Skip to main content
F1000Research logoLink to F1000Research
. 2021 Nov 24;10:1194. [Version 1] doi: 10.12688/f1000research.74524.1

An Atlas of Plant Transposable Elements

Daniel Longhi Fernandes Pedro 1, Tharcisio Soares Amorim 1, Alessandro Varani 2, Romain Guyot 3,4, Douglas Silva Domingues 1,5,a, Alexandre Rossi Paschoal 1,b
PMCID: PMC8729191  PMID: 35035898

Abstract

Advances in genomic sequencing have recently offered vast opportunities for biological exploration, unraveling the evolution and improving our understanding of Earth biodiversity. Due to distinct plant species characteristics in terms of genome size, ploidy and heterozygosity, transposable elements (TEs) are common characteristics of many genomes. TEs are ubiquitous and dispersed repetitive DNA sequences that frequently impact the evolution and composition of the genome, mainly due to their redundancy and rearrangements. For this study, we provided an atlas of TE data by employing an easy-to-use portal ( APTE website ). To our knowledge, this is the most extensive and standardized analysis of TEs in plant genomes. We evaluated 67 plant genomes assembled at chromosome scale, recovering a total of 49,802,023 TE records, representing a total of 47,992,091,043 (~47,62%) base pairs (bp) of the total genomic space. We observed that new types of TEs were identified and annotated compared to other data repositories. By establishing a standardized catalog of TE annotation on 67 genomes, new hypotheses, exploration of TE data and their influences on the genomes may allow a better understanding of their function and processes. All original code and an example of how we developed the TE annotation strategy is available on GitHub ( Extended data).

Keywords: mobile elements, atlas, large-scale, genome-wide, standardized, plants

Introduction

The growing number of sequenced plant genomes is providing unprecedented opportunities for biological studies, evolution, and growing of many algal and Viridiplantae species. We estimate more than 13k plant genomes have been released (NCBI), revealing that plant genomes are faintly explored. High diversity in terms of ploidy, heterozygosity, and genome size, probably due to a dynamic set of old and recent bursts of transposable elements (TEs), are common hallmarks of many plant genomes. 1 TEs can comprise between 32% to 56% ( Utricularia genomes), 2 , 3 to up to 90% in many plant genomes, 4 6 e.g., maize 7 and wheat. 5 , 8 , 9

TEs can be organized into two main classes. Each class is hierarchically organized into orders, superfamilies, families, and subfamilies. This terminology is primarily associated with the type of their transposition mechanisms. 3 , 10 They are classified into: (i) retrotransposons (Class I), which are propagated by a “copy-and-paste” mobility mechanism and are the most redundant TE class in plant genomes; and (ii) DNA transposons (Class II), which are known for the “cut-and-paste” mechanism that allows them to move to a completely different position. Moreover, both Classes may contain autonomous members 10 , 11 for which the transposition mechanism depends on an autonomous and cognate type of TE. 11 , 12

However, despite their significance, in-depth identification and analysis of TEs content in the sequenced plant genomes remains barely explored. 13 , 14 The lack of concise data available may prevent the enrichment of in silico, functional genomics research and compromises the appearance of new strategies to investigate TEs. Recently, many computational models and entire wet-lab efforts have increasingly been helping to understand these sequences. 15 18 For example, Ensembl Plants 19 provides high-quality, primary genomic information for 67 plant (in the broad sense, including green plants, green and red algae) genomes, assembled near or at chromosome scale; however, mobile sequences are poorly systematized and have a humble coverage.

These observations prompted us to standardize tools and methods aiming to improve TE detection, annotation and standardization. In this work, we developed a new method for systematic annotation of plant TEs, using the 67 genomes available at Ensembl Plants assembled at chromosome scale as a starting point. Our identification was standardized, applying the same methodologies to all genomes and delivering a concise Atlas of TEs annotation in plant genomes. We also provided an updated analysis of non-coding RNAs (ncRNAs) overlapping TEs. This annotation is accessible on the Atlas website for exploration and download, which might be relevant to any type of research involving mobile sequences.

Methods

Data source

All genomes (Supplementary Material 1, Extended data) were downloaded from the Ensembl Plants 19 database, version 41 (57 genomes) and 45 (plus 10 new genomes).

Annotation of transposable elements

We used similarity-based methods and de novo techniques to build a collection of putative transposable elements, based on the SPTEdb pipeline. 21 We refined, extended and increased steps in order to produce a novel annotation ( Figure 1). Our reformulated steps (details in Supplementary Material 2, Extended data) guarantee a comprehensive knowledgebase of these TEs.

Figure 1. Steps in transposable elements identification.

Figure 1.

Dataset: Genome assemblies were downloaded from Ensembl Plants. Identification: 1A) RepeatScout was used to search for putative repetitive sequences and further classification by PASTEClassifier, resulting in a library. 1B) RepeatModeler was also used to find a consensus of TEs sequences. 2) RepeatMasker was run with Repbase library and libraries from RepeatModeler and RepeatScout. 3) For Class II - Subclass 2 TEs, we also used HelitronScanner and MITE-Hunter. 4) In order to find LTR and Non-LTR retrotransposons, we used LTR_retriever and MGEScan-non-LTR, respectively. Filter: A cut-off filter was applied to remove low complexities, simple repeats and other nomenclatures that were not classified into TEs. Annotation: In result of the pipeline, we have a Transposable Element annotation for each genome analyzed.

RepeatScout was performed separately; the output was unified in a library to be labeled by PASTEClassifier 32 and later combined into a final annotation. To automate the pipeline, an in-house framework in Perl language was developed for each software output to be uniformized, described in steps 1 to 4. A main script in Bash starts the process of automatization using Perl scripts. All steps were supervised by researchers, carefully checked, and the output was manually verified at each step for each genome. Records classified as low complexity, simple repeat and other nomenclature not related to Class I or Class II TEs were discarded.

Due to the extensive genome sizes of Triticum aestivum (14,5 Gb), Triticum dicoccum (10,4 Gb) and Triticum turgidum (10,4 Gb), we adapted our pipeline for their analysis, based on the approach of Jamilloux et al. 24 For these species, we applied our pipeline on chromosome 1 (which is the longest pseudomolecule), as the large genomes were eventually duplicated into new copies, increasing the number of these same repeats in the genome, and did not significantly impact discoveries related to new or different TEs families. 24

TE evidence score

To test the reliability of our TE annotation pipeline, we scored sequences that had duplicated annotation in the same loci ( Figure 2). We developed a statistical metric (labeled as TE-Score, shown in each record as the ninth column for each genome annotation file) that identify and ponder sequences types that have been identified by the programs. The TE-Score is a metric (0 to 1) that is given by

TEScore=QIPQP

where QIP = Quantity of identification by program and QP = Quantity of programs. To illustrate an average of the amount sequences annotation by programs, see Figure 2.

Figure 2. The TE Score: the average amount of sequence identification made by programs in all genomes.

Figure 2.

Correlation analysis

To test for correlations between genome size and transposable elements percentage by genome in base pairs, we first normalized using log10, and then we applied the Pearson Correlation Coefficient in SPSS version 25.

Web implementation

APTE is hosted at the Universidade Tecnológica Federal do Paraná (Cornélio Procópio, PR, Brazil). It uses Debian 11 as operating system, Apache 2 as web server, PHP 5.6 as web programming language. We also used Zend Framework 2, which implements model, view, controller (MVC), a methodology for web development that can be expanded for any future additional functionality. On the front-end, we used HyperText Markup Language 5 (HTML5), Cascading Style Sheet 3 (CSS3) and JavaScript to perform dynamic functions that provide user-friendly navigation. A built-in genome browser (JBrowse, version 1.14.1) is available to visualize and download the data as well.

Computational resources

To run the pipeline described in Figure 1, we used three platforms: (i) to runRepeatModeler, 25 , 26 RepeatScout, 26 , 27 RepeatMasker, 27 LTR_retriever, 28 MITE-Hunter 29 and HelitronScanner 30 ; (ii) to perform MGEScan-non-LTR 31 and PASTEClassifier 32 ; and (iii) to unify and filter outputs to the main annotation. The hardware utilized were (i) Xeon E7540 2.00 GHz 256GB memory, Xeon E5-2620v3 2.40 GHz 64GB memory, 2x Intel i7-3820 3.60Ghz 32GB memory and Intel i7-3820 3.60Ghz 64GB memory, (ii) Intel i7-3820 3.60Ghz 64GB memory, and (iii) Intel Core 2 Duo 2.4 GHz 8GB memory, a total of 30 physical cores and 456 GB of memory. In order to present a scale of time elapsed to measure, filter and standardize the results, we estimate that for the A. thaliana genome, the time needed to get the final annotation was ~18 hours, using all resources mentioned, including post-processing scripts (detailed on our website).

Results and discussion

Overview of TE portion

We retrieved a total of 49,802,023 TE records from 67 plant genomes, representing a total of 47,992,091,043 (~47,62%) base pairs (bp) of the total genomic space. This information is distributed in ~57,36% (28,565,034) TEs organized into class, order and superfamily. In addition, ~42,64% (21,236,989) elements could not be assigned to any type of known TE and they were labelled as unknown. They likely represent chimeric and/or partial elements for which we were not able to perform the full classification. For known TEs, we identified that ~62,85% were retrotransposons, and ~37,15% were DNA transposons. All assigned classifications of TEs identified along the 67 genomes are shown in Figure 3. The distribution of TEs in the analyzed genomes are somewhat similar ( Figure 4), especially in genomes that have a shorter phylogenetic distance (e.g., Oryza spp, Triticum spp). However, even close-related genomes exhibit uneven TEs distribution (e.g., Arabidopsis spp). Two main hypotheses might explain the variation of TE content: (a) different evolutionary stories, since the two major genome duplication events are shared by all seed plants ( epsilon) and flowering plants ( gamma), followed by the lineage-specific duplication events, 20 and (b) specific pressures to maintain, expand and purge TEs in each lineage.

Figure 3. Class, order and superfamilies identified among the 67 plant genomes used in this study.

Figure 3.

Figure 4. Overview of Class I and Class II composition of TEs in each genome organized in a phylogenetic tree.

Figure 4.

We have noted that our approach permitted better TE annotations in genomes assembled at chromosome scale, and we also observed that the amount of TEs is generally related to the genome size, since larger genomes have higher occurrences of TEs ( Figure 5). However, for incompletely and draft-assembled genomes, it tends to decrease the number of TEs, once the assembly into small parts (scaffolds or contigs) may impact the genome assembly quality, collapsing repeated contigs (mostly TE- derived) and interfering with the proper identification of these TEs.

Figure 5. Correlation between genome size and TE content.

Figure 5.

On the left, the bar chart in blue, the genome size (in Gb), and, in green, the transposable elements distribution in analyzed genomes (in percentage). On the right, we normalized, in base pair, genome size and TE using log(10) and then we correlated (Pearson) the genome size by transposable elements. r and p-value are shown in the top-left of each chart. A) Using all the 67 annotated genomes; B) For all genomes with recent WGD (Whole Genome Duplication) events, blue circles; C) Excluding genomes that experienced recent WGD, red circles.

TE database comparison

To compare the results of the identification performed and to ensure the reliability (details in Supplementary Material 1, Extended data) of our approach, we used SPTEdb 21 annotation data of the genome Populus trichocarpa (black cottonwood), which is explored in Table 1. The second comparison of TE annotations was performed for the Glycine max (soybean) genome, in which we used SoyTEdb 22 to compare the amount vs. type of TEs, shown in Table 1. A third comparison used data from GrTEdb 23 to explore the amount of TEs in Gossypium raimondii (cotton), available in Table 1.

Table 1. Transposable elements amount annotated in Populus trichopoda, Glycine max and Gossypium raimondii by class, order and superfamily compared to other databases which have their own annotation.

Populus trichopoda Glycine max Gossypium raimondii
Our work SPTEdb Our work SoyTEdb Our work GrTEdb
Class Order Superfamily Quantity
Class I LTR Cassandra 17 - 1,126 - 157 -
Caulimovirus 469 6 574 - 1,479 -
Copia 28,259 1,557 60,399 13,318 50,543 2,929
Gypsy 57,505 5,587 92,396 19,052 161,281 10,368
LARD 142 - 6,804 - 2,832 -
TRIM 1,164 - 3,698 - 2,239 -
Pao - 140 - - - -
Unknown 38,146 - 22,978 - 42,814 -
LINE CR1 84 - - - - -
CRE - - 1 - - -
I 173 - 168 - - -
L1 3,472 87 11,897 - 13,018 299
L2 695 - 177 - 215 -
RTE 362 - 3,927 - 78 -
TEX 2 - 2 - 1 -
Unknown 4,484 - 6,119 182 3,572 -
rRNA 174 - 193 - 509 -
tRNA 18,775 - 2,784 850 -
snRNA - - 64 - - -
Unknown 12,922 - 4,152 - 4,485 -
NGARO - - 6 - - - -
PLE Penelope - - 14 - 4 -
DIRS - 3 5 2 - 1 -
Class II TIR CMC-EnSpm 7,031 3 26,395 - 1,547 -
Crypton - - 535 - - -
Dada - - - - 58 -
EnSpm-CACTA 3,590 - 4,596 65 1,419 275
Harbinger 584 - 1,182 - 1,036 -
hAT 3,383 17 3,348 65 4,837 -
hAT-Ac 3,301 - 9,676 - 22,333 -
hAT-Charlie - - 180 - 134 -
hAT-Tag1 11,022 - 4,612 - 4,650 -
hAT-Tip100 935 - 2,805 - 7,733 -
Maverick - - - - 115 -
MuDR 2,246 - 15,920 2,373 9,933 12
MuLE-MuDR 2,712 6 27,566 - 11,207 -
Novosib 74 - 577 - 55 -
PIF-Harbinger 6,430 3 8,157 90 4,342 435
Pong - - - 12 - -
Sola1 5 - 128 - 61 -
Tc1-Mariner 623 - 472 9 868
TcMar-Pogo 333 - 78 - - -
TcMar-Stowaway - - 2,920 - - -
Unknown 5,379 2,770 5,664 - 7,451 -
MITE - 1,426 78 9,355 3,333 11,661 -
Helitron - 51,532 1,340 5,860 82 5,307 14
Unknown - - 232,104 - 619,524 - 618,413 -

Conclusion

Our analysis brought an exhaustive, systematic and comprehensive genome identification in plant genomes, using seven programs to annotate TEs in plant genomes. In both TE classes, several orders and superfamilies were found ubiquitously in all genomes. Additionally, 21,236,989 out of 49,802,023 mapped TE sequences could not be classified into any of the nomenclatures known for TEs, and were labeled as “Unknown” in GFF3, a standard file format for gene annotation.

For plant species whose TE complement may be quite well-annotated, i.e., Arabidopsis thaliana, we yielded an increased number of identified TEs. In species with less curated annotation in Ensembl, we were able to deliver a more detailed identification of TEs. For example, in three particular genomes, i.e., Populus trichocarpa (black cottonwood), Glycine max (soybean) and Gossypium raimondii (cotton), we increased the TE identification levels by 2,295%, 900% and 2,643%, respectively. We observe that for several other genomes, new types of TEs were identified and annotated; this ensures that our pipeline delivers not only the same TE identification, but also new ones, making the annotation process possible to use for any species.

In this study, we contributed to expand the knowledge on TEs, by providing a large-scale, organized and standardized TE Atlas. We integrated all annotations to make it available to download in each genome separately from the Atlas of Plant Transposable Elements (APTE) website. An example how our pipeline works using the A. thaliana genome, software dependencies, and in-house scripts developed, which can be downloaded, used and changed freely, are available from https://github.com/daniellonghi/te_pipelinehttps:// github.com/alerpaschoal/apte_pipeline/.

Data availability

Underlying data

All data underlying the Plant TE Atlas is available in the portal http://apte.cp.utfpr.edu.br/.

Extended data

Zenodo: Datasets from An Atlas of Plant Transposable Elements, https://doi.org/10.5281/zenodo.5672122. 33 https://doi.org/10.5281/zenodo.5574528

This project contains the following extended data:

  • -

    SuppMat_1.xlsx (the gen ome assembly reference access from Ensembl Plants species used)

  • -

    SuppMat_2.docx (a brief transposable elements annotation steps used in this work)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Analysis code available at: https://github.com/alerpaschoal/apte_pipeline/

Archived code at time of publication: https://doi.org/10.5281/zenodo.5672122

License: CC0

Funding Statement

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (to D.L.F.P.); a National Council for Scientific and Technological Development (CNPq) undergraduate fellowship (116568/2018-6 to T.S.A.); Pró-Reitoria de Pesquisa e Pós-Graduação (PROPPG - UTFPR) (to A.R.P; reference 11/2016); NVIDIA from the GPU Grant Program 2019 - Accelerated Data Science Call for the GPU Seed Units: Titan V device; STIC AmSud Latin America (Brazil, Chile, and Colombia) and France from TELearning Project 2021-22 (21-STIC-13); Fundação Araucária - NAPI de Bioinformática (Convênio PDI 66/2021).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

[version 1; peer review: 2 approved]

References

  • 1. Michael TP, VanBuren R: Building near-complete plant genomes. Curr. Opin. Plant Biol. 2020;54:26–33. 10.1016/j.pbi.2019.12.009 [DOI] [PubMed] [Google Scholar]
  • 2. Silva SR, Moraes AP, Penha HA, et al. : The terrestrial carnivorous plant utricularia reniformis sheds light on environmental and life-form genome plasticity. Int. J. Mol. Sci. 2020;21(1):3. 10.3390/ijms21010003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Lan T, Renner T, Ibarra-Laclette E, et al. : Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proc. Natl. Acad. Sci. 2017;114(22):E4435–E4441. 10.1073/pnas.1702072114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Wicker T, Sabot F, Hua-Van A, et al. : A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973–982. 10.1038/nrg2165 [DOI] [PubMed] [Google Scholar]
  • 5. Charles M, Belcram H, Just J, et al. : Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics. 2008;180:1071–1086. 10.1534/genetics.108.092304 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Hawkins JS, Kim H, Nason JD, et al. : Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 2006;16:1252–1261. 10.1101/gr.5282906 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Anderson SN, Stitzer MC, Brohammer AB, et al. : Transposable elements contribute to dynamic genome content in maize. Plant J. 2019;100(5):1052–1065. 10.1111/tpj.14489 [DOI] [PubMed] [Google Scholar]
  • 8. Gardiner LJ, Joynson R, Hall A: Next-Generation Sequencing Enabled Genetics in Hexaploid Wheat. Applications of Genetic and Genomic Research in Cereals. Woodhead Publishing;2019; (pp.49–63). 10.1016/B978-0-08-102163-7.00003-X [DOI] [Google Scholar]
  • 9. Maccaferri M, Harris NS, Twardziok SO, et al. : Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019;51(5):885–895. 10.1038/s41588-019-0381-3 [DOI] [PubMed] [Google Scholar]
  • 10. Bourque G, Burns KH, Gehring M, et al. : Ten things you should know about transposable elements. Genome Biol. 2018;19(1):1–12. 10.1186/s13059-018-1577-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Chuong EB, Elde NC, Feschotte C: Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 2017;18(2):71–86. 10.1038/nrg.2016.139 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Schrader L, Schmitz J: The impact of transposable elements in adaptive evolution. Mol. Ecol. 2019;28(6):1537–1549. 10.1111/mec.14794 [DOI] [PubMed] [Google Scholar]
  • 13. Hirsch CD, Springer NM: Transposable element influences on gene expression in plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2017;1860(1):157–165. 10.1016/j.bbagrm.2016.05.010 [DOI] [PubMed] [Google Scholar]
  • 14. Jangam D, Feschotte C, Betrán E: Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 2017;33(11):817–831. 10.1016/j.tig.2017.07.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Orozco-Arias S, Candamil-Cortés MS, Jaimes PA, et al. : K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes. PeerJ. 2021;9:e11456. 10.7717/peerj.11456 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Oliveira LS, et al. : Computational Analysis of Transposable Elements and CircRNAs in Plants. Vaschetto LM, editor. Plant Circular RNAs. Methods in Molecular Biology. New York, NY: Humana;2021; vol2362. 10.1007/978-1-0716-1645-1_9 [DOI] [PubMed] [Google Scholar]
  • 17. Orozco-Arias S, Jaimes PA, Candamil MS, et al. : InpactorDB: a classified lineage-level plant LTR retrotransposon reference library for free-alignment methods based on machine learning. Genes. 2021;12(2):190. 10.3390/genes12020190 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Oliveira LS, Amorim TS, Pedro DLF, et al. : A Practical Guide on Computational Tools and Databases for Transposable Elements in Plants. Cho J, editor. Plant Transposable Elements. Methods in Molecular Biology. New York, NY: Humana;2021; vol2250. 10.1007/978-1-0716-1134-0_3 [DOI] [PubMed] [Google Scholar]
  • 19. Bolser D, Staines DM, Pritchard E, et al. : Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Plant bioinformatics. New York, NY: Humana Press;2016; (pp.115–140). 10.1007/978-1-4939-3167-5_6 [DOI] [PubMed] [Google Scholar]
  • 20. Jiao Y, Wickett NJ, Ayyampalayam S, et al. : Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473:97–100. 10.1038/nature09916 [DOI] [PubMed] [Google Scholar]
  • 21. Yi F, Jia Z, Xiao Y, et al. : SPTEdb: a database for transposable elements in salicaceous plants. Database. 2018;2018. 10.1093/database/bay024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Du J, Grant D, Tian Z, et al. : SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics. 2010;11(1):1–7. 10.1186/1471-2164-11-113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Xu Z, Liu J, Ni W, et al. : GrTEdb: the first web-based database of transposable elements in cotton (Gossypium raimondii). Database. 2017;2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Jamilloux V, Daron J, Choulet F, et al. : De novo annotation of transposable elements: tackling the fat genome issue. Proc. IEEE. 2016;105(3):1–8. 10.1109/JPROC.2016.2590833 [DOI] [Google Scholar]
  • 25. Smit AFA, Hubley R, Green P: RepeatModeler Open-1.0. 2008-2019. Reference Source
  • 26.RepeatMasker. Reference Source
  • 27. Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. To appear in Proceedings of the 13 Annual International conference on Intelligent Systems for Molecular Biology (ISMB-05). Detroit, Michigan:2005. Reference Source Reference Source [Google Scholar]
  • 28. Ou S, Jiang N: LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol. 2018;176:1410–1422. 10.1104/pp.17.01310 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Han Y, Wessler SR: MITE-Hunter: a program for discovering miniature inverted repeat transposable elements from genomic sequences. Nucleic Acids Res. 2010;38:e199. 10.1093/nar/gkq862 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Xiong W, He L, Lai J, et al. : HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc. Natl. Acad. Sci. 2014;111:10263–10268. 10.1073/pnas.1410068111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Rho M, Tang H: MGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes. Nucleic Acids Res. 2009 Nov;37(21):e143. 10.1093/nar/gkp752 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. PASTEClassifier. Reference Source
  • 33. Pedro DLF, Amorim TS, Varani AdM, et al. : Datasets and Pipeline V1.0 from An Atlas of Plant Transposable Elements (v1.0) [Data set]. Zenodo. 2021. 10.5281/zenodo.5672122 [DOI] [PMC free article] [PubMed]
F1000Res. 2022 Jan 4. doi: 10.5256/f1000research.78290.r116755

Reviewer response for version 1

Adriana Ludwig 1

Pedro et al., presented an atlas of transposable elements from 67 well-assembled plant genomes. The full TE annotation is provided in the APTE database that is informative and straightforward. It is a very good source of data for other researchers that might be interested in proceeding deepest analysis of a specific group of elements. The authors have identified a great number of repetitive sequences in each genome. My biggest concern is related to the sequences that fail to be classified. These “Unknown” sequences make up a huge proportion of all the repetitive sequences found. Even with the filtering of low complexity and simple repeat sequences, they could still be false positive. The authors could mention this possibility. Moreover, the difference in the amount of TE identification between the two databases shown in Table 1 is impressive. My doubt is whether there is a possibility that part of this difference is caused by the artificial "breaks" of TE copies into a greater number of fragments. Finally, it is not clear if the authors have filtered short sequences that could also be false positive.

Minor suggestions/comments:

  • Page 6: “evolutionary stories”. I believe “evolutionary histories” would be more appropriate.

  • Concerning the TE classification. In Figure 3, I suggest some modifications to become more accurate regarding the TE classification (according to Wicker et al.;2007 1 ):

  1. DIRS and Ngaro are mentioned as orders. The correct is to include both as superfamilies of order DIRS.

  2. MITE is not an order. They are non-autonomous elements from order TIR. In the same way, LARD and TRIM are not superfamilies, but non-autonomous elements related to some LTR superfamily. I suggest a change to “Superfamily/Group” since some groups specified are not independent established superfamilies, but rather groups/clades of a superfamily. The same occurs in Table 1. Moreover, in Table 1, Crypton should be placed as an order.

Is the work clearly and accurately presented and does it cite the current literature?

Yes

If applicable, is the statistical analysis and its interpretation appropriate?

Yes

Are all the source data underlying the results available to ensure full reproducibility?

Yes

Is the study design appropriate and is the work technically sound?

Yes

Are the conclusions drawn adequately supported by the results?

Yes

Are sufficient details of methods and analysis provided to allow replication by others?

Yes

Reviewer Expertise:

Transposable elements

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

References

  • 1. : A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics .2007;8(12) : 10.1038/nrg2165 973-982 10.1038/nrg2165 [DOI] [PubMed] [Google Scholar]
F1000Res. 2021 Dec 1. doi: 10.5256/f1000research.78290.r101071

Reviewer response for version 1

Gökhan Karakülah 1

In this work, Pedro and colleagues present a novel transposable elements database for plants using publicly available genome sequences from the Ensembl Plant database. The methodology was clearly described and seems reproducible. The main output of the current work is a publicly available database named APTE and its interfaces are elegantly designed. All transposon annotations are available without any restriction and the database is easy-to-use.

I believe this unique and valuable database has potential to help researchers in both computational and wet lab analyses of mobile elements.

Is the work clearly and accurately presented and does it cite the current literature?

Yes

If applicable, is the statistical analysis and its interpretation appropriate?

Not applicable

Are all the source data underlying the results available to ensure full reproducibility?

Yes

Is the study design appropriate and is the work technically sound?

Yes

Are the conclusions drawn adequately supported by the results?

Yes

Are sufficient details of methods and analysis provided to allow replication by others?

Yes

Reviewer Expertise:

Bioinformatics, Genomics, Mobile elements, Repetitive DNA, Non-coding RNAs

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Data Availability Statement

    Underlying data

    All data underlying the Plant TE Atlas is available in the portal http://apte.cp.utfpr.edu.br/.

    Extended data

    Zenodo: Datasets from An Atlas of Plant Transposable Elements, https://doi.org/10.5281/zenodo.5672122. 33 https://doi.org/10.5281/zenodo.5574528

    This project contains the following extended data:

    • -

      SuppMat_1.xlsx (the gen ome assembly reference access from Ensembl Plants species used)

    • -

      SuppMat_2.docx (a brief transposable elements annotation steps used in this work)

    Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

    Analysis code available at: https://github.com/alerpaschoal/apte_pipeline/

    Archived code at time of publication: https://doi.org/10.5281/zenodo.5672122

    License: CC0


    Articles from F1000Research are provided here courtesy of F1000 Research Ltd

    RESOURCES