Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jan 5;14(14):8295–8310. doi: 10.1007/s12633-021-01611-5

A Comprehensive Review of Synthesis, Applications and Future Prospects for Silica Nanoparticles (SNPs)

Faheem Akhter 1,, Ahsan Atta Rao 1, Mahmood Nabi Abbasi 1, Shafeeque Ahmed Wahocho 1, Mukhtiar Ali Mallah 1, Hafiz Anees-ur-Rehman 1, Zubair Ahmed Chandio 1
PMCID: PMC8730748

Abstract

Silica nanoparticles (SNPs) have shown great applicability potential in a number of fields like chemical, biomedical, biotechnology, agriculture, environmental remediation and even wastewater purification. With remarkably instinctive properties like mesoporous structure, high surface area, tunable pore size/diameter, biocompatibility, modifiability and polymeric hybridizability, the SNPs are growing in their applicable potential even further. These particles are shown to be non-toxic in nature, hence safe to be used in biomedical research. Moreover, the molecular mobilizability onto the internal and external surface of the particles makes them excellent carriers for biotic and non-biotic compounds. In this respect, the present study comprehensively reviews the most important and recent applications of SNPs in a number of fields along with synthetic approaches. Moreover, despite versatile contributions, the applicable potential of SNPs is still a tip of the iceberg waiting to be exploited more, hence, the last section of the review presents the future prospects containing only few of the many gaps/research extensions regarding SNPs that need to be addressed in future work.

Keywords: Silica nanoparticles, Mesoporous, Nanotechnology, Nanostructure

Author Contributions

Faheem Akhter, Ahsan Atta, Mahmood Nabi: Introduction; Synthesis of SNPs; Faheem Akhter, Shafeeque Ahmed, Mukhtiar Ali, Hafiz Anees-ur-Rehman: Applications of SNPs; Faheem Akhter, Zubair Ahmed: Conclusions and Future Prospects

Code Availability

Not Applicable

Declarations

Conflict of Interest

The authors declare no conflict of interest

Ethical Approval

Not Applicable

Consent for Publications

All the authors of the manuscript mutually agree on submission and publication in the journal

Consent to Participate

Not Applicable

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Faheem Akhter, Email: faheemakhtar86@quest.edu.pk.

Ahsan Atta Rao, Email: ahsanatta786@gmail.com.

Mahmood Nabi Abbasi, Email: mahmoodabbasi73@gmail.com.

Shafeeque Ahmed Wahocho, Email: shafique79@gmail.com.

Mukhtiar Ali Mallah, Email: mukhtiar085@gmail.com.

Hafiz Anees-ur-Rehman, Email: aneesrehman43@gmail.com.

Zubair Ahmed Chandio, Email: zubairchandio@quest.edu.pk.

References

  • 1.L X-q ZW (2006) Iron Nanoparticles: The Core−Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir 22:4638–4642 [DOI] [PubMed]
  • 2.Azat S, Arkhangelsky E, Papathanasiou T, et al. Synthesis of Biosourced Silica-Ag Nanocomposites and Amalgamation Reaction with Mercury in Aqueous Solutions. C R Chim. 2020;23:77–92. doi: 10.5802/crchim.19. [DOI] [Google Scholar]
  • 3.L Rodríguez-Sánchez MBML-Q (2000) Electrochemical Synthesis of Silver Nanoparticles. J Phys Chem B 104:9683–9688
  • 4.VK Sharma RYYL (2009) Silver Nanoparticles: Green Synthesis and their Antimicrobial Activities. Adv Colloid Interf Sci 145:83–96 [DOI] [PubMed]
  • 5.SS Shankar ARAAMS (2005) Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared- Absorbing Optical Coatings. Chem Mater 17:566–572
  • 6.Thomas B, Raj MC, Athira BK, et al. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem Rev. 2018;118:11575–11625. doi: 10.1021/acs.chemrev.7b00627. [DOI] [PubMed] [Google Scholar]
  • 7.Zheng G, He J, Kumar V, et al Discrete metal nanoparticles with plasmonic chirality. pubs.rsc.org [DOI] [PubMed]
  • 8.Han Q, Chen L, Li W, et al. Self-Assembled Three-Dimensional Double Network Graphene Oxide/Polyacrylic Acid Hybrid Aerogel for Removal of Cu2+ from Aqueous Solution. Environ Sci Pollut Res. 2018;25:34438–34447. doi: 10.1007/s11356-018-3409-9. [DOI] [PubMed] [Google Scholar]
  • 9.Ndolomingo MJ, Bingwa N, Meijboom R. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J Mater Sci. 2020;55:6195–6241. doi: 10.1007/s10853-020-04415-x. [DOI] [Google Scholar]
  • 10.Gao C, Lyu F, Yin Y. Encapsulated Metal Nanoparticles for Catalysis. Chem Rev. 2021;121:834–881. doi: 10.1021/acs.chemrev.0c00237. [DOI] [PubMed] [Google Scholar]
  • 11.Iriarte-Mesa C, López YC, Matos-Peralta Y, et al. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aiming to Electrochemical Applications. Cham: Springer; 2020. pp. 93–132. [DOI] [PubMed] [Google Scholar]
  • 12.Ndolomingo MJ, Bingwa N, Meijboom R. Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. J Mater Sci. 2020;55:6195–6241. doi: 10.1007/s10853-020-04415-x. [DOI] [Google Scholar]
  • 13.A Ali MHZI ul HAPJAAH (2016) Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol Sci Appl 9:49–67 [DOI] [PMC free article] [PubMed]
  • 14.Goodman BA. Utilization of Waste Straw and Husks from Rice Production: A Review. J Bioresour Bioprod. 2020;5:143–162. doi: 10.1016/j.jobab.2020.07.001. [DOI] [Google Scholar]
  • 15.Khan WA, Arain MB, Soylak M (2020) Nanomaterials-Based Solid Phase Extraction and Solid Phase Microextraction for Heavy Metals Food Toxicity. Food ChemToxicol 14510.1016/j.fct.2020.111704 [DOI] [PubMed]
  • 16.R Narayan UNARSG (2018) Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 10:118 [DOI] [PMC free article] [PubMed]
  • 17.Liou TH, Yang CC. Synthesis and Surface Characteristics of Nanosilica Produced From Alkali-Extracted Rice Husk Ash. Mater Sci Eng B Solid-State Mater Adv Technol. 2011;176:521–529. doi: 10.1016/j.mseb.2011.01.007. [DOI] [Google Scholar]
  • 18.Y Wang QZNHLBJLJLECLHQZTJSW (2015) Mesoporous Silica Nanoparticles in Drug Delivery and Biomedical Applications. Nanomedicine 11:313–327 [DOI] [PubMed]
  • 19.Li Z, Barnes JC, Bosoy A, et al. Mesoporous Silica Nanoparticles in Biomedical Applications. Chem Soc Rev. 2012;41:2590–2605. doi: 10.1039/c1cs15246g. [DOI] [PubMed] [Google Scholar]
  • 20.Isa EDM, Ahmad H, Rahman MBA, Gill MR. Progress in Mesoporous Silica Nanoparticles as Drug Delivery Agents for Cancer Treatment. Pharmaceutics. 2021;13:1–33. doi: 10.3390/pharmaceutics13020152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Dayana E, Isa M, Ahmad H, et al (2021) Pharmaceutics Progress in Mesoporous Silica Nanoparticles as Drug Delivery Agents for Cancer Treatment. mdpi.com. 10.3390/pharmaceutics13020152 [DOI] [PMC free article] [PubMed]
  • 22.Jeelani PG, Mulay P, Venkat R, Ramalingam C. Multifaceted Application of Silica Nanoparticles. A Review. Silicon. 2020;12:1337–1354. doi: 10.1007/s12633-019-00229-y. [DOI] [Google Scholar]
  • 23.Bera A, Shah S, Shah M, et al. Mechanistic Study on Silica Nanoparticles-Assisted Guar Gum Polymer Flooding for Enhanced Oil Recovery in Sandstone Reservoirs. Colloids Surfaces A Physicochem Eng Asp. 2020;598:124833. doi: 10.1016/j.colsurfa.2020.124833. [DOI] [Google Scholar]
  • 24.Hadia NJ, Ng YH, Stubbs P, Torsaeter O (2021) High Salinity and High Temperature Stable Colloidal Silica Nanoparticles with Wettability Alteration Ability for EOR Applications. mdpi.com. 10.3390/nano11030707 [DOI] [PMC free article] [PubMed]
  • 25.Liu S, Han MY. Silica-Coated Metal Nanoparticles. Chem. - An Asian J. 2010;5:36–45. doi: 10.1002/asia.200900228. [DOI] [PubMed] [Google Scholar]
  • 26.A Liberman NMWTAK (2014) Synthesis and Surface Functionalization of Silica Nanoparticles for Nanomedicine. Surf Sci Rep 69:132–158 [DOI] [PMC free article] [PubMed]
  • 27.Silva G. Introduction to Nanotechnology and its Applications to Medicine. Surg Neurol. 2004;61:216–220. doi: 10.1016/j.surneu.2003.09.036. [DOI] [PubMed] [Google Scholar]
  • 28.Zhao S, Siqueira G, Drdova S, et al. Additive Manufacturing of Silica Aerogels. Nature. 2020;584:387–392. doi: 10.1038/s41586-020-2594-0. [DOI] [PubMed] [Google Scholar]
  • 29.Le VH, Thuc CNH, Thuc HH. Synthesis of Silica Nanoparticles from Vietnamese Rice Husk by Sol–Gel Method. Nanoscale Res Lett. 2013;8:58. doi: 10.1186/1556-276x-8-58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Sharifnasab H, Alamooti MY. Preparation of Silica Powder from Rice Husk. Agric Eng Int CIGR J. 2017;19:158–161. [Google Scholar]
  • 31.Sriwuryandari L, Priantoro EA, Janetasari SA, et al. Utilization of Rice Husk (Oryza Sativa) for Amorphous Biosilica (SiO2) Production as a Bacterial Attachment. IOP Conf Ser Earth Environ Sci. 2020;483:12023. doi: 10.1088/1755-1315/483/1/012023. [DOI] [Google Scholar]
  • 32.Du D, Jiang Y, Feng J, et al (2020) Facile Synthesis of Silica Aerogel Composites via Ambient-Pressure Drying without Surface Modification or Solvent Exchange. Vacuum 17310.1016/j.vacuum.2019.109117
  • 33.Guzel Kaya G, Deveci H. Synergistic Effects of Silica Aerogels/Xerogels on Properties of Polymer Composites: A Review. J Ind Eng Chem. 2020;89:13–27. doi: 10.1016/j.jiec.2020.05.019. [DOI] [Google Scholar]
  • 34.Guzel Kaya G, Yilmaz E, Deveci H. Synthesis of Sustainable Silica Xerogels/Aerogels Using Inexpensive Steel Slag and Bean Pod Ash: A Comparison Study. Adv Powder Technol. 2020;31:926–936. doi: 10.1016/j.apt.2019.12.013. [DOI] [Google Scholar]
  • 35.Wong YJ, Zhu L, Teo WS, et al. Revisiting the Stöber Method: Inhomogeneity in Silica Shells. J Am Chem Soc. 2011;133:11422–11425. doi: 10.1021/ja203316q. [DOI] [PubMed] [Google Scholar]
  • 36.Xu J, Ren D, Chen N, et al. A Facile Cooling Strategy for the Preparation of Silica Nanoparticles with Rough Surface Utilizing a Modified Stöber System. Colloids Surfaces A Physicochem Eng Asp. 2021;625:126845. doi: 10.1016/j.colsurfa.2021.126845. [DOI] [Google Scholar]
  • 37.Prajapati JP, Das D, Katlakunta S, et al. Synthesis and Characterization of Ultrasmall Cu2O Nanoparticles on Silica Nanoparticles Surface. Inorganica Chim Acta. 2021;515:120069. doi: 10.1016/j.ica.2020.120069. [DOI] [Google Scholar]
  • 38.P Mohanpuria NRSY (2008) Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J Nanopart Res 10:507–517
  • 39.V Bansal DRABKAASAAMS (2005) Fungus-Mediated Biosynthesis of Silica and Titania Particles. J Mater Chem 15:2583–2589
  • 40.JN Cha GSDMTD (2000) Biomimetic Synthesis of Ordered Silica Structures Mediated by Block Copolypeptides. Nature 403:289–292 [DOI] [PubMed]
  • 41.Nguyen H, JamaliMoghadam M, Moayedi H. Agricultural Wastes Preparation, Management, and Applications in Civil Engineering: A Review. J Mater Cycles Waste Manag. 2019;21:1039–1051. doi: 10.1007/s10163-019-00872-y. [DOI] [Google Scholar]
  • 42.Zou Y, Yang T (2019) Rice husk, rice husk ash and their applications. In: Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization. Elsevier, pp 207–246
  • 43.Pandey LM (2021) Surface Engineering of Nano-Sorbents for the Removal of Heavy Metals: Interfacial Aspects. J Environ Chem Eng 910.1016/j.jece.2020.104586
  • 44.Akhter F, Soomro SA, Jamali AR et al (2021) Rice husk ash as green and sustainable biomass waste for construction and renewable energy applications: a review. Biomass Convers Biorefinery. 10.1007/s13399-021-01527-5
  • 45.Nguyen TH, Mai NT, Reddy VRM, et al. Synthesis of Silica Aerogel Particles and its Application to Thermal Insulation Paint. Korean J Chem Eng. 2020;37:1803–1809. doi: 10.1007/s11814-020-0574-6. [DOI] [Google Scholar]
  • 46.Akhter F, Soomro SA, Inglezakis VJ. Silica Aerogels; A Review of Synthesis, Applications and Fabrication of Hybrid Composites. J Porous Mater. 2021 doi: 10.1007/s10934-021-01091-3. [DOI] [Google Scholar]
  • 47.Nayak PP, Datta AK. Synthesis of SiO2-Nanoparticles from Rice Husk Ash and its Comparison with Commercial Amorphous Silica through Material Characterization. Silicon. 2021;13:1209–1214. doi: 10.1007/s12633-020-00509-y. [DOI] [Google Scholar]
  • 48.Kamari S, Ghorbani F. Extraction of highly Pure Silica from Rice Husk as an Agricultural by-Product and its Application in the Production of Magnetic Mesoporous Silica MCM–41. Biomass Convers Biorefinery. 2020 doi: 10.1007/s13399-020-00637-w. [DOI] [Google Scholar]
  • 49.Bakar RA, Yahya R, Gan SN. Production of High Purity Amorphous Silica from Rice Husk. Procedia Chem. 2016;19:189–195. doi: 10.1016/j.proche.2016.03.092. [DOI] [Google Scholar]
  • 50.Prasad R, Pandey M. Rice Husk Ash as a Renewable Source for the Production of Value added Silica Gel and its Application: An Overview. Bull Chem React Eng Catal. 2012;7:1–25. doi: 10.9767/bcrec.7.1.1216.1-25. [DOI] [Google Scholar]
  • 51.Larbi KK (2010) Synthesis of High Purity Silicon from Rice Husks. Kingsley 128
  • 52.Choudhary R, Venkatraman SK, Bulygina I, et al. (2021) Biomineralization, Dissolution and Cellular Studies of Silicate Bioceramics prepared from Eggshell and Rice Husk. Mater Sci Eng C 11810.1016/j.msec.2020.111456 [DOI] [PubMed]
  • 53.Nassar MY, Ahmed IS, Raya MA. A Facile and Tunable approach for Synthesis of Pure Silica Nanostructures from Rice Husk for the Removal of Ciprofloxacin Drug from Polluted Aqueous Solutions. J Mol Liq. 2019;282:251–263. doi: 10.1016/j.molliq.2019.03.017. [DOI] [Google Scholar]
  • 54.Santana Costa JA, Paranhos CM. Systematic Evaluation of Amorphous Silica Production from Rice Husk Ashes. J Clean Prod. 2018;192:688–697. doi: 10.1016/j.jclepro.2018.05.028. [DOI] [Google Scholar]
  • 55.Kwan WH, Wong YS. Acid leached Rice Husk Ash (ARHA) in Concrete: A Review. Mater Sci Energy Technol. 2020;3:501–507. doi: 10.1016/j.mset.2020.05.001. [DOI] [Google Scholar]
  • 56.W Weining CJFXHALZSL (2012) Silica Nanoparticles and Framewoks from Rice Husk Biomass. Appl Mater Interfaces 4:977–981 [DOI] [PubMed]
  • 57.Su Y, Liu L, Zhang S, et al. (2020) A Green route for Pyrolysis Poly-Generation of Typical high Ash Biomass, Rice Husk: Effects on Simultaneous Production of Carbonic Oxide-Rich Syngas, Phenol-Abundant Bio-Oil, High-Adsorption Porous Carbon and Amorphous Silicon Dioxide. BioresourTechnol 29510.1016/j.biortech.2019.122243 [DOI] [PubMed]
  • 58.Saadah N, Zainal B (2020) Characterization of Amorphous Silica and Crystalline Silica From Rice Husk Ash on Water Filtration Application
  • 59.Selvaranjan K, Gamage JCPH, De Silva GIP, Attanayaka V (2020) Thermal Performance of Rice Husk Ash mixed Mortar in Concrete and Masonry Buildings. Bud Archit 19:043–052. 10.35784/bud-arch.2121
  • 60.Askaruly K, Azat S, Sartova Z, et al. Obtaining and Characterization of Amorphous Silica from Rice Husk. J Chem Technol Metall. 2020;55:88–97. [Google Scholar]
  • 61.Karande SD, Jadhav SA, Garud HB, et al. Green and Sustainable Synthesis of Silica Nanoparticles. Nanotechnol Environ Eng. 2021;6:29. doi: 10.1007/s41204-021-00124-1. [DOI] [Google Scholar]
  • 62.San NO, Kurşungöz C, Tümtaş Y, et al. Novel One-Step Synthesis of Silica Nanoparticles from Sugarbeet Bagasse by Laser Ablation and their Effects on the Growth of Freshwater Algae Culture. Particuology. 2014;17:29–35. doi: 10.1016/j.partic.2013.11.003. [DOI] [Google Scholar]
  • 63.Alsmaeil AW, Hammami MA, Enotiadis A, et al. Encapsulation of an Anionic Surfactant into Hollow Spherical Nanosized Capsules: Size Control, Slow Release, and Potential Use for Enhanced Oil Recovery Applications and Environmental Remediation. ACS Omega. 2021;6:5689–5697. doi: 10.1021/acsomega.0c06094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Usgodaarachchi L, Thambiliyagodage C, Wijesekera R, Bakker MG. Synthesis of Mesoporous Silica Nanoparticles Derived from Rice Husk and Surface-Controlled Amine Functionalization for Efficient Adsorption of Methylene Blue from Aqueous Solution. Curr Res Green Sustain Chem. 2021;4:100116. doi: 10.1016/j.crgsc.2021.100116. [DOI] [Google Scholar]
  • 65.Aloulou W, Aloulou H, Khemakhem M, et al (2020) Synthesis and Characterization of Clay-Based Ultrafiltration Membranes supported on Natural Zeolite for Removal of heavy Metals from Wastewater. Environ Technol Innov 1810.1016/j.eti.2020.100794
  • 66.Shah M. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials (Basel) 2015;8:7278–7308. doi: 10.3390/ma8115377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.SR Zhai CHDWYS (2007) Hydrothermal Synthesis of Mesostructured Aluminosilicate Nanoparticles Assisted by Binary Surfactants and Finely Controlled Assembly Process. J Non-Cryst Solids 353:1606–1611
  • 68.W Zhao JGLZHCJS (2005) Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. J Am Chem Soc 127:8916–8917 [DOI] [PubMed]
  • 69.Y Huang BTHCVL (2008) One-Pot reaction Cascades Catalyzed by Base-and Acid-Functionalized Mesoporous Silica Nanoparticles. New J Chem 32:1311–1313
  • 70.Shironita S, Mori K, Shimizu T, et al (2008) Preparation of Nano-Sized Platinum Metal Catalyst using Photo-Assisted Deposition Method on Mesoporous Silica including Single-Site Photocatalyst. Appl Surf Sci 254:7604–760710.1016/j.apsusc.2008.01.120
  • 71.Montalvo-Quirós S, Gómez-Graña S, Vallet-Regí M, et al. Mesoporous Silica Nanoparticles containing Silver as Novel Antimycobacterial Agents against Mycobacterium Tuberculosis. Colloids Surfaces B Biointerfaces. 2021;197:111405. doi: 10.1016/j.colsurfb.2020.111405. [DOI] [PubMed] [Google Scholar]
  • 72.Videira-Quintela D, Guillén F, Montalvo G, Martin O. Silver, Copper, and Copper Hydroxy Salt Decorated Fumed Silica Hybrid Composites as Antibacterial Agents. Colloids Surfaces B Biointerfaces. 2020;195:111216. doi: 10.1016/j.colsurfb.2020.111216. [DOI] [PubMed] [Google Scholar]
  • 73.Radu CLJWMPVL. Gatekeeping Layer Effect: A Poly (Lactic Acid)-Coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters. J Am Chem Soc. 2004;126:1640–1641. doi: 10.1021/ja038222v. [DOI] [PubMed] [Google Scholar]
  • 74.Maurel M, Montheil T, Martin J, et al. Design of Pegylated Three Ligands Silica Nanoparticles for Multi-Receptor Targeting. Nanomaterials. 2021;11:1–23. doi: 10.3390/nano11010177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Zaharudin NS, Mohamed Isa ED, Ahmad H, et al. Functionalized Mesoporous Silica Nanoparticles Templated by Pyridinium Ionic Liquid for Hydrophilic and Hydrophobic Drug Release Application. J Saudi Chem Soc. 2020;24:289–302. doi: 10.1016/j.jscs.2020.01.003. [DOI] [Google Scholar]
  • 76.Manzano M, Vallet-Regí M. Mesoporous Silica Nanoparticles for Drug Delivery. Adv Funct Mater. 2020;30:1902634. doi: 10.1002/adfm.201902634. [DOI] [Google Scholar]
  • 77.HA Ab Wab KRNZ (2014) Properties of Amorphous Silica Nanoparticles Colloid Drug Delivery System Synthesized using the Micelle Formation Method. J Nanopart Res 16:2256
  • 78.II Slowing BTSGVL (2007) Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Adv Funct Mater 17:1225–1236
  • 79.Dhinasekaran D, Raj R, Rajendran AR, et al. Chitosan Mediated 5-Fluorouracil Functionalized Silica Nanoparticle from Rice Husk for Anticancer Activity. Int J Biol Macromol. 2020;156:969–980. doi: 10.1016/j.ijbiomac.2020.04.098. [DOI] [PubMed] [Google Scholar]
  • 80.W Aughenbaugh SRPD (2001) Silica Sol-Gel for the Controlled Release of Antibiotics. II The Effect of Synthesis Parameters on the In Vitro release Kinetics of Vancomycin. J Biomed Mater Res B Part A 57:321–326 [DOI] [PubMed]
  • 81.Y Zhang JWXBTJQZSW (2012) Mesoporous Silica Nanoparticles for increasing the Oral Bioavailability and Permeation of poorly Water Soluble Drugs. Mol Pharm 9:505–513 [DOI] [PubMed]
  • 82.Mashayekhi S, Rasoulpoor S, Shabani S, et al. Curcumin-Loaded Mesoporous Silica Nanoparticles/Nanofiber Composites for Supporting Long-Term Proliferation and Stemness Preservation of Adipose-Derived Stem Cells. Int J Pharm. 2020;587:119656. doi: 10.1016/j.ijpharm.2020.119656. [DOI] [PubMed] [Google Scholar]
  • 83.Elbialy NS, Aboushoushah SF, Sofi BF, Noorwali A. Multifunctional Curcumin-Loaded Mesoporous Silica Nanoparticles for Cancer Chemoprevention and Therapy. Microporous Mesoporous Mater. 2020;291:109540. doi: 10.1016/j.micromeso.2019.06.002. [DOI] [Google Scholar]
  • 84.Lien Y, research TW materials, (2008) undefined The application of thermosensitive magnetic nanoparticles in drug delivery. Trans Tech Publ. 10.4028/www.scientific.net/AMR.47-50.528
  • 85.Hu K, Yang Z, Zhang L, et al (2020) Boron agents for neutron capture therapy. Coord Chem Rev 405. 10.1016/j.ccr.2019.213139
  • 86.Wang Y, Xu Y, Yang J, et al. Carborane based Mesoporous Nanoparticles as a Potential Agent for BNCT. pubs.rsc.org
  • 87.Tamanoi F, Matsumoto K, Doan TLH et al (2020) Convergence of the Study on Monochromatic X-rays and the Research on Nanoparticles Opens Up a Possibility to Develop a New Type of Radiation Therapy. Preprints. 10.20944/preprints202003.0391.v1
  • 88.Tamanoi F, Chinnathambi S, Laird M, et al. Construction of Boronophenylalanine-Loaded Biodegradable Periodic Mesoporous Organosilica Nanoparticles for BNCT Cancer Therapy. Int J Mol Sci Artic. 2021 doi: 10.3390/ijms22052251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Vares G, Jallet V, Matsumoto Y et al (2020) Functionalized mesoporous silica nanoparticles for innovative boron-neutron capture therapy of resistant cancers. Nanomedicine Nanotechnology, Biol Med 27. 10.1016/j.nano.2020.102195 [DOI] [PubMed]
  • 90.Fanizza E, Zhao H, De Zio S, et al Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors. mdpi.com. 10.3390/app10082767
  • 91.Xie H, Chen E, Ye Y, et al. Highly Stabilized Gradient Alloy Quantum Dots and Silica Hybrid Nanospheres by Core Double Shells for Photoluminescence Devices. ACS Publ [DOI] [PubMed]
  • 92.Reis S Dos, Pinto S, … F de M-P (2020) undefined Discrepancy on Tissue Deposition of Graphene Quantum Dots, Polycaprolactone Nanoparticle and Magnetic Mesoporous Silica Nanoparticles in Young and …. Springer [DOI] [PubMed]
  • 93.Ha CV, Tuan CA, Thi N, et al. Synthesis and Optical Characterizations of the Fluorescence Silica Nanoparticles Containing Quantum Dots. VNU J Sci Math. 2020;36:87–97. doi: 10.25073/2588-1124/vnumap.4476. [DOI] [Google Scholar]
  • 94.Lin X, Kong M, Wu N, et al. Measurement of Temperature Distribution at the Nanoscale with Luminescent Probes Based on Lanthanide Nanoparticles and Quantum Dots. ACS Appl Mater Interfaces. 2020;12:52393–52401. doi: 10.1021/acsami.0c15697. [DOI] [PubMed] [Google Scholar]
  • 95.V Mamaeva CSML (2013) Mesoporous Silica Nanoparticles in Medicine—Recent Advances. Adv Drug Deliv Rev 65:689–702 [DOI] [PubMed]
  • 96.Wen M, Chen M, Chen K et al (2021) Superhydrophobic composite graphene oxide membrane coated with fluorinated silica nanoparticles for hydrogen isotopic water separation in membrane distillation. J Memb Sci 626. 10.1016/j.memsci.2021.119136
  • 97.Su S, Chen L, Hao L, et al. Fluorinated Sodium Carboxymethyl Cellulose Nanoparticles as Carrier for Improving Adhesion and Sustaining Release of AVM. Taylor Fr. 2021;58:219–231. doi: 10.1080/10601325.2020.1840922. [DOI] [Google Scholar]
  • 98.Guo C, Ding H, Xie M et al (2021) Multifunctional superamphiphobic fluorinated silica with a core-shell structure for anti-fouling and anti-corrosion applications. Colloids Surfaces A Physicochem Eng Asp 615. 10.1016/j.colsurfa.2021.126155
  • 99.Wen S, Wang P, Wang L (2021) Preparation and antifouling performance evaluation of fluorine-containing amphiphilic silica nanoparticles. Colloids Surfaces A Physicochem Eng Asp 611. 10.1016/j.colsurfa.2020.125823
  • 100.Gupta S, Martoïa F, Orgéas L, Dumont PJJ (2018) Ice-templated porous nanocellulose-based materials: Current progress and opportunities for materials engineering. Appl Sci 8
  • 101.L Zhang FGJCAWRLOF (2008) Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin Pharmacol Ther 83:761–769 [DOI] [PubMed]
  • 102.A Maleki HKASJRVAMH (2017) Mesoporous Silica Materials: From Physico-Chemical Properties to Enhanced Dissolution of Poorly Water-Soluble Drugs. J Control Release 262:329–347 [DOI] [PubMed]
  • 103.Mozafarinia M, Karimi S, Materials MF-… M, 2021  undefined targeting using Trastuzumab-conjugated mesoporous silica nanoparticles: Towards the new strategy for decreasing size and high drug loading capacity for drug …. Elsevier
  • 104.Zhang R, Wang X, Fan N, Li J (2021) Enhanced anticancer performances of doxorubicin loaded macro-mesoporous silica nanoparticles with host-metal-guest structure. Microporous Mesoporous Mater 310. 10.1016/j.micromeso.2020.110589
  • 105.Day CM, Sweetman MJ, Hickey SM, et al (2021) molecules Concept Design, Development and Preliminary Physical and Chemical Characterization of Tamoxifen-Guided-Mesoporous Silica Nanoparticles. mdpi.com. 10.3390/molecules26 [DOI] [PMC free article] [PubMed]
  • 106.Liu M, Liu J, Wang Y et al (2021) Redox-responsive mesoporous silica nanoparticles based on fluorescence resonance energy transfer for anti-cancer drug targeting and real-time monitoring. J Mater Res. 10.1557/s43578-021-00252-z
  • 107.Guo L, Ping J, Qin J, et al (2021) A Comprehensive Study of Drug Loading in Hollow Mesoporous Silica Nanoparticles: Impacting Factors and Loading Efficiency. mdpi.com. 10.3390/nano11051293 [DOI] [PMC free article] [PubMed]
  • 108.Akbarzadeh M, Babaei M, Abnous K, et al. Hybrid Silica-Coated Gd-Zn-Cu-In-S/Zns Bimodal Quantum Dots as an Epithelial Cell Adhesion Molecule Targeted Drug Delivery and Imaging System. Int J Pharm. 2019;570:118645. doi: 10.1016/j.ijpharm.2019.118645. [DOI] [PubMed] [Google Scholar]
  • 109.Sharma SK, Sharma AR, Pamidimarri SDVN, et al (2019) Bacterial Compatibility/Toxicity of Biogenic Silica (B-SiO2) Nanoparticles Synthesized From Biomass Rice Husk Ash. Nanomaterials 910.3390/nano9101440 [DOI] [PMC free article] [PubMed]
  • 110.Zaman A, Huang F, Jiang M, et al (2020) Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review. In: Energy Built Environ. https://www.sciencedirect.com/science/article/pii/S2666123319300066. Accessed 8 Jul 2020
  • 111.EJ Kwon MSABGBFRER (2017) Porous Silicon Nanoparticle Delivery of Tandem Peptide Anti-Infectives for the Treatment of Pseudomonas Aeruginosa Lung Infections.Adv Mater 29:1701527 [DOI] [PMC free article] [PubMed]
  • 112.S Valetti XXJC-GPBMB-CMAAF (2017) Clofazimine Encapsulation in Nanoporous Silica Particles for the Oral Treatment of Antibiotic-Resistant Mycobacterium Tuberculosis Infections. Nanomedicine 12:831–844 [DOI] [PubMed]
  • 113.Jatoi AS, Hashmi Z, Adriyani R, et al. Recent Trends and Future Challenges of Pesticide Removal Techniques - A Comprehensive Review. J Environ Chem Eng. 2021;9:105571. doi: 10.1016/j.jece.2021.105571. [DOI] [Google Scholar]
  • 114.El-Shetehy M, Moradi A, Maceroni M, et al. Silica Nanoparticles Enhance Disease Resistance in Arabidopsis Plants. Nat Nanotechnol. 2021;16:344–353. doi: 10.1038/s41565-020-00812-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Pereira ADES, Oliveira HC, Fraceto LF, Santaella C. Nanotechnology Potential in Seed Priming for Sustainable Agriculture. Nanomaterials. 2021;11:1–29. doi: 10.3390/nano11020267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.F Torney BTVLKW (2007) Mesoporous Silica Nanoparticles Deliver DNA and Chemicals Into Plants. Nat Nanotechnol 2:295–300 [DOI] [PubMed]
  • 117.MH Siddiqui MA-W (2014) Role of nano-SiO 2 in Germination of Tomato (Lycopersicum esculentum seeds mill.). Saudi J Biol Sci 21:13–17 [DOI] [PMC free article] [PubMed]
  • 118.Zolghadrnasab M, Mousavi A, Farmany A, Arpanaei A. Ultrasound-Mediated Gene Delivery Into Suspended Plant Cells Using Polyethyleneimine-Coated Mesoporous Silica Nanoparticles. Ultrason Sonochem. 2021;73:105507. doi: 10.1016/j.ultsonch.2021.105507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Kalteh M, Taj Alipour Z, Ashraf S, et al. Effect of silica Nanoparticles on Basil (Ocimum basili-cum) Under Salinity Stress. Damghan Branch, Islamic Republic of Iran: Islamic Azad University; 2014. [Google Scholar]
  • 120.C Wei YZJGBHXYJY (2010) Effects of Silica Nanoparticles on Growth and Photosynthetic Pigment Contents of Scenedesmus obliquus. J Environ Sci 22:155–160 [DOI] [PubMed]
  • 121.R Suriyaprabha GKRYPPVRNK (2012) Growth and Physiological Responses of Maize (Zea mays L.) to Porous Silica Nanoparticles in Soil. J Nanopart Res 14:1294
  • 122.TK Barik RKAG (2012) Silica Nanoparticle: A Potential New Insecticide for Mosquito Vector Control. Parasitol Res 111:1075–1083 [DOI] [PubMed]
  • 123.N Debnath SDDSRCSBAG (2011) Entomotoxic Effect of Silica Nanoparticles Against Sitophilus Oryzae (L.). J Pest Sci 84:99–105
  • 124.S Magda MH (2016) Determinations of the Effect of Using Silca Gel and Nano-Silica Gel Against TutaAbsoluta (Lepidoptera: Gelechiidae) in Tomato Fields. J Chem Pharm Res 8:506–512
  • 125.F Liu LWZLWYHSJC (2006) Porous Hollow Silica Nanoparticles as Controlled Delivery System for Water-Soluble Pesticide. Mater Res Bull 41:2268–2275
  • 126.LX Wen ZLHZALJC (2005) Controlled Release of Avermectin from Porous Hollow Silica Nanoparticles. Pest Manag Sci Former Pestic Sci 61:583–590 [DOI] [PubMed]
  • 127.H Song WYPJWWXWLYYZ (2016) Effects of Chitosan/Nano-Silica on Postharvest Quality and Antioxidant Capacity of Loquat Fruit during Cold Storage. Postharvest Biol Technol 119:41–48
  • 128.A Mirzadeh MK (2007) The Effect of Composition and Draw-Down Ratio on Morphology and Oxygen Permeability of Polypropylene Nanocomposite Blown Films. Eur Polym J 43:3757–3765
  • 129.Azeredo H. Nanocomposites for food packaging applications. Food Res Int. 2009;42:1240–1253. doi: 10.1016/j.foodres.2009.03.019. [DOI] [Google Scholar]
  • 130.MF Fakoya SS (2017) Emergence of Nanotechnology in the Oil and Gas Industry: Emphasis on the Application of Silica Nanoparticles. Petroleum 3:391–405
  • 131.SJD Sofla LJYZ (2018) Insight Into the Stability of Hydrophilic Silica Nanoparticles in Seawater for Enhanced Oil Recovery Implications. Fuel 216:559–571
  • 132.Hernández-García E, Vargas M, González-Martínez C, Chiralt A (2021) Biodegradable Antimicrobial Films for Food Packaging: Effect of Antimicrobials on Degradation. mdpi.com. 10.3390/foods [DOI] [PMC free article] [PubMed]
  • 133.Omerović N, Djisalov M, Živojević K, et al. Comprehensive Reviews in Food Science and Food Safety Antimicrobial Nanoparticles and Biodegradable Polymer Composites for Active Food Packaging Applications. Wiley Online Libr. 2021;20:2428–2454. doi: 10.1111/1541-4337.12727. [DOI] [PubMed] [Google Scholar]
  • 134.Wu F, Misra M, Mohanty AK (2021) Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 117. 10.1016/j.progpolymsci.2021.101395
  • 135.Lu W, Cui R, Zhu B, et al. Influence of clove essential oil immobilized in mesoporous silica nanoparticles on the functional properties of poly(lactic acid) biocomposite food packaging film. J Mater Res Technol. 2021;11:1152–1161. doi: 10.1016/j.jmrt.2021.01.098. [DOI] [Google Scholar]
  • 136.Miri S, Raghuwanshi VS, Andrews PC, Batchelor W (2021) Composites of Mesoporous Silica Precipitated on Nanofibrillated Cellulose and Microfibrillated Cellulose: Effect of Fibre Diameter and Reaction Conditions on Particle Size and Mesopore Diameter. Microporous Mesoporous Mater 31110.1016/j.micromeso.2020.110701
  • 137.AC Patel SLJYYW (2006) In Situ Encapsulation of Horseradish Peroxidase in Electro Spun Porous Silica Fibers for Potential Biosensor Applications. Nano Lett 6:1042–1046 [DOI] [PubMed]
  • 138.Yamauchi T, Saitoh T, Shirai K, et al. Immobilization of Capsaicin onto Silica Nanoparticle Surface and Stimulus Properties of the Capsaicin-Immobilized Silica. J Polym Sci Part A Polym Chem. 2010;48:1800–1805. doi: 10.1002/pola.23948. [DOI] [Google Scholar]
  • 139.Piletsky S, Canfarotta F, Poma A, et al. Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol. 2020;38:368–387. doi: 10.1016/j.tibtech.2019.10.002. [DOI] [PubMed] [Google Scholar]
  • 140.Long Z, Xu W, Lu Y, Qiu H. Nanosilica-based molecularly imprinted polymer nanoshell for specific recognition and determination of rhodamine B in red wine and beverages. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1029–1030:230–238. doi: 10.1016/j.jchromb.2016.06.030. [DOI] [PubMed] [Google Scholar]
  • 141.Parida D, Salmeia KA, Sadeghpour A, et al. Template-Free Synthesis of Hybrid Silica Nanoparticle with Functionalized Mesostructure for Efficient Methylene Blue Removal. Mater Des. 2021;201:109494. doi: 10.1016/j.matdes.2021.109494. [DOI] [Google Scholar]
  • 142.Karnati SR, Agbo P, Zhang L. Applications of Silica Nanoparticles in Glass/Carbon Fiber-Reinforced Epoxy Nanocomposite. Compos. Commun. 2020;17:32–41. doi: 10.1016/j.coco.2019.11.003. [DOI] [Google Scholar]
  • 143.Wei J, He C, Fan C et al (2021) Comparison in the effects of alumina, ceria and silica nanoparticle additives on the combustion and emission characteristics of a modern methanol-diesel dual-fuel CI engine. Energy Convers Manag 238. 10.1016/j.enconman.2021.114121
  • 144.Zhao Y, Wang L, Kochubei A, et al. Formation and Location of Pt Single Sites Induced by Pentacoordinated Al Species on Amorphous Silica-Alumina. J Phys Chem Lett. 2021;12:2536–2546. doi: 10.1021/acs.jpclett.1c00139. [DOI] [PubMed] [Google Scholar]
  • 145.Wu Y, Shang L, Pan Z et al (2021) Gas hydrate formation in the presence of mixed surfactants and alumina nanoparticles. J Nat Gas Sci Eng 94. 10.1016/j.jngse.2021.104049
  • 146.Dhatarwal P, Choudhary S, Sengwa RJ (2021) Dielectric and optical properties of alumina and silica nanoparticles dispersed poly(methyl methacrylate) matrix-based nanocomposites for advanced polymer technologies. J Polym Res 28. 10.1007/s10965-020-02406-9
  • 147.Balogun S, Yaro S, … MA-FJO (2021) undefined Production and Characterization of Alumina Nanoparticles from Giro Clay Via Acid Leaching With Sol Gel Method. futajeet.com. 10.51459/futajeet.2021.15.1.261
  • 148.Olayiwola SO, Dejam M. Comprehensive experimental study on the effect of silica nanoparticles on the oil recovery during alternating injection with low salinity water and surfactant into carbonate reservoirs. J Mol Liq. 2021;325:115178. doi: 10.1016/j.molliq.2020.115178. [DOI] [Google Scholar]
  • 149.Behzadi A, Mohammadi A (2016) Environmentally Responsive Surface-Modified Silica Nanoparticles for Enhanced Oil Recovery. J Nanoparticle Res 1810.1007/s11051-016-3580-1
  • 150.Azimi A, Azari A, Rezakazemi M, Ansarpour M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017;4:37–59. doi: 10.1002/cben.201600010. [DOI] [Google Scholar]
  • 151.Yang X, Shen Z, Zhang B, et al. Silica nanoparticles capture atmospheric lead: Implications in the treatment of environmental heavy metal pollution. Chemosphere. 2013;90:653–656. doi: 10.1016/j.chemosphere.2012.09.033. [DOI] [PubMed] [Google Scholar]
  • 152.El-Gazzar N, Almanaa TN, Reda RM, et al. Assessment the Using of Silica Nanoparticles (Sio2nps) Biosynthesized from Rice Husks By Trichoderma Harzianum Mf780864 as Water Lead Adsorbent for Immune Status of Nile Tilapia (Oreochromis Niloticus) Saudi J Biol Sci. 2021 doi: 10.1016/j.sjbs.2021.05.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.He C, Ren L, Zhu W, et al. Removal of mercury from aqueous solution using mesoporous silica nanoparticles modified with polyamide receptor. J Colloid Interface Sci. 2015;458:229–234. doi: 10.1016/j.jcis.2015.07.054. [DOI] [PubMed] [Google Scholar]
  • 154.Albertini F, Ribeiro T, Alves S, et al. Boron-chelating membranes based in hybrid mesoporous silica nanoparticles for water purification. Mater Des. 2018;141:407–413. doi: 10.1016/j.matdes.2018.01.001. [DOI] [Google Scholar]
  • 155.Dev Kumar G, Mishra A, Dunn L, et al. Biocides and Novel Antimicrobial Agents for the Mitigation of Coronaviruses. Front Microbiol. 2020;11:1351. doi: 10.3389/fmicb.2020.01351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Mattos BD, Rojas OJ, Magalhães WLE. Biogenic Silica Nanoparticles Loaded With Neem Bark Extract as Green, Slow-Release Biocide. J Clean Prod. 2017;142:4206–4213. doi: 10.1016/j.jclepro.2016.11.183. [DOI] [Google Scholar]
  • 157.Sonn JS, Lee JY, Jo SH, et al. Effect of surface modification of silica nanoparticles by silane coupling agent on decontamination foam stability. Ann Nucl Energy. 2018;114:11–18. doi: 10.1016/j.anucene.2017.12.007. [DOI] [Google Scholar]
  • 158.Akhter F, Soomro SA, Siddique M, Ahmed M. Plant and Non-plant based Polymeric Coagulants for Wastewater Treatment: A Review. J Kejuruter. 2021;33:175–181. doi: 10.17576/jkukm-2021-33(2)-02. [DOI] [Google Scholar]
  • 159.Sibag M, Choi BG, Suh C, et al. Inhibition of total oxygen uptake by silica nanoparticles in activated sludge. J Hazard Mater. 2015;283:841–846. doi: 10.1016/j.jhazmat.2014.10.032. [DOI] [PubMed] [Google Scholar]
  • 160.Park SJ, Ko YS, Jung H, et al. Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci Total Environ. 2018;625:477–485. doi: 10.1016/j.scitotenv.2017.12.318. [DOI] [PubMed] [Google Scholar]
  • 161.Cho YK, Park EJ, Kim YD. Removal of oil by gelation using hydrophobic silica nanoparticles. J Ind Eng Chem. 2014;20:1231–1235. doi: 10.1016/j.jiec.2013.08.005. [DOI] [Google Scholar]
  • 162.Fan G, Li M, Chen X, et al. Polymer-Nanosilica-Assisted to Evaluate Oil Recovery Performances in Sandstone Reservoirs. Energy Reports. 2021;7:2588–2593. doi: 10.1016/j.egyr.2021.04.047. [DOI] [Google Scholar]
  • 163.Karim AH, Jalil AA, Triwahyono S, et al. Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. J Colloid Interface Sci. 2012;386:307–314. doi: 10.1016/j.jcis.2012.07.043. [DOI] [PubMed] [Google Scholar]
  • 164.Badr Y, Abd El-Wahed MG, Mahmoud MA. Photocatalytic Degradation of Methyl Red dye by silica nanoparticles. J Hazard Mater. 2008;154:245–253. doi: 10.1016/j.jhazmat.2007.10.020. [DOI] [PubMed] [Google Scholar]
  • 165.Badr Y, El-Wahed MA, materials MM-J of hazardous, undefined (2008) Photocatalytic degradation of methyl red dye by silica nanoparticles. Elsevier. 2008;154:245–253. doi: 10.1016/j.jhazmat.2007.10.020. [DOI] [PubMed] [Google Scholar]
  • 166.Chaibakhsh N, Ahmadi N, Zanjanchi MA. Use of Plantago Major L. as a Natural Coagulant for Optimized Decolorization of Ddye-Containing Wastewater. Ind Crops Prod. 2014;61:169–175. doi: 10.1016/j.indcrop.2014.06.056. [DOI] [Google Scholar]
  • 167.Das SK, Khan MMR, Parandhaman T, et al. Nano-silica fabricated with silver nanoparticles: Antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale. 2013;5:5549–5560. doi: 10.1039/c3nr00856h. [DOI] [PubMed] [Google Scholar]
  • 168.Heng ZW, Tan YY, Chong WC, et al (2021) Preparation of a novel polysulfone membrane by incorporated with carbon dots grafted silica from rice husk for dye removal. J Water Process Eng 4010.1016/j.jwpe.2020.101805

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not Applicable


Articles from Silicon are provided here courtesy of Nature Publishing Group

RESOURCES