Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jan 1;78(Pt 1):8–11. doi: 10.1107/S205698902101238X

Crystal structure and Hirshfeld surface analysis of 6-((E)-2-{4-[2-(4-chloro­phen­yl)-2-oxoeth­oxy]phen­yl}ethen­yl)-4,5-di­hydro­pyridazin-3(2H)-one

Said Daoui a, Israa Muwafaq b, Emine Berrin Çınar b,*, Abdulmalik Abudunia c,*, Necmi Dege b, Noureddine Benchat a, Khalid Karrouchi d
PMCID: PMC8739192  PMID: 35079414

The pyridazine ring in the mol­ecule of the title compound adopts a screw-boat conformation. The whole mol­ecule is flattened, the dihedral angles subtended by the least-suares plane of the central aromatic ring with those of the terminal benzene and pyridazine rings being 15.18 (19) and 11.23 (19)°, respectively. In the crystal, the mol­ecules are linked by pairs of N—H⋯O bonds into centrosymmetric dimers and by C—H⋯π contacts into columns.

Keywords: crystal structure, di­hydro­pyridazin, Hirshfeld surface, hydrogen bonding

Abstract

The pyridazine ring in the title compound, C20H17ClN2O3, adopts a screw-boat conformation. The whole mol­ecule is flattened, the dihedral angles subtended by the least-squares plane of the central aromatic ring with those of the terminal benzene and pyridazine rings being 15.18 (19) and 11.23 (19)°, respectively. In the crystal, the mol­ecules are linked by pairs of N—H⋯O bonds into centrosymmetric dimers and by C—H⋯π contacts into columns. The results of the Hirshfeld surface analysis show that the most prominent inter­actions are H⋯H, accounting for 36.5% of overall crystal packing, and H⋯O/O⋯H (18.6% contribution) contacts.

Chemical context

Pyridazinone derivatives are a class of nitro­genous heterocyclic compounds that have attracted considerable attention because of their prospective pharmacological and medicinal properties as anti-inflammatory (Boukharsa et al., 2018), anti­tumor (Bouchmaa et al., 2018, 2019), anti­fungal (Rozada et al., 2020), anti­depressant (Boukharsa et al., 2016), anti­tubercular, anti­convulsant (Asif et al., 2020) and anti­viral (El-Shanbaky et al., 2021) agents. In addition, pyridazinones demonstrate some inter­esting physicochemical properties (Daoui et al., 2020a ; El Kalai et al., 2021a ,b ) and some studies have shown that these compounds are good corrosion inhibitors (Chelfi et al., 2020). Encouraged by the bioactivity of these compounds and in a continuation of our studies in the field of the synthesis, mol­ecular structures and Hirshfeld surfaces analyses of new pyridazin-3(2H)-one derivatives (Daoui et al., 2020b , 2021), we report herein the crystal structure and the results of the Hirshfeld surface analysis of 6-((E)-2-{4-[2-(4-chloro­phen­yl)-2-oxoeth­oxy]phen­yl}ethen­yl)-4,5-di­hydro­pyridazin-3(2H)-one. graphic file with name e-78-00008-scheme1.jpg

Structural commentary

The mol­ecular structure of the title compound is presented in Fig. 1. The bond lengths in the N1—C15 chain (Table 1) are consistent with an alternation of double and single bonds while those in the amide fragment indicate strong π-conjugation. The N1—N2 distance of 1.406 (4) Å agrees well with the values for related pyridazinones (Daoui, Çınar et al., 2019; Daoui, Baydere et al., 2019). The conformation of the di­hydro­pyridazine ring is close to a screw-boat [Θ = 111.9 (6)°, φ = 34.6 (6)°]. The whole mol­ecule is flattened with the largest deviations from the least-squares plane of 0.356 (4) and 0.339 (5) Å being observed for atoms C18 and C19, respect­ively. The central benzene ring forms dihedral angles of 11.23 (19) and 15.18 (19)° with the planes of the terminal di­hydro­pyridazine and benzene rings, respectively.

Figure 1.

Figure 1

Mol­ecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected bond lengths (Å).

C20—O3 1.241 (4) C16—C17 1.459 (4)
N2—C20 1.333 (5) C15—C16 1.329 (5)
N1—N2 1.406 (4) C12—C15 1.470 (4)
N1—C17 1.292 (4) C7—O1 1.219 (4)

Supra­molecular features

In the crystal, the mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, giving rise to an Inline graphic (8) graph-set motif (Fig. 2 a, Table 2). No π–π inter­actions are present in this structure, but the mol­ecules are connected by weak C—H⋯π contacts into stacks running along the a-axis direction (Fig. 2 b,c, Table 2). Other contacts of the C—H⋯O and C—H⋯Cl types further stabilize the crystal structure (Table 2).

Figure 2.

Figure 2

(a) A view of the crystal packing of the title compound along the c axis. Dashed lines indicate hydrogen bonds. (b) C—H⋯π inter­actions. (c) A view of the mol­ecular stacks running along the a axis.

Table 2. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.11 2.891 (4) 151
C4—H4⋯O3ii 0.93 2.44 3.327 (4) 160
C13—H13⋯O1iii 0.93 2.53 3.421 (4) 161
C18—H18A⋯Cl1iv 0.97 2.94 3.737 (3) 140
C8—H8BCg3v 0.97 2.73 3.514 (3) 138

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}; (iii) -x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}; (iv) -x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}; (v) x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}.

Hirshfeld surface analysis

In order to visualize and study the inter­molecular contacts, a Hirshfeld surface analysis of the title compound was undertaken using Crystal Explorer 17.5 (Turner et al., 2017). Fig. 3 a shows the 3D surface mapped over d norm over the range −0.484 (red) to 1.403 (blue) a.u. The pale-red spots on the surface represent short N—H⋯O and C—H⋯O inter­actions (Table 2). The surfaces mapped over d e and d i are presented in Fig. 3 b and 3c.

Figure 3.

Figure 3

(a) Hirshfeld surfaces of the title mol­ecule mapped over (a) d norm, (b) d e and (c) d i.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H and C⋯C contacts are presented in Fig. 4. H⋯H inter­actions are the most prominent, accounting for 36.5% of the overall crystal packing. H⋯O/O⋯H contacts, including inter­molecular C—H⋯O and N—H⋯O hydrogen bonding, make a 18.6% contribution to the Hirshfeld surface. H⋯C/C⋯H contacts add a 15.4% contribution. The contributions from H⋯Cl/Cl⋯H and C⋯C contacts are 11.2% and 7.6%, respectively.

Figure 4.

Figure 4

(a) The overall two-dimensional fingerprint plot, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯Cl/Cl⋯H and (f) C⋯C inter­actions.

Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update March 2020; Groom et al., 2016) revealed two structures containing the same pyridazinone fragments as in the title structure but with different substituents, viz. 6-[(E)-2-(thio­phen-2-yl)ethen­yl]-4,5-di­hydro­pyridazin-3(2H)-one (MUCLEE; Daoui, Çınar et al., 2019) and (E)-6-(4-hy­droxy-3-meth­oxy­phen­yl)ethenyl-4,5-di­hydro­pyridazin-3(2H)-one (LOSSOE; Daoui, Baydere et al., 2019). Both these structures exhibit bond lengths in the pyridazine ring and N—H⋯O hydrogen-bonding parameters that are very similar to those observed in the title structure.

Synthesis and crystallization

A mixture of (E)-6-(4-hy­droxy­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one (0.5 g, 2.3 mmol), K2CO3 (0.79 g, 5.7 mmol) and 2-chloro-1-(4-chloro­phen­yl)ethan-1-one (0.47 g, 2.5 mmol) in acetone (50 ml) was refluxed overnight. After cooling, the solution was filtered and the solvent removed under reduced pressure. The residue was purified by recrystallization from ethanol to afford single crystals (yield 72%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned geometrically and treated as riding, with C—H = 0.96 Å for methyl­ene [U iso(H) = 1.5 U eq(C)], C—H = 0.93 Å for aromatic [U iso(H) = 1.2 U eq(C)] and C—H = 0.98 Å for methine [U iso (H) = 1.2 U eq(C)] H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C20H17ClN2O3
M r 368.80
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 296
a, b, c (Å) 7.3514 (4), 11.5539 (7), 41.397 (3)
V3) 3516.2 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.45 × 0.20 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.925, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 19519, 2913, 1682
R int 0.113
(sin θ/λ)max−1) 0.584
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.060, 0.128, 0.99
No. of reflections 2913
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.22

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2018/3 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902101238X/yk2160sup1.cif

e-78-00008-sup1.cif (655.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902101238X/yk2160Isup2.hkl

e-78-00008-Isup2.hkl (233.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698902101238X/yk2160Isup3.cml

CCDC reference: 2123627

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows. Conceptualization, SD, IM, EBÇ, AA, ND, NB and KK; synthesis, SD, KK, NB, AA, writing, IM and EBÇ, formal analysis ND and KK, validation IM, EBÇ and ND.

supplementary crystallographic information

Crystal data

C20H17ClN2O3 Dx = 1.393 Mg m3
Mr = 368.80 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 13252 reflections
a = 7.3514 (4) Å θ = 1.0–25.1°
b = 11.5539 (7) Å µ = 0.24 mm1
c = 41.397 (3) Å T = 296 K
V = 3516.2 (4) Å3 Needle, colorless
Z = 8 0.45 × 0.20 × 0.05 mm
F(000) = 1536

Data collection

STOE IPDS 2 diffractometer 2913 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1682 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.113
Detector resolution: 6.67 pixels mm-1 θmax = 24.5°, θmin = 2.0°
rotation method scans h = −8→8
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −13→13
Tmin = 0.925, Tmax = 0.994 l = −48→48
19519 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3
2913 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.40565 (17) 0.91913 (10) 0.94188 (2) 0.0775 (4)
O2 0.3849 (3) 0.58839 (19) 0.76710 (5) 0.0548 (6)
O1 0.3725 (4) 0.5145 (2) 0.82642 (5) 0.0652 (7)
O3 0.4691 (5) 0.8576 (2) 0.48754 (6) 0.0901 (11)
N1 0.4362 (5) 0.9053 (3) 0.57229 (6) 0.0583 (9)
N2 0.4339 (5) 0.9186 (3) 0.53853 (6) 0.0627 (9)
H2 0.420683 0.987853 0.531280 0.075*
C9 0.3861 (5) 0.6229 (3) 0.73520 (7) 0.0446 (8)
C12 0.3776 (5) 0.6716 (3) 0.66888 (7) 0.0450 (8)
C7 0.3875 (5) 0.6191 (3) 0.82384 (7) 0.0459 (8)
C14 0.4262 (5) 0.7332 (3) 0.72432 (7) 0.0460 (9)
H14 0.455198 0.791510 0.738937 0.055*
C15 0.3713 (5) 0.6918 (3) 0.63384 (7) 0.0485 (9)
H15 0.336983 0.628939 0.621208 0.058*
C8 0.4077 (5) 0.6746 (3) 0.79090 (7) 0.0463 (8)
H8A 0.316866 0.734746 0.788149 0.056*
H8B 0.527120 0.709594 0.788902 0.056*
C10 0.3420 (5) 0.5366 (3) 0.71335 (8) 0.0493 (9)
H10 0.315275 0.462357 0.720621 0.059*
C6 0.3939 (5) 0.6959 (3) 0.85261 (7) 0.0442 (8)
C13 0.4229 (4) 0.7563 (3) 0.69135 (8) 0.0480 (9)
H13 0.451610 0.830326 0.684145 0.058*
C11 0.3378 (5) 0.5613 (3) 0.68064 (8) 0.0495 (9)
H11 0.307759 0.502891 0.666138 0.059*
C17 0.4022 (5) 0.8025 (3) 0.58300 (7) 0.0480 (9)
C16 0.4088 (5) 0.7891 (3) 0.61803 (8) 0.0513 (9)
H16 0.441662 0.853378 0.630205 0.062*
C5 0.3951 (5) 0.6460 (3) 0.88335 (7) 0.0505 (9)
H5 0.395053 0.565786 0.885305 0.061*
C1 0.3956 (5) 0.8158 (3) 0.85007 (8) 0.0507 (9)
H1 0.393722 0.850303 0.829780 0.061*
C4 0.3965 (5) 0.7130 (3) 0.91071 (8) 0.0546 (10)
H4 0.394802 0.678837 0.931046 0.066*
C3 0.4005 (5) 0.8324 (3) 0.90763 (8) 0.0542 (9)
C2 0.4002 (5) 0.8843 (3) 0.87751 (8) 0.0560 (10)
H2A 0.403021 0.964539 0.875701 0.067*
C18 0.3570 (6) 0.7050 (3) 0.56077 (8) 0.0638 (11)
H18A 0.388487 0.632317 0.571073 0.077*
H18B 0.227071 0.704664 0.556707 0.077*
C20 0.4501 (6) 0.8347 (4) 0.51664 (9) 0.0667 (12)
C19 0.4555 (7) 0.7143 (3) 0.52951 (9) 0.0770 (14)
H19A 0.400668 0.662153 0.513941 0.092*
H19B 0.581099 0.690928 0.532538 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1050 (9) 0.0789 (7) 0.0487 (5) −0.0053 (7) −0.0003 (6) −0.0147 (5)
O2 0.0842 (18) 0.0491 (13) 0.0311 (12) −0.0041 (14) −0.0035 (13) 0.0037 (11)
O1 0.102 (2) 0.0493 (16) 0.0440 (14) −0.0081 (15) 0.0098 (15) 0.0043 (12)
O3 0.168 (3) 0.0733 (19) 0.0293 (15) −0.019 (2) 0.0040 (16) 0.0027 (13)
N1 0.089 (3) 0.058 (2) 0.0279 (14) −0.0069 (18) 0.0018 (15) 0.0022 (14)
N2 0.101 (3) 0.0548 (18) 0.0319 (15) −0.0002 (18) −0.0013 (16) 0.0067 (15)
C9 0.051 (2) 0.052 (2) 0.0315 (17) −0.0038 (18) 0.0023 (17) 0.0030 (16)
C12 0.050 (2) 0.051 (2) 0.0340 (17) −0.0002 (18) 0.0026 (16) −0.0011 (16)
C7 0.051 (2) 0.050 (2) 0.0368 (18) −0.0005 (18) 0.0030 (18) 0.0056 (15)
C14 0.054 (2) 0.048 (2) 0.0361 (18) −0.0049 (18) −0.0008 (16) 0.0006 (16)
C15 0.057 (2) 0.056 (2) 0.0321 (17) −0.0005 (19) 0.0012 (18) −0.0004 (16)
C8 0.056 (2) 0.048 (2) 0.0347 (17) −0.0009 (19) 0.0018 (17) 0.0015 (16)
C10 0.066 (3) 0.0399 (19) 0.0417 (19) −0.0040 (17) 0.0017 (17) 0.0058 (16)
C6 0.049 (2) 0.049 (2) 0.0346 (17) 0.0001 (18) 0.0049 (17) 0.0051 (15)
C13 0.054 (2) 0.048 (2) 0.0414 (19) −0.0020 (19) 0.0011 (17) 0.0063 (16)
C11 0.064 (2) 0.049 (2) 0.0351 (18) −0.0017 (18) 0.0034 (16) −0.0031 (17)
C17 0.057 (2) 0.053 (2) 0.0349 (17) 0.0009 (19) −0.0002 (18) −0.0021 (16)
C16 0.060 (2) 0.059 (2) 0.0347 (18) −0.004 (2) 0.0018 (19) −0.0018 (16)
C5 0.063 (2) 0.047 (2) 0.0409 (19) −0.0010 (19) −0.0006 (19) 0.0083 (16)
C1 0.070 (3) 0.047 (2) 0.0348 (18) 0.005 (2) 0.0027 (19) 0.0076 (16)
C4 0.069 (3) 0.058 (2) 0.0367 (19) −0.003 (2) −0.0005 (19) 0.0076 (16)
C3 0.060 (2) 0.063 (2) 0.0389 (19) 0.002 (2) 0.0005 (19) −0.0031 (18)
C2 0.071 (3) 0.047 (2) 0.050 (2) 0.001 (2) 0.002 (2) 0.0007 (18)
C18 0.097 (3) 0.057 (2) 0.037 (2) −0.008 (2) 0.004 (2) −0.0009 (18)
C20 0.102 (4) 0.065 (3) 0.034 (2) −0.011 (2) 0.002 (2) 0.001 (2)
C19 0.126 (4) 0.062 (3) 0.043 (2) −0.006 (3) 0.011 (2) −0.001 (2)

Geometric parameters (Å, º)

C20—O3 1.241 (4) C10—C11 1.384 (5)
N2—C20 1.333 (5) C10—H10 0.9300
N1—N2 1.406 (4) C6—C1 1.389 (5)
N1—C17 1.292 (4) C6—C5 1.397 (4)
C16—C17 1.459 (4) C13—H13 0.9300
C15—C16 1.329 (5) C11—H11 0.9300
C12—C15 1.470 (4) C17—C18 1.492 (5)
C7—O1 1.219 (4) C16—H16 0.9300
Cl1—C3 1.737 (3) C5—C4 1.373 (5)
O2—C9 1.379 (4) C5—H5 0.9300
O2—C8 1.411 (4) C1—C2 1.385 (5)
N2—H2 0.8600 C1—H1 0.9300
C9—C14 1.384 (4) C4—C3 1.386 (5)
C9—C10 1.385 (4) C4—H4 0.9300
C12—C13 1.391 (4) C3—C2 1.383 (5)
C12—C11 1.395 (5) C2—H2A 0.9300
C7—C6 1.486 (4) C18—C19 1.487 (5)
C7—C8 1.514 (4) C18—H18A 0.9700
C14—C13 1.391 (4) C18—H18B 0.9700
C14—H14 0.9300 C20—C19 1.490 (5)
C15—H15 0.9300 C19—H19A 0.9700
C8—H8A 0.9700 C19—H19B 0.9700
C8—H8B 0.9700
C9—O2—C8 117.6 (2) C12—C11—H11 119.2
C17—N1—N2 116.0 (3) N1—C17—C16 115.6 (3)
C20—N2—N1 126.5 (3) N1—C17—C18 121.7 (3)
C20—N2—H2 116.7 C16—C17—C18 122.7 (3)
N1—N2—H2 116.7 C15—C16—C17 124.9 (3)
O2—C9—C14 125.4 (3) C15—C16—H16 117.5
O2—C9—C10 114.6 (3) C17—C16—H16 117.5
C14—C9—C10 120.0 (3) C4—C5—C6 121.2 (3)
C13—C12—C11 117.4 (3) C4—C5—H5 119.4
C13—C12—C15 123.8 (3) C6—C5—H5 119.4
C11—C12—C15 118.9 (3) C2—C1—C6 120.5 (3)
O1—C7—C6 121.7 (3) C2—C1—H1 119.7
O1—C7—C8 120.5 (3) C6—C1—H1 119.7
C6—C7—C8 117.8 (3) C5—C4—C3 119.1 (3)
C9—C14—C13 119.5 (3) C5—C4—H4 120.5
C9—C14—H14 120.3 C3—C4—H4 120.5
C13—C14—H14 120.3 C2—C3—C4 121.0 (3)
C16—C15—C12 127.9 (3) C2—C3—Cl1 119.1 (3)
C16—C15—H15 116.1 C4—C3—Cl1 120.0 (3)
C12—C15—H15 116.1 C3—C2—C1 119.4 (3)
O2—C8—C7 108.5 (3) C3—C2—H2A 120.3
O2—C8—H8A 110.0 C1—C2—H2A 120.3
C7—C8—H8A 110.0 C19—C18—C17 112.0 (3)
O2—C8—H8B 110.0 C19—C18—H18A 109.2
C7—C8—H8B 110.0 C17—C18—H18A 109.2
H8A—C8—H8B 108.4 C19—C18—H18B 109.2
C11—C10—C9 119.7 (3) C17—C18—H18B 109.2
C11—C10—H10 120.1 H18A—C18—H18B 107.9
C9—C10—H10 120.1 O3—C20—N2 121.0 (4)
C1—C6—C5 118.7 (3) O3—C20—C19 122.9 (4)
C1—C6—C7 122.4 (3) N2—C20—C19 116.0 (3)
C5—C6—C7 118.9 (3) C18—C19—C20 111.4 (3)
C12—C13—C14 121.7 (3) C18—C19—H19A 109.3
C12—C13—H13 119.1 C20—C19—H19A 109.3
C14—C13—H13 119.1 C18—C19—H19B 109.3
C10—C11—C12 121.7 (3) C20—C19—H19B 109.3
C10—C11—H11 119.2 H19A—C19—H19B 108.0
C17—N1—N2—C20 −19.7 (6) N2—N1—C17—C16 178.7 (3)
C8—O2—C9—C14 7.0 (5) N2—N1—C17—C18 −2.0 (5)
C8—O2—C9—C10 −172.8 (3) C12—C15—C16—C17 179.1 (4)
O2—C9—C14—C13 179.9 (3) N1—C17—C16—C15 177.3 (4)
C10—C9—C14—C13 −0.4 (5) C18—C17—C16—C15 −1.9 (6)
C13—C12—C15—C16 1.2 (6) C1—C6—C5—C4 0.5 (6)
C11—C12—C15—C16 −178.2 (4) C7—C6—C5—C4 −178.4 (3)
C9—O2—C8—C7 175.7 (3) C5—C6—C1—C2 0.6 (6)
O1—C7—C8—O2 6.4 (5) C7—C6—C1—C2 179.5 (3)
C6—C7—C8—O2 −175.9 (3) C6—C5—C4—C3 −1.3 (6)
O2—C9—C10—C11 179.6 (3) C5—C4—C3—C2 1.0 (6)
C14—C9—C10—C11 −0.1 (5) C5—C4—C3—Cl1 −179.1 (3)
O1—C7—C6—C1 −174.5 (4) C4—C3—C2—C1 0.1 (6)
C8—C7—C6—C1 7.8 (5) Cl1—C3—C2—C1 −179.8 (3)
O1—C7—C6—C5 4.4 (6) C6—C1—C2—C3 −0.9 (6)
C8—C7—C6—C5 −173.3 (3) N1—C17—C18—C19 33.8 (6)
C11—C12—C13—C14 −0.9 (5) C16—C17—C18—C19 −147.0 (4)
C15—C12—C13—C14 179.7 (3) N1—N2—C20—O3 −170.9 (4)
C9—C14—C13—C12 0.9 (5) N1—N2—C20—C19 5.5 (6)
C9—C10—C11—C12 0.2 (6) C17—C18—C19—C20 −44.6 (5)
C13—C12—C11—C10 0.3 (5) O3—C20—C19—C18 −156.4 (4)
C15—C12—C11—C10 179.8 (3) N2—C20—C19—C18 27.3 (6)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C9–C14 ring.

D—H···A D—H H···A D···A D—H···A
N2—H2···O3i 0.86 2.11 2.891 (4) 151
C4—H4···O3ii 0.93 2.44 3.327 (4) 160
C13—H13···O1iii 0.93 2.53 3.421 (4) 161
C18—H18A···Cl1iv 0.97 2.94 3.737 (3) 140
C8—H8B···Cg3v 0.97 2.73 3.514 (3) 138

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, y−1/2, −z+3/2; (v) x−1/2, y, −z+3/2.

Funding Statement

This work was funded by Ondokuz Mayis Üniversitesi grant PYO.FEN.1906.19.001.

References

  1. Asif, M. & Imran, M. (2020). Anal. Chem. Lett. 10, 414–427.
  2. Bouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res. (Stuttg.), 69, 528–536. [DOI] [PubMed]
  3. Bouchmaa, N., Tilaoui, M., Boukharsa, Y., Jaâfari, A., Mouse, H. A., Ali Oukerrou, M., Taoufik, J., Ansar, M. & Zyad, A. (2018). Pharm. Chem. J. 51, 893–901.
  4. Boukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119–127.
  5. Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.
  6. Chelfi, T., Benchat, N., Bouklah, M., Daoui, S., Karrouchi, K., Allali, M., Taleb, M., Ech chihbi, E., Almalki, F. A. & Benhada, T. (2020). J. Bio- Tribo-Corros. 6, 1–14.
  7. Daoui, S., Baydere, C., Akman, F., El Kalai, F., Mahi, L., Dege, N., Topcu, Y., Karrouchi, K. & Benchat, N. (2020a). J. Mol. Struct. 1225, 129180.
  8. Daoui, S., Baydere, C., Chelfi, T., El Kalai, F., Dege, N., Karrouchi, K. & Benchat, N. (2020b). Acta Cryst. E76, 432–437. [DOI] [PMC free article] [PubMed]
  9. Daoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1734–1737. [DOI] [PMC free article] [PubMed]
  10. Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27. [DOI] [PMC free article] [PubMed]
  11. Daoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1880–1883. [DOI] [PMC free article] [PubMed]
  12. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  13. El Kalai, F., Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435. [DOI] [PMC free article] [PubMed]
  14. El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.
  15. El-Shanbaky, H. M., El-Hameed, A. & Mohamed, M. S. (2021). J. Adv. Pharm. Res. 5, 202–210.
  16. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  17. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  18. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  19. Rozada, A. M., Rodrigues-Vendramini, F. A., Gonçalves, D. S., Rosa, F. A., Basso, E. A., Seixas, F. A., Kioshima, É. S. & Gauze, G. F. (2020). Bioorg. Med. Chem. Lett. 30, 127244. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  23. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  24. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902101238X/yk2160sup1.cif

e-78-00008-sup1.cif (655.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902101238X/yk2160Isup2.hkl

e-78-00008-Isup2.hkl (233.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698902101238X/yk2160Isup3.cml

CCDC reference: 2123627

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES