The pyridazine ring in the molecule of the title compound adopts a screw-boat conformation. The whole molecule is flattened, the dihedral angles subtended by the least-suares plane of the central aromatic ring with those of the terminal benzene and pyridazine rings being 15.18 (19) and 11.23 (19)°, respectively. In the crystal, the molecules are linked by pairs of N—H⋯O bonds into centrosymmetric dimers and by C—H⋯π contacts into columns.
Keywords: crystal structure, dihydropyridazin, Hirshfeld surface, hydrogen bonding
Abstract
The pyridazine ring in the title compound, C20H17ClN2O3, adopts a screw-boat conformation. The whole molecule is flattened, the dihedral angles subtended by the least-squares plane of the central aromatic ring with those of the terminal benzene and pyridazine rings being 15.18 (19) and 11.23 (19)°, respectively. In the crystal, the molecules are linked by pairs of N—H⋯O bonds into centrosymmetric dimers and by C—H⋯π contacts into columns. The results of the Hirshfeld surface analysis show that the most prominent interactions are H⋯H, accounting for 36.5% of overall crystal packing, and H⋯O/O⋯H (18.6% contribution) contacts.
Chemical context
Pyridazinone derivatives are a class of nitrogenous heterocyclic compounds that have attracted considerable attention because of their prospective pharmacological and medicinal properties as anti-inflammatory (Boukharsa et al., 2018 ▸), antitumor (Bouchmaa et al., 2018 ▸, 2019 ▸), antifungal (Rozada et al., 2020 ▸), antidepressant (Boukharsa et al., 2016 ▸), antitubercular, anticonvulsant (Asif et al., 2020 ▸) and antiviral (El-Shanbaky et al., 2021 ▸) agents. In addition, pyridazinones demonstrate some interesting physicochemical properties (Daoui et al., 2020a
▸; El Kalai et al., 2021a
▸,b
▸) and some studies have shown that these compounds are good corrosion inhibitors (Chelfi et al., 2020 ▸). Encouraged by the bioactivity of these compounds and in a continuation of our studies in the field of the synthesis, molecular structures and Hirshfeld surfaces analyses of new pyridazin-3(2H)-one derivatives (Daoui et al., 2020b
▸, 2021 ▸), we report herein the crystal structure and the results of the Hirshfeld surface analysis of 6-((E)-2-{4-[2-(4-chlorophenyl)-2-oxoethoxy]phenyl}ethenyl)-4,5-dihydropyridazin-3(2H)-one.
Structural commentary
The molecular structure of the title compound is presented in Fig. 1 ▸. The bond lengths in the N1—C15 chain (Table 1 ▸) are consistent with an alternation of double and single bonds while those in the amide fragment indicate strong π-conjugation. The N1—N2 distance of 1.406 (4) Å agrees well with the values for related pyridazinones (Daoui, Çınar et al., 2019 ▸; Daoui, Baydere et al., 2019 ▸). The conformation of the dihydropyridazine ring is close to a screw-boat [Θ = 111.9 (6)°, φ = 34.6 (6)°]. The whole molecule is flattened with the largest deviations from the least-squares plane of 0.356 (4) and 0.339 (5) Å being observed for atoms C18 and C19, respectively. The central benzene ring forms dihedral angles of 11.23 (19) and 15.18 (19)° with the planes of the terminal dihydropyridazine and benzene rings, respectively.
Figure 1.
Molecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
Table 1. Selected bond lengths (Å).
| C20—O3 | 1.241 (4) | C16—C17 | 1.459 (4) |
| N2—C20 | 1.333 (5) | C15—C16 | 1.329 (5) |
| N1—N2 | 1.406 (4) | C12—C15 | 1.470 (4) |
| N1—C17 | 1.292 (4) | C7—O1 | 1.219 (4) |
Supramolecular features
In the crystal, the molecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, giving rise to an
(8) graph-set motif (Fig. 2 ▸
a, Table 2 ▸). No π–π interactions are present in this structure, but the molecules are connected by weak C—H⋯π contacts into stacks running along the a-axis direction (Fig. 2 ▸
b,c, Table 2 ▸). Other contacts of the C—H⋯O and C—H⋯Cl types further stabilize the crystal structure (Table 2 ▸).
Figure 2.
(a) A view of the crystal packing of the title compound along the c axis. Dashed lines indicate hydrogen bonds. (b) C—H⋯π interactions. (c) A view of the molecular stacks running along the a axis.
Table 2. Hydrogen-bond geometry (Å, °).
Cg3 is the centroid of the C9–C14 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2⋯O3i | 0.86 | 2.11 | 2.891 (4) | 151 |
| C4—H4⋯O3ii | 0.93 | 2.44 | 3.327 (4) | 160 |
| C13—H13⋯O1iii | 0.93 | 2.53 | 3.421 (4) | 161 |
| C18—H18A⋯Cl1iv | 0.97 | 2.94 | 3.737 (3) | 140 |
| C8—H8B⋯Cg3v | 0.97 | 2.73 | 3.514 (3) | 138 |
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}; (iii) -x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}; (iv) -x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}; (v) x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}.
Hirshfeld surface analysis
In order to visualize and study the intermolecular contacts, a Hirshfeld surface analysis of the title compound was undertaken using Crystal Explorer 17.5 (Turner et al., 2017 ▸). Fig. 3 ▸ a shows the 3D surface mapped over d norm over the range −0.484 (red) to 1.403 (blue) a.u. The pale-red spots on the surface represent short N—H⋯O and C—H⋯O interactions (Table 2 ▸). The surfaces mapped over d e and d i are presented in Fig. 3 ▸ b and 3c.
Figure 3.
(a) Hirshfeld surfaces of the title molecule mapped over (a) d norm, (b) d e and (c) d i.
The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H and C⋯C contacts are presented in Fig. 4 ▸. H⋯H interactions are the most prominent, accounting for 36.5% of the overall crystal packing. H⋯O/O⋯H contacts, including intermolecular C—H⋯O and N—H⋯O hydrogen bonding, make a 18.6% contribution to the Hirshfeld surface. H⋯C/C⋯H contacts add a 15.4% contribution. The contributions from H⋯Cl/Cl⋯H and C⋯C contacts are 11.2% and 7.6%, respectively.
Figure 4.
(a) The overall two-dimensional fingerprint plot, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯Cl/Cl⋯H and (f) C⋯C interactions.
Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update March 2020; Groom et al., 2016 ▸) revealed two structures containing the same pyridazinone fragments as in the title structure but with different substituents, viz. 6-[(E)-2-(thiophen-2-yl)ethenyl]-4,5-dihydropyridazin-3(2H)-one (MUCLEE; Daoui, Çınar et al., 2019 ▸) and (E)-6-(4-hydroxy-3-methoxyphenyl)ethenyl-4,5-dihydropyridazin-3(2H)-one (LOSSOE; Daoui, Baydere et al., 2019 ▸). Both these structures exhibit bond lengths in the pyridazine ring and N—H⋯O hydrogen-bonding parameters that are very similar to those observed in the title structure.
Synthesis and crystallization
A mixture of (E)-6-(4-hydroxystyryl)-4,5-dihydropyridazin-3(2H)-one (0.5 g, 2.3 mmol), K2CO3 (0.79 g, 5.7 mmol) and 2-chloro-1-(4-chlorophenyl)ethan-1-one (0.47 g, 2.5 mmol) in acetone (50 ml) was refluxed overnight. After cooling, the solution was filtered and the solvent removed under reduced pressure. The residue was purified by recrystallization from ethanol to afford single crystals (yield 72%).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. Hydrogen atoms were positioned geometrically and treated as riding, with C—H = 0.96 Å for methylene [U iso(H) = 1.5 U eq(C)], C—H = 0.93 Å for aromatic [U iso(H) = 1.2 U eq(C)] and C—H = 0.98 Å for methine [U iso (H) = 1.2 U eq(C)] H atoms.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C20H17ClN2O3 |
| M r | 368.80 |
| Crystal system, space group | Orthorhombic, P b c a |
| Temperature (K) | 296 |
| a, b, c (Å) | 7.3514 (4), 11.5539 (7), 41.397 (3) |
| V (Å3) | 3516.2 (4) |
| Z | 8 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.24 |
| Crystal size (mm) | 0.45 × 0.20 × 0.05 |
| Data collection | |
| Diffractometer | Stoe IPDS 2 |
| Absorption correction | Integration (X-RED32; Stoe & Cie, 2002 ▸) |
| T min, T max | 0.925, 0.994 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 19519, 2913, 1682 |
| R int | 0.113 |
| (sin θ/λ)max (Å−1) | 0.584 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.060, 0.128, 0.99 |
| No. of reflections | 2913 |
| No. of parameters | 235 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.34, −0.22 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902101238X/yk2160sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902101238X/yk2160Isup2.hkl
Supporting information file. DOI: 10.1107/S205698902101238X/yk2160Isup3.cml
CCDC reference: 2123627
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
Author contributions are as follows. Conceptualization, SD, IM, EBÇ, AA, ND, NB and KK; synthesis, SD, KK, NB, AA, writing, IM and EBÇ, formal analysis ND and KK, validation IM, EBÇ and ND.
supplementary crystallographic information
Crystal data
| C20H17ClN2O3 | Dx = 1.393 Mg m−3 |
| Mr = 368.80 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pbca | Cell parameters from 13252 reflections |
| a = 7.3514 (4) Å | θ = 1.0–25.1° |
| b = 11.5539 (7) Å | µ = 0.24 mm−1 |
| c = 41.397 (3) Å | T = 296 K |
| V = 3516.2 (4) Å3 | Needle, colorless |
| Z = 8 | 0.45 × 0.20 × 0.05 mm |
| F(000) = 1536 |
Data collection
| STOE IPDS 2 diffractometer | 2913 independent reflections |
| Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1682 reflections with I > 2σ(I) |
| Plane graphite monochromator | Rint = 0.113 |
| Detector resolution: 6.67 pixels mm-1 | θmax = 24.5°, θmin = 2.0° |
| rotation method scans | h = −8→8 |
| Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −13→13 |
| Tmin = 0.925, Tmax = 0.994 | l = −48→48 |
| 19519 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.128 | H-atom parameters constrained |
| S = 0.99 | w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3 |
| 2913 reflections | (Δ/σ)max < 0.001 |
| 235 parameters | Δρmax = 0.34 e Å−3 |
| 0 restraints | Δρmin = −0.22 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.40565 (17) | 0.91913 (10) | 0.94188 (2) | 0.0775 (4) | |
| O2 | 0.3849 (3) | 0.58839 (19) | 0.76710 (5) | 0.0548 (6) | |
| O1 | 0.3725 (4) | 0.5145 (2) | 0.82642 (5) | 0.0652 (7) | |
| O3 | 0.4691 (5) | 0.8576 (2) | 0.48754 (6) | 0.0901 (11) | |
| N1 | 0.4362 (5) | 0.9053 (3) | 0.57229 (6) | 0.0583 (9) | |
| N2 | 0.4339 (5) | 0.9186 (3) | 0.53853 (6) | 0.0627 (9) | |
| H2 | 0.420683 | 0.987853 | 0.531280 | 0.075* | |
| C9 | 0.3861 (5) | 0.6229 (3) | 0.73520 (7) | 0.0446 (8) | |
| C12 | 0.3776 (5) | 0.6716 (3) | 0.66888 (7) | 0.0450 (8) | |
| C7 | 0.3875 (5) | 0.6191 (3) | 0.82384 (7) | 0.0459 (8) | |
| C14 | 0.4262 (5) | 0.7332 (3) | 0.72432 (7) | 0.0460 (9) | |
| H14 | 0.455198 | 0.791510 | 0.738937 | 0.055* | |
| C15 | 0.3713 (5) | 0.6918 (3) | 0.63384 (7) | 0.0485 (9) | |
| H15 | 0.336983 | 0.628939 | 0.621208 | 0.058* | |
| C8 | 0.4077 (5) | 0.6746 (3) | 0.79090 (7) | 0.0463 (8) | |
| H8A | 0.316866 | 0.734746 | 0.788149 | 0.056* | |
| H8B | 0.527120 | 0.709594 | 0.788902 | 0.056* | |
| C10 | 0.3420 (5) | 0.5366 (3) | 0.71335 (8) | 0.0493 (9) | |
| H10 | 0.315275 | 0.462357 | 0.720621 | 0.059* | |
| C6 | 0.3939 (5) | 0.6959 (3) | 0.85261 (7) | 0.0442 (8) | |
| C13 | 0.4229 (4) | 0.7563 (3) | 0.69135 (8) | 0.0480 (9) | |
| H13 | 0.451610 | 0.830326 | 0.684145 | 0.058* | |
| C11 | 0.3378 (5) | 0.5613 (3) | 0.68064 (8) | 0.0495 (9) | |
| H11 | 0.307759 | 0.502891 | 0.666138 | 0.059* | |
| C17 | 0.4022 (5) | 0.8025 (3) | 0.58300 (7) | 0.0480 (9) | |
| C16 | 0.4088 (5) | 0.7891 (3) | 0.61803 (8) | 0.0513 (9) | |
| H16 | 0.441662 | 0.853378 | 0.630205 | 0.062* | |
| C5 | 0.3951 (5) | 0.6460 (3) | 0.88335 (7) | 0.0505 (9) | |
| H5 | 0.395053 | 0.565786 | 0.885305 | 0.061* | |
| C1 | 0.3956 (5) | 0.8158 (3) | 0.85007 (8) | 0.0507 (9) | |
| H1 | 0.393722 | 0.850303 | 0.829780 | 0.061* | |
| C4 | 0.3965 (5) | 0.7130 (3) | 0.91071 (8) | 0.0546 (10) | |
| H4 | 0.394802 | 0.678837 | 0.931046 | 0.066* | |
| C3 | 0.4005 (5) | 0.8324 (3) | 0.90763 (8) | 0.0542 (9) | |
| C2 | 0.4002 (5) | 0.8843 (3) | 0.87751 (8) | 0.0560 (10) | |
| H2A | 0.403021 | 0.964539 | 0.875701 | 0.067* | |
| C18 | 0.3570 (6) | 0.7050 (3) | 0.56077 (8) | 0.0638 (11) | |
| H18A | 0.388487 | 0.632317 | 0.571073 | 0.077* | |
| H18B | 0.227071 | 0.704664 | 0.556707 | 0.077* | |
| C20 | 0.4501 (6) | 0.8347 (4) | 0.51664 (9) | 0.0667 (12) | |
| C19 | 0.4555 (7) | 0.7143 (3) | 0.52951 (9) | 0.0770 (14) | |
| H19A | 0.400668 | 0.662153 | 0.513941 | 0.092* | |
| H19B | 0.581099 | 0.690928 | 0.532538 | 0.092* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.1050 (9) | 0.0789 (7) | 0.0487 (5) | −0.0053 (7) | −0.0003 (6) | −0.0147 (5) |
| O2 | 0.0842 (18) | 0.0491 (13) | 0.0311 (12) | −0.0041 (14) | −0.0035 (13) | 0.0037 (11) |
| O1 | 0.102 (2) | 0.0493 (16) | 0.0440 (14) | −0.0081 (15) | 0.0098 (15) | 0.0043 (12) |
| O3 | 0.168 (3) | 0.0733 (19) | 0.0293 (15) | −0.019 (2) | 0.0040 (16) | 0.0027 (13) |
| N1 | 0.089 (3) | 0.058 (2) | 0.0279 (14) | −0.0069 (18) | 0.0018 (15) | 0.0022 (14) |
| N2 | 0.101 (3) | 0.0548 (18) | 0.0319 (15) | −0.0002 (18) | −0.0013 (16) | 0.0067 (15) |
| C9 | 0.051 (2) | 0.052 (2) | 0.0315 (17) | −0.0038 (18) | 0.0023 (17) | 0.0030 (16) |
| C12 | 0.050 (2) | 0.051 (2) | 0.0340 (17) | −0.0002 (18) | 0.0026 (16) | −0.0011 (16) |
| C7 | 0.051 (2) | 0.050 (2) | 0.0368 (18) | −0.0005 (18) | 0.0030 (18) | 0.0056 (15) |
| C14 | 0.054 (2) | 0.048 (2) | 0.0361 (18) | −0.0049 (18) | −0.0008 (16) | 0.0006 (16) |
| C15 | 0.057 (2) | 0.056 (2) | 0.0321 (17) | −0.0005 (19) | 0.0012 (18) | −0.0004 (16) |
| C8 | 0.056 (2) | 0.048 (2) | 0.0347 (17) | −0.0009 (19) | 0.0018 (17) | 0.0015 (16) |
| C10 | 0.066 (3) | 0.0399 (19) | 0.0417 (19) | −0.0040 (17) | 0.0017 (17) | 0.0058 (16) |
| C6 | 0.049 (2) | 0.049 (2) | 0.0346 (17) | 0.0001 (18) | 0.0049 (17) | 0.0051 (15) |
| C13 | 0.054 (2) | 0.048 (2) | 0.0414 (19) | −0.0020 (19) | 0.0011 (17) | 0.0063 (16) |
| C11 | 0.064 (2) | 0.049 (2) | 0.0351 (18) | −0.0017 (18) | 0.0034 (16) | −0.0031 (17) |
| C17 | 0.057 (2) | 0.053 (2) | 0.0349 (17) | 0.0009 (19) | −0.0002 (18) | −0.0021 (16) |
| C16 | 0.060 (2) | 0.059 (2) | 0.0347 (18) | −0.004 (2) | 0.0018 (19) | −0.0018 (16) |
| C5 | 0.063 (2) | 0.047 (2) | 0.0409 (19) | −0.0010 (19) | −0.0006 (19) | 0.0083 (16) |
| C1 | 0.070 (3) | 0.047 (2) | 0.0348 (18) | 0.005 (2) | 0.0027 (19) | 0.0076 (16) |
| C4 | 0.069 (3) | 0.058 (2) | 0.0367 (19) | −0.003 (2) | −0.0005 (19) | 0.0076 (16) |
| C3 | 0.060 (2) | 0.063 (2) | 0.0389 (19) | 0.002 (2) | 0.0005 (19) | −0.0031 (18) |
| C2 | 0.071 (3) | 0.047 (2) | 0.050 (2) | 0.001 (2) | 0.002 (2) | 0.0007 (18) |
| C18 | 0.097 (3) | 0.057 (2) | 0.037 (2) | −0.008 (2) | 0.004 (2) | −0.0009 (18) |
| C20 | 0.102 (4) | 0.065 (3) | 0.034 (2) | −0.011 (2) | 0.002 (2) | 0.001 (2) |
| C19 | 0.126 (4) | 0.062 (3) | 0.043 (2) | −0.006 (3) | 0.011 (2) | −0.001 (2) |
Geometric parameters (Å, º)
| C20—O3 | 1.241 (4) | C10—C11 | 1.384 (5) |
| N2—C20 | 1.333 (5) | C10—H10 | 0.9300 |
| N1—N2 | 1.406 (4) | C6—C1 | 1.389 (5) |
| N1—C17 | 1.292 (4) | C6—C5 | 1.397 (4) |
| C16—C17 | 1.459 (4) | C13—H13 | 0.9300 |
| C15—C16 | 1.329 (5) | C11—H11 | 0.9300 |
| C12—C15 | 1.470 (4) | C17—C18 | 1.492 (5) |
| C7—O1 | 1.219 (4) | C16—H16 | 0.9300 |
| Cl1—C3 | 1.737 (3) | C5—C4 | 1.373 (5) |
| O2—C9 | 1.379 (4) | C5—H5 | 0.9300 |
| O2—C8 | 1.411 (4) | C1—C2 | 1.385 (5) |
| N2—H2 | 0.8600 | C1—H1 | 0.9300 |
| C9—C14 | 1.384 (4) | C4—C3 | 1.386 (5) |
| C9—C10 | 1.385 (4) | C4—H4 | 0.9300 |
| C12—C13 | 1.391 (4) | C3—C2 | 1.383 (5) |
| C12—C11 | 1.395 (5) | C2—H2A | 0.9300 |
| C7—C6 | 1.486 (4) | C18—C19 | 1.487 (5) |
| C7—C8 | 1.514 (4) | C18—H18A | 0.9700 |
| C14—C13 | 1.391 (4) | C18—H18B | 0.9700 |
| C14—H14 | 0.9300 | C20—C19 | 1.490 (5) |
| C15—H15 | 0.9300 | C19—H19A | 0.9700 |
| C8—H8A | 0.9700 | C19—H19B | 0.9700 |
| C8—H8B | 0.9700 | ||
| C9—O2—C8 | 117.6 (2) | C12—C11—H11 | 119.2 |
| C17—N1—N2 | 116.0 (3) | N1—C17—C16 | 115.6 (3) |
| C20—N2—N1 | 126.5 (3) | N1—C17—C18 | 121.7 (3) |
| C20—N2—H2 | 116.7 | C16—C17—C18 | 122.7 (3) |
| N1—N2—H2 | 116.7 | C15—C16—C17 | 124.9 (3) |
| O2—C9—C14 | 125.4 (3) | C15—C16—H16 | 117.5 |
| O2—C9—C10 | 114.6 (3) | C17—C16—H16 | 117.5 |
| C14—C9—C10 | 120.0 (3) | C4—C5—C6 | 121.2 (3) |
| C13—C12—C11 | 117.4 (3) | C4—C5—H5 | 119.4 |
| C13—C12—C15 | 123.8 (3) | C6—C5—H5 | 119.4 |
| C11—C12—C15 | 118.9 (3) | C2—C1—C6 | 120.5 (3) |
| O1—C7—C6 | 121.7 (3) | C2—C1—H1 | 119.7 |
| O1—C7—C8 | 120.5 (3) | C6—C1—H1 | 119.7 |
| C6—C7—C8 | 117.8 (3) | C5—C4—C3 | 119.1 (3) |
| C9—C14—C13 | 119.5 (3) | C5—C4—H4 | 120.5 |
| C9—C14—H14 | 120.3 | C3—C4—H4 | 120.5 |
| C13—C14—H14 | 120.3 | C2—C3—C4 | 121.0 (3) |
| C16—C15—C12 | 127.9 (3) | C2—C3—Cl1 | 119.1 (3) |
| C16—C15—H15 | 116.1 | C4—C3—Cl1 | 120.0 (3) |
| C12—C15—H15 | 116.1 | C3—C2—C1 | 119.4 (3) |
| O2—C8—C7 | 108.5 (3) | C3—C2—H2A | 120.3 |
| O2—C8—H8A | 110.0 | C1—C2—H2A | 120.3 |
| C7—C8—H8A | 110.0 | C19—C18—C17 | 112.0 (3) |
| O2—C8—H8B | 110.0 | C19—C18—H18A | 109.2 |
| C7—C8—H8B | 110.0 | C17—C18—H18A | 109.2 |
| H8A—C8—H8B | 108.4 | C19—C18—H18B | 109.2 |
| C11—C10—C9 | 119.7 (3) | C17—C18—H18B | 109.2 |
| C11—C10—H10 | 120.1 | H18A—C18—H18B | 107.9 |
| C9—C10—H10 | 120.1 | O3—C20—N2 | 121.0 (4) |
| C1—C6—C5 | 118.7 (3) | O3—C20—C19 | 122.9 (4) |
| C1—C6—C7 | 122.4 (3) | N2—C20—C19 | 116.0 (3) |
| C5—C6—C7 | 118.9 (3) | C18—C19—C20 | 111.4 (3) |
| C12—C13—C14 | 121.7 (3) | C18—C19—H19A | 109.3 |
| C12—C13—H13 | 119.1 | C20—C19—H19A | 109.3 |
| C14—C13—H13 | 119.1 | C18—C19—H19B | 109.3 |
| C10—C11—C12 | 121.7 (3) | C20—C19—H19B | 109.3 |
| C10—C11—H11 | 119.2 | H19A—C19—H19B | 108.0 |
| C17—N1—N2—C20 | −19.7 (6) | N2—N1—C17—C16 | 178.7 (3) |
| C8—O2—C9—C14 | 7.0 (5) | N2—N1—C17—C18 | −2.0 (5) |
| C8—O2—C9—C10 | −172.8 (3) | C12—C15—C16—C17 | 179.1 (4) |
| O2—C9—C14—C13 | 179.9 (3) | N1—C17—C16—C15 | 177.3 (4) |
| C10—C9—C14—C13 | −0.4 (5) | C18—C17—C16—C15 | −1.9 (6) |
| C13—C12—C15—C16 | 1.2 (6) | C1—C6—C5—C4 | 0.5 (6) |
| C11—C12—C15—C16 | −178.2 (4) | C7—C6—C5—C4 | −178.4 (3) |
| C9—O2—C8—C7 | 175.7 (3) | C5—C6—C1—C2 | 0.6 (6) |
| O1—C7—C8—O2 | 6.4 (5) | C7—C6—C1—C2 | 179.5 (3) |
| C6—C7—C8—O2 | −175.9 (3) | C6—C5—C4—C3 | −1.3 (6) |
| O2—C9—C10—C11 | 179.6 (3) | C5—C4—C3—C2 | 1.0 (6) |
| C14—C9—C10—C11 | −0.1 (5) | C5—C4—C3—Cl1 | −179.1 (3) |
| O1—C7—C6—C1 | −174.5 (4) | C4—C3—C2—C1 | 0.1 (6) |
| C8—C7—C6—C1 | 7.8 (5) | Cl1—C3—C2—C1 | −179.8 (3) |
| O1—C7—C6—C5 | 4.4 (6) | C6—C1—C2—C3 | −0.9 (6) |
| C8—C7—C6—C5 | −173.3 (3) | N1—C17—C18—C19 | 33.8 (6) |
| C11—C12—C13—C14 | −0.9 (5) | C16—C17—C18—C19 | −147.0 (4) |
| C15—C12—C13—C14 | 179.7 (3) | N1—N2—C20—O3 | −170.9 (4) |
| C9—C14—C13—C12 | 0.9 (5) | N1—N2—C20—C19 | 5.5 (6) |
| C9—C10—C11—C12 | 0.2 (6) | C17—C18—C19—C20 | −44.6 (5) |
| C13—C12—C11—C10 | 0.3 (5) | O3—C20—C19—C18 | −156.4 (4) |
| C15—C12—C11—C10 | 179.8 (3) | N2—C20—C19—C18 | 27.3 (6) |
Hydrogen-bond geometry (Å, º)
Cg3 is the centroid of the C9–C14 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2···O3i | 0.86 | 2.11 | 2.891 (4) | 151 |
| C4—H4···O3ii | 0.93 | 2.44 | 3.327 (4) | 160 |
| C13—H13···O1iii | 0.93 | 2.53 | 3.421 (4) | 161 |
| C18—H18A···Cl1iv | 0.97 | 2.94 | 3.737 (3) | 140 |
| C8—H8B···Cg3v | 0.97 | 2.73 | 3.514 (3) | 138 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, y−1/2, −z+3/2; (v) x−1/2, y, −z+3/2.
Funding Statement
This work was funded by Ondokuz Mayis Üniversitesi grant PYO.FEN.1906.19.001.
References
- Asif, M. & Imran, M. (2020). Anal. Chem. Lett. 10, 414–427.
- Bouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res. (Stuttg.), 69, 528–536. [DOI] [PubMed]
- Bouchmaa, N., Tilaoui, M., Boukharsa, Y., Jaâfari, A., Mouse, H. A., Ali Oukerrou, M., Taoufik, J., Ansar, M. & Zyad, A. (2018). Pharm. Chem. J. 51, 893–901.
- Boukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119–127.
- Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.
- Chelfi, T., Benchat, N., Bouklah, M., Daoui, S., Karrouchi, K., Allali, M., Taleb, M., Ech chihbi, E., Almalki, F. A. & Benhada, T. (2020). J. Bio- Tribo-Corros. 6, 1–14.
- Daoui, S., Baydere, C., Akman, F., El Kalai, F., Mahi, L., Dege, N., Topcu, Y., Karrouchi, K. & Benchat, N. (2020a). J. Mol. Struct. 1225, 129180.
- Daoui, S., Baydere, C., Chelfi, T., El Kalai, F., Dege, N., Karrouchi, K. & Benchat, N. (2020b). Acta Cryst. E76, 432–437. [DOI] [PMC free article] [PubMed]
- Daoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1734–1737. [DOI] [PMC free article] [PubMed]
- Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27. [DOI] [PMC free article] [PubMed]
- Daoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1880–1883. [DOI] [PMC free article] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- El Kalai, F., Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435. [DOI] [PMC free article] [PubMed]
- El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.
- El-Shanbaky, H. M., El-Hameed, A. & Mohamed, M. S. (2021). J. Adv. Pharm. Res. 5, 202–210.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
- Rozada, A. M., Rodrigues-Vendramini, F. A., Gonçalves, D. S., Rosa, F. A., Basso, E. A., Seixas, F. A., Kioshima, É. S. & Gauze, G. F. (2020). Bioorg. Med. Chem. Lett. 30, 127244. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902101238X/yk2160sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902101238X/yk2160Isup2.hkl
Supporting information file. DOI: 10.1107/S205698902101238X/yk2160Isup3.cml
CCDC reference: 2123627
Additional supporting information: crystallographic information; 3D view; checkCIF report




