Abstract
微藻作为一种自然界中丰富的天然生物材料之一,品种繁多,极易获取,在生物医学领域有着广泛的应用前景。微藻富含天然荧光素,可作为荧光成像和光声成像造影剂应用于医学成像;微藻活性表面可有效吸附功能分子、金属元素等,在药物递送领域有较好的应用前景;微藻能够通过光合作用产氧来提高局部氧气浓度,改善局部乏氧状态,以提高乏氧肿瘤疗效并促进伤口愈合。此外,微藻具有良好的生物相容性和生物安全性,具有较高的转化价值。本文将从生物成像、药物递送、乏氧肿瘤治疗和伤口愈合等方面介绍微藻在生物医学领域应用的最新研究进展。
Abstract
Microalgae is an easy-to-obtain natural biological material with many varieties and abundant natural reserves. Microalgae are rich in natural fluorescein, which can be used as a contrast agent for fluorescence imaging and photoacoustic imaging for medical imaging. With its active surface, microalgae can effectively adsorb functional molecules, metal elements, etc., and have good application prospects in the field of drug delivery. Microalgae can generate oxygen through photosynthesis to increase local oxygen concentration, reverse local hypoxia to enhance the efficacy of hypoxic tumors and promote wound healing. In addition, microalgae have good biocompatibility, and different administration methods have no obvious toxicity. This paper reviews the research progress on the biomedical application of microalgae in bioimaging, drug delivery, hypoxic tumor treatment, wound healing.
Keywords: Microalgae, Bioimaging, Drug delivery, Hypoxic tumor therapy, Wound healing, Review
近年来,生物材料的研究从惰性生物材料到生物活性材料和可吸收材料,再到生物响应材料,最后到智能微纳米生物材料,创新生物材料不断地被开发并应用于临床。其中天然的生物材料凭借其良好的生物相容性、生物降解性及重塑能力,广泛应用于各个领域 [1] 。
微藻是一类常见的单细胞光合生物,包括原核藻类(如蓝藻)和真核藻类(如硅藻、绿藻等),其广泛存在于海洋或淡水湖泊中,应用于食品、保健品及燃料等制作 [ 2- 6] 。近年来研究人员逐渐认识到微藻作为生物材料在医学领域应用的巨大潜能。由于微藻易获取、易培养且具有独特的表面结构及丰富的活性物质,其在生物成像、药物递送、乏氧肿瘤治疗、伤口愈合等方面显示出巨大优势。微藻对某些金属离子或微纳粒子具有很强的吸附力,且表面易于改性,可用于药物的靶向递送 [7] 。微藻可以进行光合作用,光合效率高,在光照条件下能够持续地将二氧化碳转化成氧气,可用来局部供氧,因此能为放射治疗和光动力疗法等高度依赖氧气的治疗方式提供活性氧来源,从而提高治疗效果 [8] 。此外,微藻中富含的叶绿素等光合色素可以作为天然光敏剂,不仅能进一步提高光动力治疗的疗效,还具有荧光成像和光声成像能力 [ 9- 10] 。因此微藻具有“诊疗一体化”的性能,可用于医学影像引导下的诊断和治疗,既能增强治疗效果,又能持续监测病灶发展。本文将从生物成像、药物递送、乏氧肿瘤治疗、伤口愈合等方面介绍微藻在生物医学领域应用的最新研究进展。
1微藻应用于生物成像及生物传感
微藻易培养、生物相容性良好、具有复杂精密的活性表面、含丰富的叶绿素等特性赋予其应用于生物成像及生物传感的多种能力。同时,微藻具有出众的光合作用效率、极高的碳捕获能力及环境友好性 [ 11- 12] ,通过一步水热法将微藻制成的碳量子点和多空碳具有高细胞摄取、低毒性和双光子荧光特性,在细胞成像方面极具转化潜能 [13] 。Squire 等 [14] 利用硅藻( Pinnularia sp.)独特的多孔纳米结构及光子晶体特性开发的生物传感器可进行超灵敏荧光免疫分析,对小鼠免疫球蛋白 G 的检测能力相比传统方法提高了 10~100 倍,更可装载至手机实现在农村等欠发达地区的现场即时检测。Kong 等 [15] 设计了一种生物纳米等离子体传感器,利用硅藻的生物二氧化硅与金纳米粒子自组装,并原位生长银纳米粒子,能显著提高表面增强拉曼散射的敏感性。
2微藻应用于药物递送
目前药物输送系统的常见缺点有药物溶解度差、有效作用时间短、生物利用度低等 [16] 。而微藻生物相容性良好、成本低、表面积及活性表面大、具有趋光性、推进力高,成为近年来最具潜力的药物递送系统之一 [ 17- 18] 。
Shchelik 等 [19] 利用二苯并环辛炔作为化学胶水,将万古霉素和莱茵衣藻( Chlamydomonas reinhardtii,绿藻中的一种)的表面进行共价连接,开发出一种新型药物递送系统。该载药系统在光照条件下可释放万古霉素,并与紫外线疗法协同治疗皮肤感染。Weibel 等 [20] 利用微藻的上述特性设计了一种载药微泳器,应用表面化学将微米级聚苯乙烯珠附着于莱茵衣藻表面,借助微藻的内在趋光性引导其抵达目的部位,使用紫外线照射并控制药物释放。Akolpoglu 等 [21] 使用壳聚糖包被的氧化铁纳米粒子修饰莱茵衣藻表面并构建载药微泳器,将带正电的壳聚糖复合物通过静电作用与带负电的莱茵衣藻细胞壁非共价结合,提高纳米粒子附着能力的同时保持其内在趋光性及移动能力,并用光裂解肽把化疗药物阿霉素连接到微泳器表面。体外细胞实验证明,载药微泳器在光刺激下可实现靶向 SK-BR-3 肿瘤细胞并被其有效摄取。
除了利用光控制微藻运动外,近来许多研究者致力于磁驱动,即在微藻表面修饰磁性微纳米颗粒,从而实现外部磁场作用下的定向移动。由于微藻比表面积较大,磁化硅藻可装载大量药物,且在磁场控制下实现靶向运输和药物缓释。Yasa 等 [22] 将聚电解质功能化的直径为1 μm的磁性聚苯乙烯颗粒和莱茵衣藻共孵育,两者通过非共价相互作用结合形成生物混合微泳器,可在磁场作用下实现磁性微粒的靶向输送。Losic 等 [23] 通过简单一步式静电自组装方法将多巴胺修饰的四氧化三铁磁性纳米颗粒附着于硅藻表面,并用吲哚美辛和庆大霉素分别验证其载药效果。
近年来,越来越多研究人员开始关注微藻在生物体内的应用。Zhong 等 [24] 以螺旋藻( Spirulina platensis,蓝藻中的一种)为载体,实现阿霉素的靶向递送。带正电荷的阿霉素和带负电荷的螺旋藻表面通过非共价静电相互作用实现药物载荷,同时螺旋藻表面的水通道及孔道允许小分子药物进入从而进一步提高载药率。由于微藻为微米级大小且具有螺旋状外形,其载药系统易于被肺毛细血管捕获而被动靶向至肺部,在 4T1 乳腺癌肺转移小鼠模型中展现了出色的靶向治疗能力。此外,螺旋藻丰富的叶绿素使其具有荧光成像能力,可用于体内无创跟踪和实时监测。微藻独特的生物结构和运动能力为精准靶向给药系统的设计提供了新的思路,且微藻的活性表面可实现对小分子药物的高效负载,避免了化学合成的复杂步骤和昂贵原料,使微藻在药物递送领域具有广阔应用前景。
由于肿瘤细胞的快速增殖及异常血管形成,快速生长的实体瘤中广泛存在乏氧现象 [ 25- 26] 。肿瘤乏氧将极大影响放疗与光动力治疗等氧依赖疗法的治疗效果 [ 27- 28] 。因此,改善肿瘤的乏氧微环境将大大增强肿瘤的放疗/光动力治疗的效果。既往有研究尝试用纳米粒子在肿瘤原位产氧或给氧,以期提高治疗效果 [ 29- 30] 。但由于大多数纳米粒子可被肝脏和脾脏的单核吞噬细胞系统捕获,仅约 2%能顺利达到肿瘤部位,由此导致的给药剂量大及全身毒性限制了其应用 [31] 。近年来,许多研究利用微藻的光合作用原位产氧改善肿瘤的乏氧情况,增强肿瘤治疗效果。
Zhong 等 [32] 以螺旋藻为载体构建了一种光合生物杂交微纳泳体系统,应用浸涂工艺将超顺磁性的四氧化三铁纳米颗粒均匀涂布至螺旋藻表面,赋予其肿瘤靶向能力及磁共振成像特性。微纳泳体系统被静脉注射入 4T1 乳腺癌小鼠后,在外部磁场的控制下定向运动到缺氧 4T1 乳腺肿瘤部位,并通过原位产氧改善局部肿瘤微环境的乏氧状况,从而增强放疗效果。且螺旋藻中富含的叶绿素在射线照射后释放,作为光敏剂在激光照射下产生活性氧而杀伤肿瘤细胞,从而实现光动力治疗。放疗/光动力治疗的高效协同可大大增强其对肿瘤细胞的杀伤能力。此外,该光合生物杂交的微纳泳体系统除具有外部涂层带来的优异 T2 模式磁共振成像功能外,还拥有基于叶绿素的天然荧光成像和光声成像功能,实现改善肿瘤乏氧微环境及磁共振/荧光/光声三模态医学影像导航下的肿瘤诊断与治疗。Qiao 等 [8] 则构建了红细胞膜工程化修饰的小球藻,可减少被单核吞噬细胞系统的免疫吞噬。与普通小球藻相比,红细胞膜工程化的小球藻表现出更高的稳定性,可更有效地富集于肿瘤部位。同时,红光照射时,其在肿瘤组织中产生大量氧气,可有效缓解肿瘤乏氧状态,实现放疗增敏效果,并在激光照射下结合叶绿素实现光动力级联治疗。研究者进一步阐明了红细胞膜工程化的小球藻联合放疗/光动力治疗抑制血管生成和诱导细胞凋亡从而消减肿瘤的机制。
Zhou 等 [33] 报道了一种自养型光启绿色供氧引擎,其制氧量是常规无机制氧材料制氧量的 3 倍,通过藻酸钙包被抑制巨噬细胞的吞噬,且能在肿瘤部位长时间驻留来提供足够的氧气,从而提高光动力疗效。Lee 等 [34] 开发了一种包含小球藻( Chlorella vulgaris,绿藻中的一种)和金纳米棒的水凝胶系统,原位注射至 4T1 乳腺癌小鼠的肿瘤部位,其能在660 nm激光照射下通过光合作用产生大量氧气,从而增加小鼠肿瘤局部的氧合血红蛋白。其中金纳米棒能够响应近红外激光的激发,可控地升高肿瘤局灶温度,扩张肿瘤周围血管。同时,水凝胶系统协同静脉注射阿霉素可以显著提高肿瘤的治疗效果。Li 等 [35] 通过一步仿生硅化法将二氧化硅包覆小球藻获得一种生物杂交微藻系统,将其注入小鼠体内后因高渗透长滞留效应富集于肿瘤部位,其外部覆盖的二氧化硅能显著降低细胞毒性且提高其在肿瘤区域的生物活性和耐受性。肿瘤病灶氧气浓度的提高及叶绿素的释出能够实现级联增强放疗和光动力治疗,显著抑制肿瘤生长。微藻独特的原位产氧特性依赖光照。对于激光可穿透的表浅肿瘤疗效可,而针对深层次肿瘤则疗效欠佳。因此,提高深层次肿瘤的疗效可能是微藻研究下一步努力的方向。
3微藻应用于伤口愈合
伤口愈合是一个复杂的过程,可以概括为炎性期、增生期和重塑期三个阶段 [36] ,每个阶段都有氧气的参与 [37] ,其中细胞增殖、新生血管生成、胶原合成等修复活动也离不开氧气。但伤口中普遍存在的血管破裂或收缩妨害了供氧,导致组织缺氧,不利于伤口愈合。因此,增加伤口局部的氧气浓度能有效加快伤口愈合 [38] 。目前临床上采用的高压氧疗或局部气体氧等方法效果一般 [39] ,而微藻作为天然的光合生物在加快伤口愈合方面具有得天独厚的优势。
Li 等 [40] 通过羧甲基壳聚糖包覆螺旋藻构建了一种光合微生物水凝胶,在650 nm激光照射下,螺旋藻内天然光敏剂叶绿素释放并产生活性氧,对金黄色葡萄球菌及革兰阴性大肠杆菌实现光动力破坏。表面的羧甲基壳聚糖不影响氧气释放且能增强对伤口的黏附力。此水凝胶在提高氧浓度的同时可以抑制细菌生长,加速伤口愈合。
全球糖尿病患者人数众多,约 25%的糖尿病患者终生面临慢性伤口不愈的风险 [41] 。有研究证实,糖尿病慢性伤口的延迟愈合源于缺氧导致的新生血管受损 [42] 。Chen 等 [43] 开发了一种微藻凝胶贴片,该贴片充满含活性蓝藻的凝胶珠,可在潮湿环境下向伤口持续输送局部溶解氧,增加伤口氧合,促进成纤维细胞的增殖及血管生成,从而促进糖尿病大鼠伤口愈合。此外,外科伤口也是不可忽视的一类常见伤口。Centeno-Cerdas 等 [44] 创造性地将基因修饰的莱茵衣藻植入市售外科缝线中,制造出具有光合作用的缝线,能持续释放氧气及重组人源生长因子,有效地促进伤口愈合。除皮肤伤口外,Hendrijantini 等 [45] 合成的一种含 12%螺旋藻和 20%壳聚糖的凝胶可降低促炎因子白介素- 1β和肿瘤坏死因子α水平,上调抑炎因子白介素- 10 水平,促进拔牙后伤口的愈合。目前,微藻相关缝线或贴片等体表应用相关研究较多,其成本低廉、合成简单、效果好,具有较高的临床转化及商业化价值。如何创新微藻应用剂型及佐以相关的生长因子可能是未来的发展方向。
4微藻应用中的特性研究
许多研究已经证明微藻的不同给药方式(口服、注射或外用等)均具有良好的生物相容性和安全性。研究显示,大鼠单次注射800 mg/kg的螺旋藻不会造成其组织、器官等的急性改变;连续饲喂小球藻 86 周,其血液、尿液、生化以及组织病理学结果均正常;无生殖毒性及遗传毒性 [ 46- 47] 。研究发现,莱茵衣藻制成的光合支架能够改善皮肤局部乏氧状况而不会触发过度的免疫反应,表现出较高的生物相容性 [ 48- 49] 。Williams 等 [50] 发现,单次静脉注射 2×10 8个聚球菌( Synechococcus elongatus)不会产生急性免疫反应,未发现其定植或破坏组织,也不会造成急慢性肝损伤,提示了蓝藻共生疗法的巨大前景。Zhong 等 [24] 研究发现,小鼠静脉注射螺旋藻60 d,其各脏器组织结构无明显改变,也无明显的炎症反应。微藻还可通过泌尿系统代谢排出体外,表现出良好的生物相容性和安全性 [32] 。但目前微藻研究局限于小鼠等小动物模型,距离真正临床应用还需要更多数据支持。
5结语
综上所述,由于微藻自然资源丰富,获取简单、成本低且易于表面改性,加之独特的产氧和自发荧光特性及良好的生物相容性和安全性,微藻相关研究成果愈来愈多。尽管如此,微藻相关研究仍然处于初期阶段,应用场景有限,生物安全性和有效性数据不足,还没有实现从实验室到临床的转化。因此,一方面需要继续深入探究微藻在生物成像、药物递送、乏氧肿瘤治疗和伤口愈合等方面的应用;另一方面,要充分利用和挖掘微藻特性,释放其在生物医学领域其他方面的巨大潜力。期待随着越来越多的学者投身微藻相关研究,微藻材料在生物医学领域的应用进一步深入,可以有效应用于临床,为人类的健康提供帮助。
COMPETING INTERESTS
所有作者均声明不存在利益冲突
Funding Statement
国家自然科学基金(81971667);国家重点研发计划(2018YFC0115701)
References
- 1.IGE O O, UMORU L E, ARIBO S. Natural products: a minefield of biomaterials[J] ISRN Mater Sci. . 2012;2012:1–20. doi: 10.5402/2012/983062. [DOI] [Google Scholar]
- 2.GANGL D, ZEDLER J A Z, RAJAKUMAR P D, et al. Biotechnological exploitation of microalgae[J] J Exp Bot. . 2015;66(22):6975–6990. doi: 10.1093/jxb/erv426. [DOI] [PubMed] [Google Scholar]
- 3.TORRES-TIJI Y, FIELDS F J, MAYFIELD S P. Microalgae as a future food source[J] Biotechnol Adv. . 2020;41:107536. doi: 10.1016/j.biotechadv.2020.107536. [DOI] [PubMed] [Google Scholar]
- 4.BHUJADE R, CHIDAMBARAM M, KUMAR A, et al. Algae to economically viable low-carbon-footprint oil[J] Annu Rev Chem Biomol Eng. . 2017;8(1):335–357. doi: 10.1146/annurev-chembioeng-060816-101630. [DOI] [PubMed] [Google Scholar]
- 5.MONTERO L, DEL PILAR SÁNCHEZ-CAMARGO A, IBÁÑEZ E, et al. Phenolic compounds from edible algae: bioactivity and health benefits[J] Curr Med Chem. . 2018;25(37):4808–4826. doi: 10.2174/0929867324666170523120101. [DOI] [PubMed] [Google Scholar]
- 6.LIANG Z C, LIANG M H, JIANG J G. Transgenic microalgae as bioreactors[J] Crit Rev Food Sci Nutr. . 2020;60(19):3195–3213. doi: 10.1080/10408398.2019.1680525. [DOI] [PubMed] [Google Scholar]
- 7.CHENG S Y, SHOW P L, LAU B F, et al. New prospects for modified algae in heavy metal adsorption[J] Trends Biotech. . 2019;37(11):1255–1268. doi: 10.1016/j.tibtech.2019.04.007. [DOI] [PubMed] [Google Scholar]
- 8.QIAO Y, YANG F, XIE T, et al. Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer[J] Sci Adv. . 2020;6(21):eaba5996. doi: 10.1126/sciadv.aba5996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.SEMERARO P, CHIMIENTI G, ALTAMURA E, et al. Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications[J] Mater Sci EngC Mater Biol Appl. . 2018;85:47–56. doi: 10.1016/j.msec.2017.12.012. [DOI] [PubMed] [Google Scholar]
- 10.ZHOU H, XIA L, ZHONG J, et al. Plant-derived chlorophyll derivative loaded liposomes for tri-model imaging guided photodynamic therapy[J] Nanoscale. . 2019;11(42):19823–19831. doi: 10.1039/C9NR06941K. [DOI] [PubMed] [Google Scholar]
- 11.WILLIAMS P J B, LAURENS L M L. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics[J] Energy Environ Sci. . 2010;3(5):554. doi: 10.1039/b924978h. [DOI] [Google Scholar]
- 12.LUQUE R. Algal biofuels: the eternal promise?[J] Energy Environ Sci. . 2010;3(3):254. doi: 10.1039/b922597h. [DOI] [Google Scholar]
- 13.GUO L P, ZHANG Y, LI W C. Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO 2 capture[J] . J Colloid Interface Sci. . 2017;493:257–264. doi: 10.1016/j.jcis.2017.01.003. [DOI] [PubMed] [Google Scholar]
- 14.SQUIRE K, KONG X, LEDUFF P, et al. Photonic crystal enhanced fluorescence immunoassay on diatom biosilica[J/OL] J Biophotonics. . 2018;11(10):e201800009. doi: 10.1002/jbio.201800009. [DOI] [PubMed] [Google Scholar]
- 15.KONG X, SQUIRE K, LI E, et al. Chemical and biological sensing using diatom photonic crystal biosilica with in-situ growth plasmonic nanoparticles[J] . IEEE Transon NanoBiosci. . 2016;15(8):828–834. doi: 10.1109/TNB.2016.2636869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.BARIANA M, AW M S, KURKURI M, et al. Tuning drug loading and release properties of diatom silica microparticles by surface modifications[J] Int J Pharm. . 2013;443(1-2):230–241. doi: 10.1016/j.ijpharm.2012.12.012. [DOI] [PubMed] [Google Scholar]
- 17.UTHAPPA U T, BRAHMKHATRI V, SRIRAM G, et al. Nature engineered diatom biosilica as drug delivery systems[J] J Control Release. . 2018;281:70–83. doi: 10.1016/j.jconrel.2018.05.013. [DOI] [PubMed] [Google Scholar]
- 18.XIE S, JIAO N, TUNG S, et al. Controlled regular locomotion of algae cell microrobots[J] Biomed Microdevices. . 2016;18(3):47. doi: 10.1007/s10544-016-0074-y. [DOI] [PubMed] [Google Scholar]
- 19.SHCHELIK I S, SIEBER S, GADEMANN K. Green algae as a drug delivery system for the controlled release of antibiotics[J] Chem Eur J. . 2020;26(70):16644–16648. doi: 10.1002/chem.202003821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.WEIBEL D B, GARSTECKI P, RYAN D, et al. Microoxen: microorganisms to move microscale loads[J] Proc Natl Acad Sci U S A. . 2005;102(34):11963–11967. doi: 10.1073/pnas.0505481102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.AKOLPOGLU M B, DOGAN N O, BOZUYUK U, et al. High‐yield production of biohybrid microalgae for on‐demand cargo delivery[J] Adv Sci. . 2020;7(16):2001256. doi: 10.1002/advs.202001256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.YASA O, ERKOC P, ALAPAN Y, et al. Microalga-powered microswimmers toward active cargo delivery[J/OL] Adv Mater. . 2018;30(45):e1804130. doi: 10.1002/adma.201804130. [DOI] [PubMed] [Google Scholar]
- 23.LOSIC D, YU Y, AW M S, et al. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies[J] Chem Commun. . 2010;46(34):6323-6325. doi: 10.1039/c0cc01305f. [DOI] [PubMed] [Google Scholar]
- 24.ZHONG D, ZHANG D, XIE T, et al. Biodegradable microalgae‐based carriers for targeted delivery and imaging‐guided therapy toward lung metastasis of breast cancer[J/OL] Small. . 2020;16(20):e2000819. doi: 10.1002/smll.202000819. [DOI] [PubMed] [Google Scholar]
- 25.NAGY J A, CHANG S H, DVORAK A M, et al. Why are tumour blood vessels abnormal and why is it important to know?[J] Br J Cancer. . 2009;100(6):865–869. doi: 10.1038/sj.bjc.6604929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.BLAGOSKLONNY M V. Antiangiogenic therapy and tumor progression[J] Cancer Cell. . 2004;5(1):13–17. doi: 10.1016/S1535-6108(03)00336-2. [DOI] [PubMed] [Google Scholar]
- 27.BARKER H E, PAGET J T E, KHAN A A, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J] Nat Rev Cancer. . 2015;15(7):409–425. doi: 10.1038/nrc3958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.MAAS A L, CARTER S L, WILEYTO E P, et al. Tumor vascular microenvironment determines responsiveness to photodynamic therapy[J] Cancer Res. . 2012;72(8):2079–2088. doi: 10.1158/0008-5472.CAN-11-3744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.CHEN H, TIAN J, HE W, et al. H 2O 2-activatable and O 2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J] . J Am Chem Soc. . 2015;137(4):1539–1547. doi: 10.1021/ja511420n. [DOI] [PubMed] [Google Scholar]
- 30.FAN W, BU W, SHEN B, et al. Intelligent MnO 2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H 2O 2-responsive UCL imaging and oxygen-elevated synergetic therapy[J] . Adv Mater. . 2015;27(28):4155–4161. doi: 10.1002/adma.201405141. [DOI] [PubMed] [Google Scholar]
- 31.SINGH S, SHARMA A, ROBERTSON G P. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns[J] Cancer Res. . 2012;72(22):5663–5668. doi: 10.1158/0008-5472.CAN-12-1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.ZHONG D, LI W, QI Y, et al. Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxiafor FL/PA/MR imaging‐guided enhanced radio‐photodynamic synergetic therapy[J] Adv Funct Mater. . 2020;30(17):1910395. doi: 10.1002/adfm.201910395. [DOI] [Google Scholar]
- 33.ZHOU T J, XING L, FAN Y T, et al. Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy[J] J Control Release. . 2019;307:44–54. doi: 10.1016/j.jconrel.2019.06.016. [DOI] [PubMed] [Google Scholar]
- 34.LEE C, LIM K, KIM S S, et al. Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer[J] J Control Release. . 2019;294:77–90. doi: 10.1016/j.jconrel.2018.12.011. [DOI] [PubMed] [Google Scholar]
- 35.LI W, ZHONG D, HUA S, et al. Biomineralized biohybrid algae for tumor hypoxia modulation and cascade radio-photodynamic therapy[J] ACS Appl Mater Interfaces. . 2020;12(40):44541–44553. doi: 10.1021/acsami.0c14400. [DOI] [PubMed] [Google Scholar]
- 36.HUNT T K, BURKE J, BARBUL A, et al. Wound healing[J] Science. . 1999;284(5421):1775. doi: 10.1126/science.284.5421.1773d. [DOI] [PubMed] [Google Scholar]
- 37.BROUGHTON G, JANIS J E, ATTINGER C E. The basic science of wound healing[J] Plast Reconstr Surg. . 2006;117(7 Suppl):12S–34S. doi: 10.1097/01.prs.0000225430.42531.c2. [DOI] [PubMed] [Google Scholar]
- 38.SEPEHRIPOUR S, DHALIWAL K, DHEANSA B. Hyperbaric oxygen therapy and intermittent ischaemia in the treatment of chronic wounds[J] Int Wound J. . 2018;15(2):310. doi: 10.1111/iwj.12852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.HEYBOER M, SHARMA D, SANTIAGO W, et al. Hyperbaric oxygen therapy: side effects defined and quantified[J] Adv Wound Care. . 2017;6(6):210–224. doi: 10.1089/wound.2016.0718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.LI W, WANG S, ZHONG D, et al. A bioactive living hydrogel: photosynthetic bacteria mediated hypoxia elimination and bacteria‐killing to promote infected wound healing[J] Adv Therap. . 2021;4(1):2000107. doi: 10.1002/adtp.202000107. [DOI] [Google Scholar]
- 41.HART T, MILNER R, CIFU A. Management of a diabetic foot[J] JAMA. . 2017;318(14):1387–1388. doi: 10.1001/jama.2017.11700. [DOI] [PubMed] [Google Scholar]
- 42.GONZALEZ F J, XIE C, JIANG C. The role of hypoxia-inducible factors in metabolic diseases[J] Nat Rev Endocrinol. . 2019;15(1):21–32. doi: 10.1038/s41574-018-0096-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.CHEN H, CHENG Y, TIAN J, et al. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes[J] Sci Adv. . 2020;6(20):eaba4311. doi: 10.1126/sciadv.aba4311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.CENTENO-CERDAS C, JARQUÍN-CORDERO M, CHÁVEZ M N, et al. Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds[J] Acta Biomater. . 2018;81:184–194. doi: 10.1016/j.actbio.2018.09.060. [DOI] [PubMed] [Google Scholar]
- 45.HENDRIJANTINI N, SITALAKSMI R M, ARI M D A, et al. The expression of TNF-α, IL-1β, and IL-10 in the diabetes mellitus condition induced by the combination of spirulina and chitosan[J] Bali Med J. . 2020;9(1):22. doi: 10.15562/bmj.v9i1.1625. [DOI] [Google Scholar]
- 46.CHAMORRO-CEVALLOS G, GARDUÑO-SICILIANO L, BARRÓN B L, et al. Chemoprotective effect of spirulina (arthrospira) against cyclophosphamide-induced mutagenicity in mice[J] Food Chem Toxicol. . 2008;46(2):567–574. doi: 10.1016/j.fct.2007.08.039. [DOI] [PubMed] [Google Scholar]
- 47.CHAMORRO-CEVALLOS G. Aspectos nutricionales y toxicológicos de spirulina (arthrospira)[J]. Nutr Hosp, 2015, 32(1): 34-40 . [DOI] [PubMed]
- 48.SCHENCK T L, HOPFNER U, CHÁVEZ M N, et al. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering[J] Acta Biomater. . 2015;15:39–47. doi: 10.1016/j.actbio.2014.12.012. [DOI] [PubMed] [Google Scholar]
- 49.CHÁVEZ M N, SCHENCK T L, HOPFNER U, et al. Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration[J] Biomaterials. . 2016;75:25–36. doi: 10.1016/j.biomaterials.2015.10.014. [DOI] [PubMed] [Google Scholar]
- 50.WILLIAMS K M, WANG H, PAULSEN M J, et al. Safety of photosynthetic Synechococcus elongatus for in vivo cyanobacteria-mammalian symbiotic therapeutics[J] . Microb Biotechnol. . 2020;13(6):1780–1792. doi: 10.1111/1751-7915.13596. [DOI] [PMC free article] [PubMed] [Google Scholar]
