Abstract
Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC50: low active or inactive, moderately active and good potent active.
Keyword: Marine sponges, Novel antiparasitic drugs, Potent activity, Bioactive compounds
1. Introduction
Parasitic diseases still endanger the accomplishment of current medicine for the last seven to eight decades. Particularly, the development of anti-infective drug resistance has represented a major load on global health and economics (Fitchett, 2015, Levy and Marshall, 2004). Drug resistance combined with lack of progress in the development of vaccines or resistant reversal agents has further aggravated the situation. In addition, several factors limit the utility of existing drugs in areas where they are really needed, for instance high cost, poor compliance, low efficacy and toxicity (Nwaka and Hudson, 2006). Therefore, the discovery and development of novel, safe and effective anti-infective drugs from new sources is an extremely urgent task.
Marine environment (more than 70% of the planet’s surface) with its apparently infinite biodiversity is a promising source of bioactive compounds. About 30,000 compounds of marine source have been identified. Since 2008, more than 1000 compounds are being discovered every year. These compounds are generally characterized by their chemistry, complexity, diversity, and species source (Kiuru et al., 2014). Among the great biodiversity of ocean and sea, marine sponges have been one of the key resources for natural, bioactive compounds with potential therapeutic activity. This is due to the fact that sponges produce a wide variety of secondary metabolites with unique structural properties (Bisaria et al., 2020). Phylum Porifera (Sponges), the oldest multicellular animals are sessile aquatic organisms, filter feeders, without body symmetry. There are more than 9372 valid species including marine and non-marine species according to the World Porifera Database (Van Soest et al., 2018). They are located in all the seas and at different depths, adapting multiple forms and playing an important role in biogeochemical cycling (Bell, 2008).
As the majority of the sponges are soft and sessile; they become an easy target of marine predators. Therefore, as a survival strategy, sponges produce a variety of chemical compounds, including terpenes, sterols, fatty acids, alkaloids, peroxides, cyclic peptides, amino acid derivatives, and unusual nucleosides, to deter predators from preying upon them (Thomas et al., 2010). Also, sponges secrete defensive materials to keep small plants and animals from settling upon them (Hertiani et al., 2010). These bioactive compounds exhibited immunosuppressant, antitumor, antifungal, antiviral, antibacterial, anti-inflammatory and antiparasitic properties (Costantino et al., 1999, Elhady et al., 2016, Martins et al., 2014, Sagar et al., 2010, Santos et al., 2015, Vik et al., 2007, Xue et al., 2004). Moreover, approximately 800 antibiotic substances have been extracted from marine sponges (Torres et al., 2002). Therefore, Marine sponges have been considered as a drug treasure house (Anjum et al., 2016).
Amongst the few marine-derived drugs already on the market, there are two drugs derived from marine sponges; the first was Halaven® (Eribulin mesylate) isolated from the sponge Halichondria okadai which inhibiting the microtubule assembly and used in the treatment of patients with breast cancer and liposarcoma (Aseyev et al., 2016, Schöffski et al., 2016). The second is Cytosar-u® (cytarabine), its original natural product was isolated from the sponge Cryptotheca crypta, and this drug used in treatment of myeloid and meningeal Leukemia and other types of Leukemia (Pereira et al., 2019, Schwartsmann et al., 2001). However, there were no marine-based drugs have been developed for parasitic disease from sponges or other marine organisms.
The parasitic diseases malaria, leishmaniasis, American trypanosomiasis (Chagas disease), African trypanosomiasis (sleeping sickness), schistosomiasis, and others in tropical and sub-tropical regions are responsible for morbidity and mortality of million people in these regions. Malaria transmitted to people through biting of infected female Anopheles mosquitoes. The Plasmodium species that cause malaria in humans are: P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi. In 2019, the WHO African Region was home to 94% of malaria cases and deaths. Human African trypanosomiasis (HAT), or sleeping sickness, is caused by trypanosome parasites; the intermediate hosts of the parasites are tsetse flies. African trypanosomiasis caused by two subspecies of Trypanosoma brucei, namely T. b. gambiense in West and Central Africa, and T. b. rhodesiense in East Africa. In 2019, <1000 cases were found. This few number of cases does not reflect a lack of control efforts as in general active and passive screening has been maintained at similar levels; around 2.5 million people screened per year. As for American trypanosomiasis (Chagas disease) is caused by T. cruzi. More than 6 million people worldwide are infected with T. cruzi. This disease is found mainly in endemic areas of 21 continental Latin American countries; an estimated 75 million people at risk of infection. American trypanosomiasis transmitted to humans when come into contact with the stool of infected intermediate host triatomine bugs. Furthermore, there are more than 20 Leishmania species caused leishmaniasis; the intermediate host is female phlebotomine sandfly. There are three main forms of the disease: cutaneous leishmaniasis, visceral leishmaniasis, also known as kala-azar, and mucocutaneous leishmaniasis. More than one billion people are at risk of infection. Concerned with Schistosomiasis, more than 700 million people live in endemic areas and the disease affects about 240 million people worldwide. The infection is prevalent in tropical and sub-tropical areas of the world. Lastly, Schistosomiasis is caused by parasitic blood worm, Schistosoma; the infection is acquired when human come into contact with the infective stages, cercariae which swim freely in fresh water. There are two types of schistosomiasis: Urogenital schistosomiasis which caused by S. haematobium (adult worms live in the venous plexuses of the urinary tract) and intestinal schistosomiasis which caused by one of the following organisms S. mansoni, S. japonicum, S. intercalatum, S. mekongi and S. guineensis (adult worms live in the veins draining of the intestine). Most of the eggs deposited by females are trapped in the tissues and the body’s reaction to them can cause massive damage (WHO). This article aimed to review antiparasitic properties of bioactive compounds extracted from marine sponges that can be used to generate more potent selective and specific novel antiparasitic drugs.
2. Methods
A systematic search was done to find all articles published in English and related to the present review subject from 2010 until March 2021 in PubMed and Google Scholar. The keywords used to search were “antiparasitic, marine sponge, antiprotozoal”, and “antiparasitic, marine sponge, anthelminthic”. The review articles, conference articles, and thesis were excluded with regard to extracted agents; synesthetic and semi-synesthetic compounds and those isolated from sponge-associated organisms were not considered in the present article. Variables assessed in the present review include sponge species/genus, region/country of origin, isolated compound, species/strain of parasite and the dose that cause growth inhibition.
3. Results
By screening literatures published from 2010 until March 2021, 52 articles were included for this review, 46 deals with the antiparasitic activities of the extracted compounds from the sponges and 7 deals with antiparasitic activities of the sponges’ crud extracts; the paper of Ilias et al. (2012) was counted with the first and second group of articles because it was concerned with the study of the effects of the crude extract and isolated compounds of Australian marine sponge Petrosid Ng5 Sp5 on chloroquine-sensitive (D6) and -resistant (W2) strains of Plasmodium falciparum and promastigote stages of Leishmania donovani. The results of antiparasitic activity of marine sponges’ crude extracts against L. major, L. donovani, T. cruzi, P. berghei and D6 and W2 strains of P. falciparum were summarized in Table 1. Antiparasitic activity of extracted compounds from marine sponges against protozoan and helminthic parasites were listed in Table 2. Promising isolated compounds with potent antiparasitic activity based on IC50 measurement were included in Table 3.
Table 1.
Target parasite | Extract type | Concentration IC50 μg/mL | Spongy | Country | References |
---|---|---|---|---|---|
Leishmania major Promastigotes stages | aqueous extract | 3.02 | Sarcotragus sp. | Tunisia | (Ben Kahla-Nakbi et al., 2010) |
ethyl acetate extract | 8.49 | ||||
dichloromethane extract | 1.39 | ||||
aqueous extract | 264.67 | Ircinia spinosula | |||
ethyl acetate extract | 16.09 | ||||
dichloromethane extract | 47.38 | ||||
D6 P. falciparum | organic extract | 0.09 µg/mL | Petrosid Ng5 Sp5 | Australia | (Ilias et al., 2012) |
W2 P. falciparum | 0.086 µg/mL | ||||
Leishmania donovani promastigote stages | 1.19 µg/mL | ||||
D6 P. falciparum | dichloromethane extract | 12 | Negombata corticata | Red Sea, Egypt | (Eltamany et al., 2014) |
W2 P. falciparum | 24 | ||||
Leishmania donovani promastigotes | 74 | ||||
Plasmodium berghei | Organic extract | 42.3 | Mycale laxissima | Boca de Calderas, Havana, Cuba | (Mendiola et al., 2014) |
52 | Clathria echinata | ||||
60.3 | Agelas cerebrum | ||||
T. cruzi trypomastigotes | organic extracts | 10.80 | Amphimedon viridis | Atlantic Ocean, Rio de Janeiro, Brazil | (Andrade et al., 2015) |
aqueous extracts | 0.57 | ||||
T. cruzi amastigotes | organic extracts | 44.85 | |||
aqueous extracts | 21.37 | ||||
T. cruzi epimastigote | acetone extracts | 124.7 | Tethya ignis | Brazil and Spain | (de Paula et al., 2015) |
109.9 | Tethya rubra | ||||
23.4 | Dysidea avara | ||||
67.3 | Mycale angulosa | ||||
28.6 | Condrosia reniformes | ||||
T. cruzi amastigotes | 7.2 | Tethya ignis | |||
44.5 | Tethya rubra | ||||
40.3 | Dysidea avara | ||||
55.5 | Mycale angulosa | ||||
82.6 | Condrosia reniformes | ||||
T. cruzi Trypomastigote | EC50 6.3 | Tethya ignis | |||
EC50 33.3 | Tethya rubra | ||||
EC50 1.1 | Dysidea avara | ||||
EC50 3.8 | Mycale angulosa | ||||
EC50 0.6 | Condrosia reniformes | ||||
P. falciparum | – | 3.26 μM | Biemna laboutei | Madagascar | (Gros et al., 2015) |
Table 2.
Target parasite | Extracted compounds | Chemistry | Concentration IC50 | Spongy | Country | References |
---|---|---|---|---|---|---|
T. brucei rhodesiense | dibromopalau’amine | Bromopyrrole alkaloids | 0.46 µg/mL* | Axinella sp. and Agelas sp. | – | (Scala et al., 2010) |
longamide B | 1.53 µg/mL* | |||||
Sceptrin | 9.71 µg/mL** | |||||
spongiacidin B | 13.58 µg/mL*** | |||||
T. cruzi | longamide B | 33.03 µg/mL*** | ||||
L. donovani | dibromopalau’amine | 1.09 µg/mL* | ||||
longamide B | 3.85 µg/mL** | |||||
K1 P. falciparum | spongiacidin B | 1.09 µg/mL* | ||||
dispacamide B | 1.34 µg/mL* | |||||
dibromopalau’amine | 1.48 µg/mL* | |||||
T. brucei rhodesiense | demethylfurospongin-4 | Terpenoids | 4.90 µg/mL** | Spongia sp. and Ircinia sp. | Turkey | (Orhan et al., 2010) |
4-hydroxy-3-tetraprenylphenylacetic acid | 0.60 µg/mL* | |||||
heptaprenyl-p-quinol | 3.54 µg/mL** | |||||
diterpenes dorisenone D | 2.47 µg/mL* | |||||
tryptophol | 5.89 µg/mL** | |||||
T. cruzi | heptaprenyl-p-quinol | 4.08 µg/mL** | ||||
11β-acetoxyspongi-12-en-16-one | 4.51 µg/mL** | |||||
L. donovani | furospongin-1 | 4.08 µg/mL** | ||||
4-hydroxy-3-octaprenylbenzoic acid | 5.60 µg/mL** | |||||
11β-acetoxyspongi-12-en-16-one | 0.75 µg/mL* | |||||
tryptophol | 9.60 µg/mL** | |||||
K1 P. falciparum | furospinulosin-2 | 3.51 µg/mL** | ||||
furospongin-4 | 7.51 µg/mL** | |||||
4-hydroxy-3-octaprenylbenzoic acid | 1.57 µg/mL* | |||||
squalene | 1.16 µg/mL* | |||||
diterpenes dorisenone D | 0.43 µg/mL* | |||||
11β-acetoxyspongi-12-en-16-one | 1.09 µg/mL* | |||||
12-epi-deoxoscalarin | 7.48 µg/mL** | |||||
tryptophol | 5.08 µg/mL** | |||||
T. b. rhodesiense | pandaroside G | Steroidal Saponins | 0.78 μM* | Pandaros acanthifolium | Caribbean Sea | (Regalado et al., 2010) |
pandaroside G methyl ester | 0.038 μM* | |||||
L. donovani | pandaroside G | 1.3 μM** | ||||
pandaroside G methyl ester | 0.051 μM* | |||||
T.b. brucei | 11,12-didehydro-13-oxo-plakortide Q | Cyclic Polyketide Peroxides | 0.049 μM* | Plakortis sp. | Australia | (Feng et al., 2012) |
10-carboxy-11,12,13,14-tetranor-plakortide Q | 0.940 μM* | |||||
Dd2 P. falciparum | psammaplysin F | Bromotyrosine alkaloid | 1.4 μM** | Hyattella sp. | Hervey Bay, Australia | (Yang et al., 2010) |
3D7 P. falciparum | 0.87 μM* | |||||
W2 P. falciparum | monamphilectine A | diterpenoid β-lactam alkaloid | 0.60 μM* | Hymeniacidon sp. | Mona Island, Puerto Rico | (Avilés and Rodríguez, 2010) |
D6 P. falciparum | discorhabdins A | Pyrroloiminoq-uinone alkaloids | 0.05 μM* | Latrunculia sp. | Aleutian Islands | (Na et al., 2010) |
discorhabdins C | 2.80 μM** | |||||
dihydrodiscorhabdin C | 0.17 μM* | |||||
W2 P. falciparum | discorhabdins A | 0.05 μM* | ||||
discorhabdins C | 2.00 μM** | |||||
dihydrodiscorhabdin C | 0.13 μM* | |||||
D10 P. falciparum | Manadoperoxide A | endoperoxyketal polyketides manadoperoxides | 6.88 μM** | Plakortis cfr. simplex | Bunaken Marine Park of Manado, Indonesia | (Fattorusso et al., 2010) |
Manadoperoxide B | 6.76 μM** | |||||
Manadoperoxide C | 4.54 μM** | |||||
Manadoperoxide D | 10.38 μM** | |||||
W2 Plasmodium falciparum | Manadoperoxide A | 3.74 μM** | ||||
Manadoperoxide B | 3.69 μM** | |||||
Manadoperoxide C | 2.33 μM** | |||||
Manadoperoxide D | 7.93 μM** | |||||
W2 P. falciparum | epiplakinic acid F methyl ester | Cycloperoxides | 4 µg/mL** | Plakortis halichondrioides | Mona Island, Puerto Rico | (Jiménez-Romero et al., 2010) |
plakortolide J | >10 µg/mL** | |||||
epiplakinidioic acid | 0.3 µg/mL* | |||||
polyketides epiplakinic acid F | 3 µg/mL** | |||||
Plakortolide F | >10 µg/mL** | |||||
3D7 P. falciparum | Haliclonacyclamine A | Piperidine alkaloid | 0.7 μM* | Haliclona spp. | Solomon Islands | (Mani et al., 2011) |
FCB1 P. falciparum | 0.11 μM* | |||||
L. donovani | acanthifolioside A (1) | steroid glycosides | 8.5 μM** | Pandaros acanthifolium | Martinique Island | (Regalado et al., 2011) |
acanthifolioside D (4) | 5.7 μM** | |||||
acanthifolioside E (5) | 9.4 μM** | |||||
acanthifolioside F (7) | 5.7 μM** | |||||
P. falciparum | acanthifolioside A (1), | 7.6 μM** | ||||
acanthifolioside F (7) | 9.2 μM** | |||||
T. b. rhodesiense | acanthifolioside F (7) | 6.4 μM** | ||||
T. cruzi | aeroplysinin-1 (1) | Bromotyrosine | 10 µM** | Verongula rigida | Columbia | (Galeano et al., 2011) |
P. falciparum | purealidin B (7) | 5 µM** | ||||
L. panamensis | 11-hydroxyaerothionin (8) | 10 µM** | ||||
3D7 P. falciparum | psammaplysin H | Bromotyrosine alkaloid | 0.41 μM* | Pseudoceratina sp. | – | (Xue et al., 2004) |
psammaplysins G | 5.22 μM** | |||||
psammaplysins F | 1.92 μM** | |||||
T. b. rhodesiense | manadoperoxide B | Manadoperoxides | 0.003 µg/mL* | Plakortis cfr. lita | Indonesia | (Chianese et al., 2012) |
manadoperoxide C | 0.678 µg/mL* | |||||
manadoperoxide F | 0.792 µg/mL* | |||||
manadoperoxide G | 1.84 µg/mL* | |||||
manadoperoxide H | 0.315 µg/mL* | |||||
manadoperoxide I | 0.062 µg/mL* | |||||
manadoperoxide K | 0.087 µg/mL* | |||||
L. donovani | manadoperoxide B | 0.589 µg/mL* | ||||
manadoperoxide C | 3.24 µg/mL** | |||||
manadoperoxide F | 5.73 µg/mL** | |||||
manadoperoxide G | 3.22 µg/mL** | |||||
manadoperoxide H | 2.44 µg/mL* | |||||
manadoperoxide I | 0.633 µg/mL* | |||||
manadoperoxide K | 1.89 µg/mL* | |||||
3D7 P. falciparum | psammaplysins, 19-hydroxypsammaplysin E | Bromotyrosine alkaloid | 6.4 μM** | Aplysinella strongylata | Indonesia | (Mudianta et al., 2012) |
FCB1 P. falciparum | Araplysillin I | Bromotyrosine alkaloid | 4.5 μM** | Suberea ianthelliformis | Solomon Islands, South Pacific | (Mani et al., 2012) |
Araplysillin I (1) salt | 5.3 μM** | |||||
Araplysillin N20-formamide | 3.6 μM** | |||||
Araplysillin N20-hydroxyformamide | 5.0 μM** | |||||
Purealidin Q | 3.6 μM** | |||||
Aerothionin | 3.4 μM** | |||||
Homoaerothionin | 2.8 μM** | |||||
Aplysinone D | 1.0 μM** | |||||
11,19-Dideoxyfistularin 3 | 2.1 μM** | |||||
11-Hydroxyfistularin 3 | 2.1 μM** | |||||
3D7 P. falciparum | Araplysillin I | 4.6 μM** | ||||
Araplysillin I (1) salt | 4.5 μM** | |||||
Araplysillin N20-formamide | 7.0 μM** | |||||
Araplysillin N20-hydroxyformamide | 4.1 μM** | |||||
Aerothionin | 4.2 μM** | |||||
Homoaerothionin | 4.0 μM** | |||||
Aplysinone D | 3.1 μM** | |||||
11,19-Dideoxyfistularin 3 | 0.9 μM* | |||||
11-Hydroxyfistularin 3 | 2.6 μM** | |||||
T. brucei brucei | Iotrochamides A | N-cinnamoyl-amino acids | 3.4 μM** | Iotrochota sp. | Australia | (Feng et al., 2012) |
Iotrochamides B | 4.7 μM** | |||||
3D7 P. falciparum | Tsitsikammamine C | bispyrroloiminoquinone alkaloid | 0.013 μM|* | Zyzzya sp. | Australia | (Davis et al., 2012) |
Makaluvamines J | 0.025 μM* | |||||
Makaluvamines G | 0.036 μM* | |||||
Makaluvamines L | 0.04 μM* | |||||
Makaluvamines K | 0.039 μM* | |||||
Damirones A | 1.88 μM** | |||||
Damirones B | 12.25 μM** | |||||
Dd2 P. falciparum | Tsitsikammamine C | 0.018 μM* | ||||
Makaluvamines J | 0.022 μM* | |||||
Makaluvamines G | 0.039 μM* | |||||
Makaluvamines L | 0.021 μM* | |||||
Makaluvamines K | 0.3 μM* | |||||
Damirones A | 0.36 μM* | |||||
Damirones B | 3.8 μM** | |||||
D6 P. falciparum | ingamine A | pentacyclic ingamine alkaloids | 0.09 µg/mL* | Petrosid Ng5 Sp5 | Australia | (Ilias et al., 2012) |
22(S)-hydroxyingamine A | 0.22 µg/mL* | |||||
dihydroingenamine D | 0.078 µg/mL* | |||||
W2 P. falciparum | ingamine A | 0.072 µg/mL* | ||||
22(S)-hydroxyingamine A | 0.14 µg/mL* | |||||
dihydroingenamine D | 0.057 µg/mL* | |||||
L. donovani | ingamine A | 5.98 µg/mL** | ||||
22(S)-hydroxyingamine A | 5.83 µg/mL** | |||||
dihydroingenamine D | 3.12 µg/mL** | |||||
3D7 P. falciparum | Thiaplakortone A. | Thiazine Alkaloids | 0.051 μM* | Plakortis lita | Australia | (Davis et al., 2013) |
Dd2 P. falciparum | 0.006 μM* | |||||
FcM29 P. falciparum | Plakortide U | Endoperoxide polyketides | 0.3 μg/ml* | Plakinastrella mamillaris | Fiji Islands, Melanesia, South Pacific Ocean | (Festa et al., 2013) |
Plakortides R | 1.62 μg/ml* | |||||
Plakortides T | 19.1 μg/ml*** | |||||
T. b. rhodesiense | manadoperoxide B (1) | Endoperoxide polyketides | 0.003 μg/ml* | Plakortis cfr. lita | Indonesia | (Chianese et al., 2013) |
12-isomanadoperoxide B (2) | 0.011 μg/ml* | |||||
manadoperoxidic acid B (3) | 1.87 μg/ml* | |||||
FCB1 P. falciparum | Glycosphingolipids: axidjiferoside-A, -B and -C | glycosphingolipids | 0.53 μM* | Axinyssa djiferi | Senegal | (Farokhi et al., 2013) |
D10 P. falciparum | Endoperoxide polyketide 1 | Endoperoxide polyketides | 3.89 μM** | Plakortis simplex | China | (Chianese et al., 2014) |
Endoperoxide polyketide 2 | 4.05 μM** | |||||
Endoperoxide polyketide 3 | 1.77 μM** | |||||
Endoperoxide polyketide 5 | 6.18 μM** | |||||
Endoperoxide polyketide 7 | 5.12 μM** | |||||
W2 P. falciparum | Endoperoxide polyketide 1 | 2.91 μM** | ||||
Endoperoxide polyketide 2 | 2.70 μM** | |||||
Endoperoxide polyketide 3 | 1.56 μM** | |||||
Endoperoxide polyketide 5 | 4.98 μM** | |||||
Endoperoxide polyketide 6 | 11.4 μM** | |||||
Endoperoxide polyketide 7 | 4.10 μM** | |||||
T. bruci | plakortide E | Endoperoxide | 5 μM** | Plakortis halichondrioides | Bahamas | (Oli et al., 2014) |
D6 P. falciparum | norditerpene diacarperoxide J | Norditerpene endoperoxides | 1.6 μM** | Diacarnus megaspinorhabdosa | China | (Yang et al., 2014a) |
W2 P. falciparum | 1.8 μM** | |||||
T. brucei brucei | 24-vinyl-cholest-9-ene-3β | Steroids | 21.56 μM*** | Haliclona simulans | Ireland | (Viegelmann et al., 2014) |
24-diol, 20-methyl-pregn-6-en-3β-ol,5α,8α-epidioxy | 4.58 μM** | |||||
24-methylenecholesterol | 9.01 μM** | |||||
L. donovani | Scalarane sesterterpene, sesterstamide | Norditerpene endoperoxides | 32.9 μg/mL*** | Hyrios sp. | Paracel islands | (Yang et al., 2014a) |
P. falciparum | Netamine K | Tricyclic Alkaloids | 2.4 μM** | Biemna laboutei | Madagascar | |
H. contortus | 6-N-acyladenine alkaloid, phorioadenine A | Alkaloid | LD99 31 μg/mL*** | Phoriospongia sp. | Australia | (Farrugia et al., 2014) |
P. falciparum | Sesquiterpene isonitrile 7,20-diisocyanoadociane | Isonitriles | 0.013 μM* | Cymbastela hooperi | – | (Young et al., 2015) |
3D7 P. falciparum | isocyanide amphilectane-type diterpenes monamphilectines B | isocyanide amphilectane-type diterpenes | 0.044 μM* | Svenzea flava | Caribbean Sea | (Avilés et al., 2015) |
isocyanide amphilectane-type diterpenes monamphilectines C | 0.043 μM* | |||||
T. cruzi trypomastigotes | Monalidine A | Guanidine and Pyrimidine Alkaloids | 8 μM** | Monanchoraarbuscula | Brazil | (Santos et al., 2015) |
Batzelladine D | 64 μM*** | |||||
Batzelladines F | 5 μM** | |||||
Batzelladines L | 2 μM** | |||||
Norbatzelladine L | 7 μM** | |||||
L. infantum promastigotes | Monalidine A | 2 μM** | ||||
Batzelladine D | 2 μM** | |||||
Batzelladines F | 4 μM** | |||||
Batzelladines L | 2 μM** | |||||
Norbatzelladine L | 2 μM** | |||||
P. falciparum | Netamines O | Tricyclic Guanidine Alkaloids | 16.99 μM** | Biemna laboutei | Madagascar | (Gros et al., 2015) |
Netamines P | 32.62 μM*** | |||||
Netamines Q | 8.37 μM** | |||||
3D7 P. falciparum | sulfated polysaccharides | sulfated polysaccharides | 66.3 μg/ml*** | Desmapsamma anchorata | – | (Marques et al., 2016) |
W2 P. falciparum | norterpene cyclic peroxides1 | Norterpene cyclic peroxides | 4.2 μM** | Diacarnus megaspinorhabdosa | Xisha Islands, South China Sea | (Yang et al., 2016) |
norterpene cyclic peroxides2 | 3.0 μM** | |||||
norterpene cyclic peroxides 3 | 1.6 μM** | |||||
norterpene cyclic peroxides4 | 4.9 μM** | |||||
norterpene cyclic peroxides5 | 5.6 μM** | |||||
norterpene cyclic peroxides6 | 5.5 μM** | |||||
norterpene cyclic peroxides7 | 1.9 μM** | |||||
D6 P. falciparum | norterpene cyclic peroxides1 | 5.6 μM** | ||||
norterpene cyclic peroxides2 | 6.5 μM** | |||||
norterpene cyclic peroxides 3 | 2.2 μM** | |||||
norterpene cyclic peroxides4 | 7.3 μM** | |||||
norterpene cyclic peroxides5 | 8.6 μM** | |||||
norterpene cyclic peroxides6 | 8.1 μM** | |||||
norterpene cyclic peroxides7 | 2.0 μM** | |||||
T. b. rhodesiense | ircinin-1 (1) | Linear Furanosesterterpenoids | 97 μM*** | Ircinia oros | Gökçeada, Northern Aegean Sea, Turkey | (Chianese et al., 2017) |
ircinin-2 (2) | 65 μM*** | |||||
ircinialactam E (3) | 130 μM*** | |||||
ircinialactam F (4) | 130 μM*** | |||||
T. cruzi | ircinin-1 (1) | 120 μM*** | ||||
ircinin-2 (2) | 110 μM*** | |||||
ircinialactam E (3) | – | |||||
ircinialactam F (4) | – | |||||
L. donovani | ircinin-1 (1) | 31 μM*** | ||||
ircinin-2 (2) | 28 μM*** | |||||
ircinialactam E (3) | 120 μM*** | |||||
ircinialactam F (4) | 95 μM*** | |||||
P. falciparum | ircinin-1 (1) | 58 μM*** | ||||
ircinin-2 (2) | 56 μM*** | |||||
ircinialactam E (3) | 95 μM*** | |||||
ircinialactam F (4) | >100 μM*** | |||||
3D7 P. falciparum | 8-oxo-tryptamine (4) | Guanidine Alkaloids |
8.8 μg/mL** | Monanchora unguiculata | Madagascar | (Campos et al., 2017) |
mixture of (E) and (Z)-6-bromo-20-demethyl-30-N-methylaplysinopsin (6, 7) | 8.0 μg/mL** | |||||
3D7 P. falciparum | pseudoceratidine 1 | Bromopyrrole Alkaloids | 1.1 μM** | Tedania braziliensis | Brazil, Rio de Janeiro state | (Parra et al., 2018) |
pseudoceratidine derivative 4 + 5 | 5.8 μM** | |||||
pseudoceratidine derivative 16 | 4 μM** | |||||
pseudoceratidine derivative 23 | 2 μM** | |||||
pseudoceratidine derivative 25 | 2 μM** | |||||
pseudoceratidine derivative 31 | 7 μM** | |||||
pseudoceratidine derivative 50 | 3 μM** | |||||
L. infantum promastigote | pseudoceratidine derivative 20 | 24 μM*** | ||||
pseudoceratidine derivative 23 | 19 μM** | |||||
pseudoceratidine derivative 27 | 24 μM*** | |||||
pseudoceratidine derivative 42 | 20 μM*** | |||||
pseudoceratidine derivative 50 | 23 μM*** | |||||
L. amazonesis promastigote | pseudoceratidine derivative 20 | 19 μM** | ||||
pseudoceratidine derivative 23 | 44 μM*** | |||||
pseudoceratidine derivative 27 | 43 μM*** | |||||
pseudoceratidine derivative 42 | 76 μM*** | |||||
pseudoceratidine derivative 50 | 18 μM** | |||||
T. cruzi epimastigote | pseudoceratidine derivative 20 | 7 μM** | ||||
pseudoceratidine derivative 27 | 24 μM*** | |||||
Dd2 P. falciparum | smenotronic acid (1) | Sesquiterpenods | 3.51 μM** | Hyrtios erectus | Chuuk Island, Federated States of Micronesia | (Ju et al., 2018) |
ilimaquinone (2) | 2.11 μM** | |||||
pelorol (3) | 0.8 μM* | |||||
T. b. brucei | Hyrtiodoline A | alkaloid | 48 h (IC50 = 15.26 μmol/L) and 72 h (IC50 = 7.48 μmol/L) | Hyrtios sp. | Egypt | (Shady et al., 2018) |
FCR3 P. falciparum | Ceratinadins E | Bromotyrosine Alkaloids | 0.77 μg/mL* | Pseudoceratina sp. | Japan | (Kurimoto et al., 2018) |
Psammaplysin F | 2.45 μg/mL * | |||||
K1 P. falciparum | Ceratinadins E | 1.03 μg/mL | ||||
Psammaplysin F | 3.77 μg/mL** | |||||
3D7 P. falciparum | kaimanol | Sterol | 0.359 μM * | Xestospongia sp. | Indonesia | (Murtihapsari et al., 2021) |
saringosterol | 0.00025 μM* | |||||
3D7 P.falciparum | 8-oxo-tryptamine (4) | Tryptamine alkaloids | 8.8 µg/mL** | Fascaplysinopsis reticulata | Mayotte (Indian Ocean) | (Campos et al., 2019) |
mixture of (E) and (Z)-6-bromo-20 -demethyl-30 -N-methylaplysinopsin (6, 7) | 8.0 µg/mL** | |||||
D10 P. falciparum | avarone | sesquiterpene quinone avarone | 2.74 μM** | Dysidea avara | Turkey | (Imperatore et al., 2020) |
Thiazoavarone | 0.38 μM* | |||||
avarol | 0.96 μM* | |||||
W2 P. falciparum | avarone | 2.09 μM** | ||||
Thiazoavarone | 0.21 μM* | |||||
avarol | 1.10 μM** | |||||
P. falciparum gametocytes from a 3D7 transgenic line | avarone | 15.53 μM** | ||||
Thiazoavarone | 15.01 μM** | |||||
avarol | 9.30 μM** | |||||
promastigote stage of L. infantum | avarone | 28.21 μM*** | ||||
Thiazoavarone | 8.78 μM** | |||||
avarol | 7.42 μM** | |||||
promastigote stage of L. tropica | avarone | 20.28 μM*** | ||||
Thiazoavarone | 9.52 μM** | |||||
avarol | 7.08 μM** | |||||
amastigote stage of L. infantum. | avarone | 7.64 μM** | ||||
Thiazoavarone | 4.99 μM** | |||||
avarol | 3.19 μM** | |||||
S. mansoni schistosomula | avarone | 42.77 μM*** | ||||
Thiazoavarone | 5.90 μM** | |||||
avarol | 33.97 μM*** | |||||
C2C4 T. cruzi | bisaprasin | Bromotyrosine Alkaloids | 19 μM** | Aplysinella rhax | Fiji Islands | (Oluwabusola et al., 2020) |
3D7 P. falciparum | 29 μM*** |
*** inactive, ** moderately active, * good potent active.
Table3.
Extracted compounds | Target parasites/strains | References | |
---|---|---|---|
1 | dibromopalau’amine | T. brucei rhodesiense, L. donovani, K1 P. falciparum | (Scala et al., 2010) |
2 | longamide B | T. brucei rhodesiense | |
3 | spongiacidin B | K1 P. falciparum | |
4 | dispacamide B | K1 P. falciparum | |
5 | 4-hydroxy-3-tetraprenylphenylacetic acid | T. brucei rhodesiense | (Orhan et al., 2010) |
6 | diterpenes dorisenone D | T. brucei rhodesiense, K1 P. falciparum | |
7 | 11β-acetoxyspongi-12-en-16-one | L. donovani, K1 P. falciparum | |
8 | 4-hydroxy-3-octaprenylbenzoic acid | K1 P. falciparum | |
9 | squalene | K1 P. falciparum | |
10 | pandaroside G | T. b. rhodesiense | (Regalado et al., 2010) |
11 | pandaroside G methyl ester | T. b. rhodesiense, L. donovani | |
12 | 11,12-didehydro-13-oxo-plakortide Q | T.b. brucei | (Feng et al.. 2010) |
13 | 10-carboxy-11,12,13,14-tetranor-plakortide Q | T.b. brucei | |
15 | monamphilectine A | W2 P. falciparum | (Avilés and Rodríguez, 2010) |
16 | discorhabdins A | D6 P. falciparum, W2 P. falciparum | (Na et al.. 2010) |
17 | dihydrodiscorhabdin C | D6 P. falciparum, W2 P. falciparum | |
18 | epiplakinidioic acid | W2 P. falciparum | (Jiménez-Romero et al.. 2010) |
19 | Haliclonacyclamine A | 3D7 P. falciparum, FCB1 P. falciparum | (Mani et al. 2011) |
20 | manadoperoxide B | T. b. rhodesiense, L. donovani | (Chianese et al., 2012) |
21 | manadoperoxide C | T. b. rhodesiense | |
22 | manadoperoxide F | T. b. rhodesiense | |
23 | manadoperoxide G | T. b. rhodesiense | |
24 | manadoperoxide H | T. b. rhodesiense, L. donovani | |
25 | manadoperoxide I | T. b. rhodesiense, L. donovani | |
26 | manadoperoxide K | T. b. rhodesiense, L. donovani | |
27 | Tsitsikammamine C | 3D7 P. falciparum, Dd2 P. falciparum | (Davis et al., 2012) |
28 | Makaluvamines J | 3D7 P. falciparum, Dd2 P. falciparum | |
29 | Makaluvamines G | 3D7 P. falciparum, Dd2 P. falciparum | |
30 | Makaluvamines L | 3D7 P. falciparum, Dd2 P. falciparum | |
31 | Makaluvamines K | 3D7 P. falciparum, Dd2 P. falciparum | |
32 | Damirones A | Dd2 P. falciparum | |
33 | ingamine A | D6 P. falciparum, W2 P. falciparum | (Ilias et al., 2012) |
34 | 22(S)-hydroxyingamine A | D6 P. falciparum, W2 P. falciparum | |
35 | dihydroingenamine D | D6 P. falciparum, W2 P. falciparum | |
36 | Thiaplakortone A. | 3D7 P. falciparum, Dd2 P. falciparum | (Davis et al., 2013) |
37 | Plakortide U | FcM29 P. falciparum | (Festa et al., 2013) |
38 | Plakortides R | ||
39 | manadoperoxide B (1) | T. b. rhodesiense | (Chianese et al., 2013) |
40 | 12-isomanadoperoxide B (2) | ||
41 | manadoperoxidic acid B (3) | ||
42 | Glycosphingolipids: axidjiferoside-A, -B & -C | FCB1 P. falciparum | (Farokhi et al., 2013) |
43 |
|
P. falciparum | (Young et al., 2015) |
44 | isocyanide amphilectane-type diterpenes monamphilectines B | 3D7 P. falciparum | (Avilés et al., 2015) |
45 | isocyanide amphilectane-type diterpenes monamphilectines C | ||
46 | psammaplysin H | 3D7 P. falciparum | (Xu et al., 2011) |
47 | pelorol (3) | Dd2 P. falciparum | (Ju et al., 2018) |
48 | Ceratinadins E | FCR3 P. falciparum | (Kurimoto et al., 2018) |
49 | Psammaplysin F | ||
50 | kaimanol | 3D7 P. falciparum | (Murtihapsari et al., 2021) |
51 | saringosterol | ||
52 | Thiazoavarone | D10 P. falciparum, W2 P. falciparum | (Imperatore et al., 2020) |
53 | avarol | ||
54 | Thiazoavarone |
4. Discussion
In these articles, 45 different genera of sponges have been studied for their antiparasitic activities; the most frequently studied genus was Plakortis from different localities. The genera Ircinia, Pandaros, Haliclona, Aplysinella, Diacarnus, Pseudoceratina, Monanchora and Hyrtios have been studied in two different articles. These sponges were collected from different localities all over the world; the most explored sites were Australia, Indonesia, Brazil, Madagascar and China. Moreover, sponges were also collected from other localities such as Japan, India, Turkey, Egypt, Tunisia, Cuba and Spain. The secondary metabolites produced by sponges serve defensive purposes to protect them from predator attacks, biofouling, microbial infections and overgrowth by other aquatic sessile organisms (Paul et al., 2006). Therefore, compounds extracted from the same sponge species are more likely to be different if their habitat is distinguished due to the ecological response (Mani et al., 2012). Thus, it is important to mention the source of sponges to expect the variations in the extracted compounds obtained.
The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of articles screened (71%) were concerned with the antiparasitic activities against P. falciparum alone (73%) or P. falciparum and other parasites (27%). Different strains of P. falciparum were used in these studies: drug resistance strains (W2, K1, Dd2, 3D7, FcM29, FCB1) and drug sensitive strains (D6, D10, FcR3). This can be explained in the light of nearly half of the world’s population was at risk of malaria in 2019; most cases and deaths occur in sub-Saharan Africa; there were an estimated 229 million cases of malaria in 2019, and the estimated number of malaria deaths was about 409,000 (WHO).
Along the period of survey, the number of publications fluctuated from year to year, the highest number of papers was recorded in 2010 (10 papers), followed by that recorded in 2014 (9 papers), then 2015 (6 papers) and 2016 (6 papers). Only four papers were recorded in 2018 and 2013. Four papers were recorded in 2011; whereas in 2016, 2017, 2019 and 2020 only two papers were recorded in each. The seven publications concerned with the antiparasitic activities of crude extract were published in 2010, 2014 and 2015, and the forty seven publications concerned with the antiparasitic activities of extracted compounds were published all over the period of survey; this reflects the interest of authors to study the antiparasitic effect of extracted compounds rather than the crude extract to save a step towards the drug discovery.
The majority of antiparastic compounds extracted from marine sponges were related to alkaloids: diterpenoid β-lactam alkaloid (Avilés and Rodríguez, 2010), Pyrroloiminoquinone alkaloids (Na et al., 2010), bromotyrosine alkaloid (Kurimoto et al., 2018, Mani et al., 2012, Mudianta et al., 2012, Oluwabusola et al., 2020, Xu et al., 2011, Yang et al., 2010), pentacyclic ingamine alkaloids (Ilias et al., 2012), thiazine alkaloids (Davis et al., 2013), tricyclic alkaloids, guanidine and pyrimidine Alkaloids (Gros et al., 2015), tryptamine alkaloids (Campos et al., 2019), purines (Farrugia et al., 2014) and piperidine (Farrugia et al., 2014). In addition, peroxides represents the second important group of antiparasitic compounds extracted from sponges (Chianese et al., 2012, Chianese et al., 2014, Chianese et al., 2013, Fattorusso et al., 2010, Feng et al., 2010, Festa et al., 2013, Jiménez-Romero et al., 2010, Oli et al., 2014, Yang et al., 2014a, Yang et al., 2014b), followed by terpenoids (Avilés and Rodríguez, 2010, Chianese et al., 2017, Ju et al., 2018, Orhan et al., 2010). Some substances have been extracted and used as antiparasitic agents to a lesser extent like Steroids (Murtihapsari et al., 2021, Regalado et al., 2011, Regalado et al., 2010, Viegelmann et al., 2014), amino acids (Feng et al., 2012), lipids (Farokhi et al., 2013), polysaccharides (Marques et al., 2016) and Isonitriles (Young et al., 2015). The activities of these isolated compounds against parasites were screened using in vitro techniques. This is a starting point and a step ahead of target-based screen technique in the drug discovery sequence, and since it is already known to kill the parasite, the cellular permeability problem has been settled (Nweze et al., 2021).
In the present article compounds' potent activity in screened papers was classified in three categories according to IC50. If it was in μM: IC50 > 20 μM considered low active or inactive, IC501–20 μM classified moderately active, IC50 < 1 μM considered good potent active (Batista et al., 2009). If it was in μg/ml: IC50 > 10 μg/ml considered inactive, IC50 3–10 μg/ml classified moderately active, IC50 < 3 μg/ml considered good potent active (Ioset et al., 2009). The total number of extracted antiparasitic compound assayed in the screened articles was 147; the compounds were labeled in Table 2 according to the previous classification and those with good potent activity were 54 compounds and listed in Table 3.
Although, there are many promising anti-parasites compounds isolated from marine sponges, however there are also many obstacles in the way of converting them into effective drugs, starting from ethics and policies associated with samples collection and followed by sample supply, shortcomings of traditional bioassay-guided fractionation approaches, compatibility of some samples to high-throughput screening (HTS) techniques, and the duration, cost, efforts and processes needed before any of these compounds can be approved as an effective drug (Mayer et al., 2020). In more details, in the natural environment like marine habitat -apart from culturable microbes- accessing, collecting or recollecting of some samples is a challenge. For example, when a promising crude extract is identified from marine animals like a sponge or other, more samples are usually required to get enough crude extract for further investigations of the compound/compounds. If the chemical synthesis is not yet established or achievable for the isolated pure compounds, more quantity is required before proceeding the preclinical studies and clinical trials (García-Vilas et al., 2016). In addition, factors like the site of sample collection, season, genotype, differences related to an organism like age, and environmental stress to which the organism exposed, apparently affect the repeatability or reproducibility, thereby limiting the progression of the identified compounds to the next phase of drug development. However, the utilization of molecular biology techniques in isolation and expression of key genes, and semi- or total synthesis of the promising compounds, it will represent a real breakthrough in overcoming a large part of sampling problems (Nweze et al., 2020). Another challenges faces the drug discovery from natural marine habitat was the trouble of lack of unanimity in terms of fractions collection, isolation and structural elucidation of the bioactive compounds and other bioassay-guided fractionation. Nevertheless, some of these challenges may be overcome with the continuous advancement in chemical analysis techniques such as spectrometry (e.g., mass spectrometer), chromatography (e.g., gas chromatography, thin layer chromatography, high performance layer chromatography), and spectroscopy (e.g., ultraviolet, evaporative light scattering, refractive index, nuclear magnetic resonance), and researchers believe that the techniques could greatly renovate bioactivity guided fractionation, especially for complex extracts (Blockley et al., 2017, Choudhary et al., 2017).
5. Conclusion
This work reviewed the antiparasitic properties of natural compounds and crude extracts from marine sponges in most recently-published articles. Considering the many antiparasitic activities observed for all crude extracts and natural compounds described here, it can be stated that in fact there are optimistic perspectives on the continuing investigation of marine sponges for the treatment of parasitic infections, and they will certainly lead the scientific community to the discovery of more new efficient molecular templates and effective drugs for these diseases. Parasitic diseases specially neglected tropical diseases such as malaria, african trypanosomiasis, Chagas’ disease, leishmaniasis and schistosomiasis have a detrimental impact on the world’s poor peoples. Unfortunately communities suffering from these diseases have not offered a market gainful enough to attract any notable investment in research and development for new drugs. Therefore, this work intends to draw the attention of parasitologists to take their role in the efforts required for the development of novel antiparasitic drugs as part of the intensive efforts of the global scientific community to solve this economic and humanitarian problem.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgement
Thanks to the Deanship of Scientific Research, King Khalid University for funding this article under grant no. (G.R.P./166/42).
Footnotes
Peer review under responsibility of King Saud University.
References
- Andrade A.A., Gama A., Teixeira G.S., Atella G.C., Castro S., Coutinho C.C., Souza E. Activity of marine sponge-derived extracts against Trypanossoma cruzi associated with apoptosis-like death. Int. J. Res. Stud. n Biosci. 2015;3:92–101. [Google Scholar]
- Anjum Komal, Abbas Syed Qamar, Shah Sayed Asmat Ali, Akhter Najeeb, Batool Sundas, Hassan Syed Shams ul. Marine sponges as a drug treasure. Biomole. Therapeutics. 2016;24(4):347–362. doi: 10.4062/biomolther.2016.067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aseyev Olexiy, Ribeiro Joana M., Cardoso Fatima. Review on the clinical use of eribulin mesylate for the treatment of breast cancer. Expert Opin. Pharmacother. 2016;17(4):589–600. doi: 10.1517/14656566.2016.1146683. [DOI] [PubMed] [Google Scholar]
- Avilés E., Prudhomme J., Le Roch K.G., Rodríguez A.D. Structures, semisyntheses, and absolute configurations of the antiplasmodial α-substituted β-lactam monamphilectines B and C from the sponge Svenzea flava. Tetrahedron. 2015;71(3):487–494. doi: 10.1016/j.tet.2014.11.060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avilés Edward, Rodríguez Abimael D. Monamphilectine A, a potent antimalarial β-lactam from marine sponge Hymeniacidon sp: isolation, structure, semisynthesis, and bioactivity. Org. Lett. 2010;12(22):5290–5293. doi: 10.1021/ol102351z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Batista R., De Jesus Silva Júnior A., De Oliveira A.B. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules. 2009;14(8):3037–3072. doi: 10.3390/molecules14083037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell James J. The functional roles of marine sponges. Estuar. Coast. Shelf Sci. 2008;79(3):341–353. [Google Scholar]
- Bisaria K., Sinha S., Srivastava A., Singh R. Marine pharmacognosy: an overview of marine-derived pharmaceuticals. Marine Niche: Appl. Pharmac. Sci. 2020:361–381. [Google Scholar]
- Blockley A., Elliott D.R., Roberts A.P., Sweet M. Symbiotic microbes from marine invertebrates: driving a new era of natural product drug discovery. Diversity. 2017;9(4):49. [Google Scholar]
- Campos P.-E., Pichon E., Moriou C., Clerc P., Trépos R., Frederich M., De Voogd N., Hellio C., Gauvin-Bialecki A., Al-Mourabit A. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata. Mar. Drugs. 2019;17(3):167. doi: 10.3390/md17030167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campos Pierre-Eric, Wolfender Jean-Luc, Queiroz Emerson F., Marcourt Laurence, Al-Mourabit Ali, Frederich Michel, Bordignon Annélise, De Voogd Nicole, Illien Bertrand, Gauvin-Bialecki Anne. Unguiculin A and ptilomycalins E-H, antimalarial guanidine alkaloids from the marine sponge Monanchora unguiculata. J. Nat. Prod. 2017;80(5):1404–1410. doi: 10.1021/acs.jnatprod.6b01079. [DOI] [PubMed] [Google Scholar]
- Chianese G., Fattorusso E., Scala F., Teta R., Calcinai B., Bavestrello G., Dien H.A., Kaiser M., Tasdemir D., Taglialatela-Scafati O. Manadoperoxides, a new class of potent antitrypanosomal agents of marine origin. Org. Biomol. Chem. 2012;10(35):7197–7207. doi: 10.1039/c2ob26124c. [DOI] [PubMed] [Google Scholar]
- Chianese Giuseppina, Persico Marco, Yang Fan, Lin Hou-Wen, Guo Yue-Wei, Basilico Nicoletta, Parapini Silvia, Taramelli Donatella, Taglialatela-Scafati Orazio, Fattorusso Caterina. Endoperoxide polyketides from a Chinese Plakortis simplex: further evidence of the impact of stereochemistry on antimalarial activity of simple 1, 2-dioxanes. Biorg. Med. Chem. 2014;22(17):4572–4580. doi: 10.1016/j.bmc.2014.07.034. [DOI] [PubMed] [Google Scholar]
- Chianese G., Scala F., Calcinai B., Cerrano C., Dien H.A., Kaiser M., Tasdemir D., Taglialatela-Scafati O. Natural and semisynthetic analogues of manadoperoxide B reveal new structural requirements for trypanocidal activity. Mar. Drugs. 2013;11(9):3297–3308. doi: 10.3390/md11093297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chianese Giuseppina, Silber Johanna, Luciano Paolo, Merten Christian, Erpenbeck Dirk, Topaloglu Bülent, Kaiser Marcel, Tasdemir Deniz. Antiprotozoal linear furanosesterterpenoids from the marine sponge Ircinia oros. J. Nat. Prod. 2017;80(9):2566–2571. doi: 10.1021/acs.jnatprod.7b00543. [DOI] [PubMed] [Google Scholar]
- Choudhary A., Naughton L.M., Montánchez I., Dobson A.D., Rai D.K. Current status and future prospects of marine natural products (MNPs) as antimicrobials. Mar. Drugs. 2017;15(9):272. doi: 10.3390/md15090272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costantino V., Fattorusso E., Mangoni A., Di Rosa M., Ianaro A. Glycolipids from sponges. VII. 1 simplexides, novel immunosuppressive glycolipids from the Caribbean sponge Plakortis simplex. Bioorg. Med. Chem. Lett. 1999;9(2):271–276. doi: 10.1016/s0960-894x(98)00719-7. [DOI] [PubMed] [Google Scholar]
- Davis Rohan A., Buchanan Malcolm S., Duffy Sandra, Avery Vicky M., Charman Susan A., Charman William N., White Karen L., Shackleford David M., Edstein Michael D., Andrews Katherine T., Camp David, Quinn Ronald J. Antimalarial activity of pyrroloiminoquinones from the Australian marine sponge Zyzzya sp. J. Med. Chem. 2012;55(12):5851–5858. doi: 10.1021/jm3002795. [DOI] [PubMed] [Google Scholar]
- Davis Rohan A., Duffy Sandra, Fletcher Sabine, Avery Vicky M., Quinn Ronald J. Thiaplakortones A-D: antimalarial thiazine alkaloids from the Australian marine sponge plakortis lita. J. Organ. Chem. 2013;78(19):9608–9613. doi: 10.1021/jo400988y. [DOI] [PubMed] [Google Scholar]
- de Paula Jéssica Carreira, Desoti Vânia Cristina, Sampiron Eloísa Gibin, Martins Solange Cardoso, Ueda-Nakamura Tânia, Ribeiro Suzi Meneses, Bianco Everson Miguel, de Oliveira Silva Sueli, de Oliveira Gibson Gomes, Nakamura Celso Vataru. Trypanocidal activity of organic extracts from the Brazilian and Spanish marine sponges. Revista Brasileira de Farmacognosia. 2015;25(6):651–656. [Google Scholar]
- Elhady S.S., El-Halawany A.M., Alahdal A.M., Hassanean H.A., Ahmed S.A. A new bioactive metabolite isolated from the Red Sea marine sponge Hyrtios erectus. Molecules. 2016;21(1):82. doi: 10.3390/molecules21010082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eltamany E.E., Eltahawy N.A., Ibrahim A.K., Temraz T., Hassanean H.A., Radwan M.M., Ahmed S.A. Anticancer, antiprotozoal and antimicrobial activities of some red sea organisms. Catrina. 2014;9(1):01–06. [Google Scholar]
- Farokhi F., Grellier P., Clément M., Roussakis C., Loiseau P.M., Genin-Seward E., Kornprobst J.-M., Barnathan G., Wielgosz-Collin G. Antimalarial activity of Axidjiferosides, new β-galactosylceramides from the African sponge Axinyssa djiferi. Mar. Drugs. 2013;11(4):1304–1315. doi: 10.3390/md11041304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrugia Michelle, Trotter Nicholas, Vijayasarathy Soumini, Salim Angela A., Khalil Zeinab G., Lacey Ernest, Capon Robert J. Isolation and synthesis of N-acyladenine and adenosine alkaloids from a southern Australian marine sponge, Phoriospongia sp. Tetrahedron Lett. 2014;55(43):5902–5904. [Google Scholar]
- Fattorusso Caterina, Persico Marco, Calcinai Barbara, Cerrano Carlo, Parapini Silvia, Taramelli Donatella, Novellino Ettore, Romano Adriana, Scala Fernando, Fattorusso Ernesto, Taglialatela-Scafati Orazio. Manadoperoxides A− D from the Indonesian sponge Plakortis cfr. simplex. Further insights on the structure− activity relationships of simple 1, 2-dioxane antimalarials. J. Nat. Prod. 2010;73(6):1138–1145. doi: 10.1021/np100196b. [DOI] [PubMed] [Google Scholar]
- Feng Yunjiang, Davis Rohan A., Sykes Melissa, Avery Vicky M., Camp David, Quinn Ronald J. Antitrypanosomal cyclic polyketide peroxides from the Australian marine sponge Plakortis sp. J. Nat. Prod. 2010;73(4):716–719. doi: 10.1021/np900535z. [DOI] [PubMed] [Google Scholar]
- Feng Yunjiang, Davis Rohan A., Sykes Melissa L., Avery Vicky M., Quinn Ronald J. Iotrochamides A and B, antitrypanosomal compounds from the Australian marine sponge Iotrochota sp. Bioorg. Med. Chem. Lett. 2012;22(14):4873–4876. doi: 10.1016/j.bmcl.2012.05.029. [DOI] [PubMed] [Google Scholar]
- Festa Carmen, De Marino Simona, D’Auria Maria Valeria, Taglialatela-Scafati Orazio, Deharo Eric, Petek Sylvain, Zampella Angela. New antimalarial polyketide endoperoxides from the marine sponge Plakinastrella mamillaris collected at Fiji Islands. Tetrahedron. 2013;69(18):3706–3713. [Google Scholar]
- Fitchett Joseph R. Antibiotics, copayments, and antimicrobial resistance: investment matters. Lancet. Infect. Dis. 2015;15(10):1125–1127. doi: 10.1016/S1473-3099(15)00057-2. [DOI] [PubMed] [Google Scholar]
- Galeano E., Thomas O.P., Robledo S., Munoz D., Martinez A. Antiparasitic bromotyrosine derivatives from the marine sponge Verongula rigida. Mar. Drugs. 2011;9(10):1902–1913. doi: 10.3390/md9101902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Vilas J.A., Martínez-Poveda B., Quesada A.R., Medina M.Á. Aeroplysinin-1, a sponge-derived multi-targeted bioactive marine drug. Mar. Drugs. 2016;14(1):1. doi: 10.3390/md14010001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gros Emmanuelle, Martin Marie-Thérèse, Sorres Jonathan, Moriou Céline, Vacelet Jean, Frederich Michel, Aknin Maurice, Kashman Yoel, Gauvin-Bialecki Anne, Al-Mourabit Ali. Netamines O-S, five new tricyclic guanidine alkaloids from the Madagascar sponge Biemna laboutei, and their antimalarial activities. Chem. Biodivers. 2015;12(11):1725–1733. doi: 10.1002/cbdv.201400350. [DOI] [PubMed] [Google Scholar]
- Hertiani Triana, Edrada-Ebel RuAngelie, Ortlepp Sofia, van Soest Rob W.M., de Voogd Nicole J., Wray Victor, Hentschel Ute, Kozytska Svetlana, Müller Werner E.G., Proksch Peter. From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges. Biorg. Med. Chem. 2010;18(3):1297–1311. doi: 10.1016/j.bmc.2009.12.028. [DOI] [PubMed] [Google Scholar]
- Ilias Muhammad, Ibrahim Mohamed, Khan Shabana, Jacob Melissa, Tekwani Babu, Walker Larry, Samoylenko Vladimir. Pentacyclic ingamine alkaloids, a new antiplasmodial pharmacophore from the marine sponge Petrosid Ng5 Sp5. Planta Med. 2012;78(15):1690–1697. doi: 10.1055/s-0032-1315213. [DOI] [PubMed] [Google Scholar]
- Imperatore Concetta, Gimmelli Roberto, Persico Marco, Casertano Marcello, Guidi Alessandra, Saccoccia Fulvio, Ruberti Giovina, Luciano Paolo, Aiello Anna, Parapini Silvia, Avunduk Sibel, Basilico Nicoletta, Fattorusso Caterina, Menna Marialuisa. Investigating the antiparasitic potential of the marine sesquiterpene avarone, its reduced form avarol, and the novel semisynthetic thiazinoquinone analogue thiazoavarone. Mar. Drugs. 2020;18(2):112. doi: 10.3390/md18020112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ioset, J.-R., R. Brun, T. Wenzler, M. Kaiser & V. Yardley, 2009. Drug screening for kinetoplastids diseases. A Training Manual for Screening in Neglected Diseases. The Pan-Asian Screening Network
- Jiménez-Romero Carlos, Ortiz Idelisse, Vicente Jan, Vera Brunilda, Rodríguez Abimael D., Nam Sangkil, Jove Richard. Bioactive cycloperoxides isolated from the Puerto Rican sponge Plakortis halichondrioides. J. Nat. Prod. 2010;73(10):1694–1700. doi: 10.1021/np100461t. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ju E., Latif A., Kong C.-S., Seo Y., Lee Y.-J., Dalal S.R., Cassera M.B., Kingston D.G. Antimalarial activity of the isolates from the marine sponge Hyrtios erectus against the chloroquine-resistant Dd2 strain of Plasmodium falciparum. Zeitschrift für Naturforschung C. 2018;73(9–10):397–400. doi: 10.1515/znc-2018-0025. [DOI] [PubMed] [Google Scholar]
- Ben Kahla-Nakbi Amel, Haouas Najoua, El Ouaer Ali, Guerbej Hamadi, Mustapha Karim Ben, Babba Hamouda. Screening of antileishmanial activity from marine sponge extracts collected off the Tunisian coast. Parasitol. Res. 2010;106(6):1281–1286. doi: 10.1007/s00436-010-1818-x. [DOI] [PubMed] [Google Scholar]
- Kiuru Paula, D’Auria M., Muller Christian, Tammela Päivi, Vuorela Heikki, Yli-Kauhaluoma Jari. Exploring marine resources for bioactive compounds. Planta Med. 2014;80(14):1234–1246. doi: 10.1055/s-0034-1383001. [DOI] [PubMed] [Google Scholar]
- Kurimoto Shin-ichiro, Ohno Taito, Hokari Rei, Ishiyama Aki, Iwatsuki Masato, Ōmura Satoshi, Kobayashi Jun’ichi, Kubota Takaaki. Ceratinadins E and F, New Bromotyrosine Alkaloids from an Okinawan Marine Sponge Pseudoceratina sp. Mar. Drugs. 2018;16(12):463. doi: 10.3390/md16120463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy Stuart B, Marshall Bonnie. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 2004;10(S12):S122–S129. doi: 10.1038/nm1145. [DOI] [PubMed] [Google Scholar]
- Mani L., Jullian V., Mourkazel B., Valentin A., Dubois J., Cresteil T., Folcher E., Hooper J.N., Erpenbeck D., Aalbersberg W. New antiplasmodial bromotyrosine derivatives from Suberea ianthelliformis Lendenfeld, 1888. Chem. Biodivers. 2012;9(8):1436–1451. doi: 10.1002/cbdv.201100309. [DOI] [PubMed] [Google Scholar]
- Mani L., Petek S., Valentin A., Chevalley S., Folcher E., Aalbersberg W., Debitus C. The in vivo anti-plasmodial activity of haliclonacyclamine A, an alkaloid from the marine sponge. Haliclona sp. Nat. Prod. Res. 2011;25(20):1923–1930. doi: 10.1080/14786419.2010.547858. [DOI] [PubMed] [Google Scholar]
- Marques J., Vilanova E., Mourão P.A., Fernàndez-Busquets X. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium. Sci. Rep. 2016;6(1):1–14. doi: 10.1038/srep24368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martins A., Vieira H., Gaspar H., Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar. Drugs. 2014;12(2):1066–1101. doi: 10.3390/md12021066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer A., Guerrero A.J., Rodríguez A.D., Taglialatela-Scafati O., Nakamura F., Fusetani N. Marine pharmacology in 2014–2015: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs. 2020;18(1):5. doi: 10.3390/md18010005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendiola Judith, Regalado Erik L., Díaz-García Alexis, Thomas Olivier P., Fernández-Calienes Aymé, Rodríguez Hermis, Laguna Abilio, Valdés Olga. In vitro antiplasmodial activity, cytotoxicity and chemical profiles of sponge species of Cuban coasts. Nat. Prod. Res. 2014;28(5):312–317. doi: 10.1080/14786419.2013.861835. [DOI] [PubMed] [Google Scholar]
- Mudianta I Wayan, Skinner-Adams Tina, Andrews Katherine T., Davis Rohan A., Hadi Tri A., Hayes Patricia Y., Garson Mary J. Psammaplysin derivatives from the Balinese marine sponge Aplysinella strongylata. J. Nat. Prod. 2012;75(12):2132–2143. doi: 10.1021/np300560b. [DOI] [PubMed] [Google Scholar]
- Murtihapsari Murtihapsari, Salam Supriatno, Kurnia Dikdik, Darwati Darwati, Kadarusman Kadarusman, Abdullah Fajar Fauzi, Herlina Tati, Husna Muhammad Hafiz, Awang Khalijah, Shiono Yoshihito, Azmi Mohamad Nurul, Supratman Unang. A new antiplasmodial sterol from Indonesian marine sponge, Xestospongia sp. Nat. Prod. Res. 2021;35(6):937–944. doi: 10.1080/14786419.2019.1611815. [DOI] [PubMed] [Google Scholar]
- Na MinKyun, Ding Yuanqing, Wang Bin, Tekwani Babu L., Schinazi Raymond F., Franzblau Scott, Kelly Michelle, Stone Robert, Li Xing-Cong, Ferreira Daneel, Hamann Mark T. Anti-infective discorhabdins from a deep-water Alaskan sponge of the genus Latrunculia. J. Nat. Prod. 2010;73(3):383–387. doi: 10.1021/np900281r. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nwaka Solomon, Hudson Alan. Innovative lead discovery strategies for tropical diseases. Nat. Rev. Drug Disc. 2006;5(11):941–955. doi: 10.1038/nrd2144. [DOI] [PubMed] [Google Scholar]
- Nweze J.A., Mbaoji F.N., Huang G., Li Y., Yang L., Zhang Y., Huang S., Pan L., Yang D. Antibiotics development and the potentials of marine-derived compounds to stem the tide of multidrug-resistant pathogenic bacteria, fungi, and protozoa. Mar. Drugs. 2020;18(3):145. doi: 10.3390/md18030145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nweze J.A., Mbaoji F.N., Li Y.-M., Yang L.-Y., Huang S.-S., Chigor V.N., Eze E.A., Pan L.-X., Zhang T., Yang D.-F. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: a review of recent articles. Infect. Dis. Poverty. 2021;10(1):1–19. doi: 10.1186/s40249-021-00796-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oli S., Abdelmohsen U.R., Hentschel U., Schirmeister T. Identification of plakortide E from the Caribbean sponge Plakortis halichondroides as a trypanocidal protease inhibitor using bioactivity-guided fractionation. Mar. Drugs. 2014;12(5):2614–2622. doi: 10.3390/md12052614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oluwabusola Emmanuel T., Tabudravu Jioji N., Al Maqbali Khalid S., Annang Frederick, Pérez‐Moreno Guiomar, Reyes Fernando, Jaspars Marcel. Antiparasitic activity of bromotyrosine alkaloids and new analogues isolated from the Fijian marine Sponge Aplysinella rhax. Chem. Biodivers. 2020;17(10) doi: 10.1002/cbdv.v17.1010.1002/cbdv.202000335. [DOI] [PubMed] [Google Scholar]
- Orhan I., Şener B., Kaiser M., Brun R., Tasdemir D. Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar. Drugs. 2010;8(1):47–58. doi: 10.3390/md8010047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parra L.L., Bertonha A.F., Severo I.R., Aguiar A.C., de Souza G.E., Oliva G., Guido R.V., Grazzia N., Costa T.R., Miguel D.C. Isolation, derivative synthesis, and structure–activity relationships of antiparasitic bromopyrrole alkaloids from the marine sponge Tedania brasiliensis. J Nat Prod. 2018;81(1):188–202. doi: 10.1021/acs.jnatprod.7b00876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul V.J., Puglisi M.P., Ritson-Williams R. Marine chemical ecology. Nat. Prod. Rep. 2006;23(2):153–180. doi: 10.1039/b404735b. [DOI] [PubMed] [Google Scholar]
- Pereira R.B., Evdokimov N.M., Lefranc F., Valentão P., Kornienko A., Pereira D.M., Andrade P.B., Gomes N.G. Marine-derived anticancer agents: clinical benefits, innovative mechanisms, and new targets. Mar. Drugs. 2019;17(6):329. doi: 10.3390/md17060329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regalado Erik L., Jiménez-Romero Carlos, Genta-Jouve Gregory, Tasdemir Deniz, Amade Philippe, Nogueiras Clara, Thomas Olivier P. Acanthifoliosides, minor steroidal saponins from the Caribbean sponge Pandaros acanthifolium. Tetrahedron. 2011;67(5):1011–1018. [Google Scholar]
- Regalado Erik L., Tasdemir Deniz, Kaiser Marcel, Cachet Nadja, Amade Philippe, Thomas Olivier P. Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. J. Nat. Prod. 2010;73(8):1404–1410. doi: 10.1021/np100348x. [DOI] [PubMed] [Google Scholar]
- Sagar S., Kaur M., Minneman K.P. Antiviral lead compounds from marine sponges. Mar. Drugs. 2010;8(10):2619–2638. doi: 10.3390/md8102619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santos M.F., Harper P.M., Williams D.E., Mesquita J.T., Pinto E.G., da Costa-Silva T.A., Hajdu E., Ferreira A.G., Santos R.A., Murphy P.J. Anti-parasitic guanidine and pyrimidine alkaloids from the marine sponge Monanchora arbuscula. J. Nat. Prod. 2015;78(5):1101–1112. doi: 10.1021/acs.jnatprod.5b00070. [DOI] [PubMed] [Google Scholar]
- Scala F., Fattorusso E., Menna M., Taglialatela-Scafati O., Tierney M., Kaiser M., Tasdemir D. Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar. Drugs. 2010;8(7):2162–2174. doi: 10.3390/md8072162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schöffski Patrick, Chawla Sant, Maki Robert G, Italiano Antoine, Gelderblom Hans, Choy Edwin, Grignani Giovanni, Camargo Veridiana, Bauer Sebastian, Rha Sun Young, Blay Jean-Yves, Hohenberger Peter, D'Adamo David, Guo Matthew, Chmielowski Bartosz, Le Cesne Axel, Demetri George D, Patel Shreyaskumar R. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. The Lancet. 2016;387(10028):1629–1637. doi: 10.1016/S0140-6736(15)01283-0. [DOI] [PubMed] [Google Scholar]
- Schwartsmann Gilberto, da Rocha Adriana Brondani, Berlinck Roberto GS, Jimeno Jose. Marine organisms as a source of new anticancer agents. Lancet Oncol. 2001;2(4):221–225. doi: 10.1016/s1470-2045(00)00292-8. [DOI] [PubMed] [Google Scholar]
- Shady Nourhan Hisham, Fouad Mostafa A., Ahmed Safwat, Pimentel-Elardo Sheila Marie, Nodwell Justin R., Kamel Mohamed Salah, Abdelmohsen Usama Ramadan. A new antitrypanosomal alkaloid from the Red Sea marine sponge Hyrtios sp. J. Antibiot. 2018;71(12):1036–1039. doi: 10.1038/s41429-018-0092-5. [DOI] [PubMed] [Google Scholar]
- Thomas T.R.A., Kavlekar D.P., LokaBharathi P.A. Marine drugs from sponge-microbe association—a review. Mar. Drugs. 2010;8(4):1417–1468. doi: 10.3390/md8041417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres Yohandra R., Berlinck Roberto G.S., Nascimento Gislene G.F., Fortier Sérgio C., Pessoa Claudia, de Moraes Manoel O. Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon. 2002;40(7):885–891. doi: 10.1016/s0041-0101(01)00286-0. [DOI] [PubMed] [Google Scholar]
- Van Soest, R., Boury-Esnault, N., Hooper, J., Rützler, K.d., De Voogd, N., Alvarez de Glasby, B., Hajdu, E., Pisera, A., Manconi, R., Schoenberg, C., 2018.
- Viegelmann C., Parker J., Ooi T., Clements C., Abbott G., Young L., Kennedy J., Dobson A.D., Edrada-Ebel R. Isolation and identification of antitrypanosomal and antimycobacterial active steroids from the sponge Haliclona simulans. Mar. Drugs. 2014;12(5):2937–2952. doi: 10.3390/md12052937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vik Anders, Hedner Erik, Charnock Colin, Tangen Linda W., Samuelsen Ørjan, Larsson Rolf, Bohlin Lars, Gundersen Lise-Lotte. Antimicrobial and cytotoxic activity of agelasine and agelasimine analogs. Biorg. Med. Chem. 2007;15(12):4016–4037. doi: 10.1016/j.bmc.2007.03.086. [DOI] [PubMed] [Google Scholar]
- World Health Organization. Health Topics (WHO). Available online: https://www.who.int/health-topics/#S (accessed on 18 March 2021).
- World porifera database. The World Register of Marine Species (WoRMS) Available online: http://www.marinespecies.org/porifera/ (accessed on 25 March 2021).
- Xu Min, Andrews Kathy T., Birrell Geoff W., Tran Truc Linh, Camp David, Davis Rohan A., Quinn Ronald J. Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorg. Med. Chem. Lett. 2011;21(2):846–848. doi: 10.1016/j.bmcl.2010.11.081. [DOI] [PubMed] [Google Scholar]
- Xue Song, Zhang Hai Tao, Wu Pei Chun, Zhang Wei, Yuan Quan. Study on bioactivity of extracts from marine sponges in Chinese Sea. J. Exp. Mar. Biol. Ecol. 2004;298(1):71–78. [Google Scholar]
- Yang F., Gan J.-H., Liu X.-Y., Lin H.-W. Scalarane sesterterpenes from the Paracel islands marine sponge Hyrtios sp. Natl. Prod. Commun. 2014;9(6) [PubMed] [Google Scholar]
- Yang Fan, Wang Ru-Ping, Xu Bin, Yu Hao-Bing, Ma Guo-Yi, Wang Guang-Fei, Dai Shu-Wen, Zhang Wei, Jiao Wei-Hua, Song Shao-Jiang, Lin Hou-Wen. New antimalarial norterpene cyclic peroxides from Xisha Islands sponge Diacarnus megaspinorhabdosa. Bioorg. Med. Chem. Lett. 2016;26(8):2084–2087. doi: 10.1016/j.bmcl.2016.02.070. [DOI] [PubMed] [Google Scholar]
- Yang F., Zou Y., Wang R.-P., Hamann M.T., Zhang H.-J., Jiao W.-H., Han B.-N., Song S.-J., Lin H.-W. Relative and absolute stereochemistry of diacarperoxides: antimalarial norditerpene endoperoxides from marine sponge Diacarnus megaspinorhabdosa. Mar. Drugs. 2014;12(8):4399–4416. doi: 10.3390/md12084399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Xinzhou, Davis Rohan A., Buchanan Malcolm S., Duffy Sandra, Avery Vicky M., Camp David, Quinn Ronald J. Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J. Nat. Prod. 2010;73(5):985–987. doi: 10.1021/np900834g. [DOI] [PubMed] [Google Scholar]
- Young Ryan M., Adendorff Matthew R., Wright Anthony D., Davies-Coleman Michael T. Antiplasmodial activity: the first proof of inhibition of heme crystallization by marine isonitriles. Eur. J. Med. Chem. 2015;93:373–380. doi: 10.1016/j.ejmech.2015.02.011. [DOI] [PubMed] [Google Scholar]