jifs-190137. [DOI] [Google Scholar]
  • 15.Alanazi A. S., Munir N., Khan M., Asif M., Hussain I. Cryptanalysis of novel image encryption scheme based on multiple chaotic substitution boxes. IEEE Access . 2021;9:93795–93802. doi: 10.1109/access.2021.3092512. [DOI] [Google Scholar]
  • 16.Naseer Y., Shah D., Shah T. A novel approach to improve multimedia security utilizing 3D mixed chaotic map. Microprocessors and Microsystems . 2019;65:1–6. doi: 10.1016/j.micpro.2018.12.003. [DOI] [Google Scholar]
  • 17.Naseer Y., Shah T., Shah D. A novel hybrid permutation substitution base colored image encryption scheme for multimedia data. Journal of Information Security and Applications . 2021;59 doi: 10.1016/j.jisa.2021.102829.102829 [DOI] [Google Scholar]
  • 18.Khalid I., Jamal S. S., Shah T., Shah D., Hazzazi M. M. A novel scheme of image encryption based on elliptic curves isomorphism and substitution boxes. IEEE Access . 2021;9:77798–77810. doi: 10.1109/access.2021.3083151. [DOI] [Google Scholar]
  • 19.Munir N., Khan M., Shah T., Alanazi A. S., Hussain I. Cryptanalysis of nonlinear confusion component based encryption algorithm. Integration . 2021;79:41–47. doi: 10.1016/j.vlsi.2021.03.004. [DOI] [Google Scholar]
  • 20.Haider M. I., Ali A., Shah D., Shah T. Block cipher’s nonlinear component design by elliptic curves: an image encryption application. Multimedia Tools and Applications . 2021;80(3):4693–4718. doi: 10.1007/s11042-020-09892-5. [DOI] [Google Scholar]
  • 21.Hussain S., Jamal S. S., Shah T., Hussain I. A power associative loop structure for the construction of non-linear components of block cipher. IEEE Access . 2020;8:123492–123506. doi: 10.1109/access.2020.3005087. [DOI] [Google Scholar]
  • 22.Hansen T., Mullen G. L. Primitive polynomials over finite fields. Mathematics of Computation . 1992;59(200):639–643. doi: 10.1090/s0025-5718-1992-1134730-7. [DOI] [Google Scholar]
  • 23.Kim J., Phan R. C.-W. Advanced differential-style cryptanalysis of the NSA’s Skipjack block cipher. Cryptologia . 2009;33(3):246–270. doi: 10.1080/01611190802653228. [DOI] [Google Scholar]
  • 24.Hussain I., Shah T., Gondal M. A., Khan M., Khan W. A. Construction of new S-box using a linear fractional transformation. World Applied Sciences Journal . 2011;14(12):1779–1785. [Google Scholar]
  • 25.Cui L., Cao Y. A new S-box structure named Affine-Power-Affine. International Journal of Innovative Computing, Information and Control . 2007;3(3):751–759. [Google Scholar]
  • 26.Hussain I., Shah T., Gondal M. A., Khan W. A., Mahmood H. A group theoretic approach to construct cryptographically strong substitution boxes. Neural Computing & Applications . 2013;23(1):97–104. doi: 10.1007/s00521-012-0914-5. [DOI] [Google Scholar]
  • 27.Hussain I., Shah T., Mahmood H., Gondal M. A., Bhatti U. Y. Some analysis of S-box based on residue of prime number. Proceedings of the Pakistan Academy of Sciences . 2011;48(2):111–115. [Google Scholar]
  • 28.Hussain I., Shah T., Mahmood H., Gondal M. A. Construction of S8 Liu J S-boxes and their applications. Computers & Mathematics with Applications . 2012;64(8):2450–2458. doi: 10.1016/j.camwa.2012.05.017. [DOI] [Google Scholar]
  • 29.Feng D., Wu W. Bochum, Germany: Ruhr University Bochum; 2000. Design and analysis of block ciphers. Doctoral Dissertation. [Google Scholar]
  • 30.Matsui M. Workshop on the Theory and Application of of Cryptographic Techniques . Berlin, Heidelberg: Springer; 1993. Linear cryptanalysis method for DES cipher; pp. 386–397. [Google Scholar]
  • 31.Mar P. P., Latt K. M. New analysis methods on strict avalanche criterion of S-boxes. World Academy of Science, Engineering and Technology . 2008;48(150–154):p. 25. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

No data were used to support the findings of this study.


Articles from Computational Intelligence and Neuroscience are provided here courtesy of Wiley

RESOURCES