Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jan 1;78(Pt 1):47–50. doi: 10.1107/S2056989021013116

Crystal structure and Hirshfeld surface analysis of 3-methyl-4-oxo-N-phenyl-3,4-di­hydro­quinazoline-2-carbo­thio­amide

Nasiba Pirnazarova a, Ubaydullo Yakubov b, Sevara Allabergenova b, Akmaljon Tojiboev c,d,*, Kambarali Turgunov b,e, Burkhon Elmuradov b
PMCID: PMC8739201  PMID: 35079423

The crystal structure of the title compound comprises two independent mol­ecules that mainly differ in the orientation of the phenyl ring to the rest of the mol­ecule.

Keywords: crystal structure, thio­amide, intra- and inter­molecular inter­actions, Hirshfeld surface

Abstract

The asymmetric unit of the title compound, C16H13N3OS, comprises two mol­ecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the mol­ecule, as expressed by the Cthio­amide—Nthio­amide—Cphen­yl—Cphen­yl torsion angle of 49.3 (3)° for mol­ecule A and of 5.4 (3)° for mol­ecule B. In the crystal, two inter­molecular N—H⋯N hydrogen bonds lead to the formation of a dimer with R 2 2(10) graph-set notation. A Hirshfeld surface analysis revealed that H⋯H inter­actions are the most important inter­molecular inter­actions, contributing 40.9% to the Hirshfeld surface.

Chemical context

Thio­amides and their derivatives are important representatives of organic compounds containing a sulfur atom. The presence of bifunctional properties in thio­amides, resulting from the presence of nitro­gen and sulfur atoms, and their participation in reactions as electrophilic or nucleophilic reagents can lead to the formation of different heterocyclic compounds. Several review articles have been published on the syntheses, physico-chemical properties and applications of thio­amides (Jagodziński, 2003; Belskaya et al., 2010; Koketsu & Ishihara, 2007; Krayushkin et al., 2004; Britsun et al., 2008).

One of the methods of choice for the synthesis of widely used thio­amides is the Wilgerodt–Kindler reaction. As shown by previous studies, the Wilgerodt–Kindler reactions with 2-methyl­quinazoline-4-one went to the active methyl group in the position 2 and, accordingly, thio­amides were synthesized in a series of quinazoline derivatives (Shakhidoyatov et al., 1997). Continuing our work in this direction, we have synthesized 2,3-di­methyl­quinazoline-4-one and studied the corresponding Wilgerodt–Kindler reactions.

During the reaction involving 2,3-di­methyl­quinazoline-4-one, sulfur, aniline, the solvent dimethyl sulfoxide and the catalyst sodium sulfide, the reaction went to the active methyl group in position 2 and new thio­amides of a number of deriv­atives of quinazoline-4-one were obtained. The synthesis and crystal structure of 3-methyl-4-oxo-N-phenyl-3,4-di­hydro­quinazoline-2-carbo­thio­amide, C16H13N3OS, is reported here. Relevant inter­molecular contacts were qu­anti­fied by using Hirshfeld surface analysis. graphic file with name e-78-00047-scheme1.jpg

Structural commentary

The title compound crystallizes with two mol­ecules, A and B, in the asymmetric unit (Fig. 1). In mol­ecules A and B the orientations of the quinazoline ring system and the phenyl ring relative to the thio­amide group differ, as shown by the values of the N3—C2—C10—S1 and C10—N11—C12—C13 torsion angles of 76.14 (19) and 49.3 (3)°, respectively, in mol­ecule A and 83.78 (19) and 5.4 (3)° in mol­ecule B. As a result, there are differences in the intra­molecular distances between the sulfur and hydrogen atoms in mol­ecules A and B. In mol­ecule A, the contacts S1A⋯H9AB and S1A⋯H13A are 2.873 and 2.897 Å whereas the corresponding distances in mol­ecule B are 3.054 and 2.578 Å. The phenyl and pyrimidine rings in both mol­ecules are essentially coplanar, with r.m.s. deviations of 0.0225 and 0.0119 Å for mol­ecule A and B, respectively. Fig. 2 shows that the pyrimidine moieties of the mol­ecules are almost superimposable.

Figure 1.

Figure 1

Asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Figure 2.

Figure 2

Overlay plot of the two independent mol­ecules in the title compound.

Supra­molecular features

In the crystal, mol­ecules A and B form a dimer with an Inline graphic (10) ring motif through inter­mol­ecular N—H⋯N hydrogen bonds (Fig. 3, Table 1). In addition, mol­ecule A inter­acts with mol­ecule B by a C—H⋯ π inter­action (the C13A—HCg 1 distance is 3.148 Å, Cg1 is the centroid of atoms C12B–C17B). Other weak C7A—H7A⋯O1B, C7A—H7A ⋯O1B, C7B—H7B⋯O1A, C9A—H9AB⋯S1A and C13B—H13B⋯S1B hydrogen bonds link adjacent dimers, forming supra­molecular layers expanding parallel to (010) (Fig. 4). The overall packing of mol­ecules leads to the formation of narrow channels along the b-axis direction, passing through nodes and the centre of the cell (Fig. 5).

Figure 3.

Figure 3

A diagram showing the intra­mol­ecular C—H⋯S (green dashed lines) and the inter­molecular N—H⋯N (light blue dashed lines) and C—H⋯O (blue dashed lines) hydrogen bonds, as well as C—S⋯π (red dashed lines) inter­actions present in the title compound. H atoms not involved in the inter­actions have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯N1B 0.88 (2) 2.05 (2) 2.913 (2) 166.7 (18)
N1B—H11B⋯N1A 0.87 (2) 2.04 (2) 2.907 (2) 171.6 (19)
C9A—H9AB⋯S1A 0.96 2.87 3.424 (2) 118
C13B—H13B⋯S1B 0.93 2.58 3.243 (3) 129
C7A i—H7A⋯O1B 0.93 2.49 3.386 (3) 162
C7B ii—H7B⋯O1A 0.93 2.47 3.385 (3) 166

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Figure 4.

Figure 4

A view of the crystal packing of the title compound along the a axis. Inter­molecular hydrogen bonds and C—S⋯π inter­actions are displayed by blue and green dotted lines, respectively.

Figure 5.

Figure 5

View of the narrow channels formed along the b axis.

Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017) to qu­antify and visualize inter­molecular inter­actions in the crystal structure of the title compound. The HS mapped with d norm is represented in Fig. 6. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer, respectively, than the van der Waals radii. The two-dimensional fingerprint plot for all contacts is depicted in Fig. 7 a, and delineated in H⋯H, C⋯H/H⋯C, S⋯H/H⋯S, N⋯H/H⋯N, and O⋯H/H⋯O contacts (Fig. 7 b–f) whereby H⋯H contacts are responsible for the largest contribution (40.9%) to the Hirshfeld surface. C⋯H/H⋯C contribute 23.7%, S⋯H/H⋯S contacts 10.7%, N⋯H/H⋯N contacts 8.1% and O⋯H/H⋯O contacts 7.0% to the total Hirshfeld surface. The contributions of further contacts are only minor and amount to C⋯C (4.0%), S⋯C/C⋯S (1.9%), N⋯C/C⋯N (1.2%), S⋯S (1.0%), S⋯C/C⋯S (0.6%), O⋯N/N⋯O (0.2%) and O⋯C/C⋯O (0.1%).

Figure 6.

Figure 6

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm.

Figure 7.

Figure 7

Two-dimensional fingerprint plots for the title compound, (a) for all contacts and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S, (e) N⋯H/H⋯N and (f) O⋯H/H⋯O contacts. d i and d e denote the closest inter­nal and external distances (in Å) from a point on the surface.

Database survey

A search in the Cambridge Structural Database (CSD, version 5.41, update of January 2020; Groom et al., 2016) revealed six matches for mol­ecules containing the 2,3-di­methyl­quinazolin-4(3H)-one moiety with a similar planar conformation as that in the title structure: AFOCIJ (Utayeva et al., 2013), HOCYED (Voitenko et al., 1999), MAHLOZ (Kotipalli et al., 2016), MUDHIE (Baglai et al., 2014), UTIDIM (Kundu et al., 2016) and XODZIB (Saitkulov et al., 2014). A search for the 2-methyl-N-phenyl­prop-2-ene­thio­amide moiety gave six hits: ADEKUQ (Xiao & Jian, 2006), AGECIB (Skelton & Massi, 2018), GOFFOY (Li et al., 2014), GOXFUW (Li et al., 2016), JURWEA (Guo et al., 2015) and QAJVAY (Mereiter et al., 2000).

Synthesis and crystallization

0.435 g (0.0025 mol) of 2,3-di­methyl­quinazoline-4-one, 0.465 g (0.005 mol) of aniline, 0.24 g (0.0075 mol) of sulfur, 0.05 g of sodium sulfide (Na2S·9H2O) and 4 ml of dimethyl sulfoxide were injected into a round-bottomed flask with a volume of 100 ml. Then the reaction flask was heated to 403 K for 6 h. After the end of the reaction, the flask was cooled and 40 ml of an aqueous sodium hydroxide solution were added. The resulting mixture was filtered, then added to a dilute solution of sulfuric acid (pH 6). The formed precipitate was filtered off and recrystallized in methanol. In total, 0.5 g (64.0%) of the product were obtained, m.p. 481–483 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically, with C—H = 0.96 Å (for methyl­ene H atoms) and C—H = 0.93 Å (for aromatic H atoms), and were refined with U iso(H) = 1.5U eq(Cmeth­yl) and 1.2U eq(C), respectively. H atoms bonded to nitro­gen were located in a difference-Fourier map, and their positional and isotropic displacement parameters were freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C16H13N3OS
M r 295.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 566
a, b, c (Å) 11.7685 (3), 16.3641 (3), 16.3798 (3)
β (°) 110.646 (2)
V3) 2951.85 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.96
Crystal size (mm) 0.25 × 0.23 × 0.20
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.639, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16801, 5685, 4788
R int 0.022
(sin θ/λ)max−1) 0.615
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.121, 1.06
No. of reflections 5685
No. of parameters 390
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.43

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021013116/wm5629sup1.cif

e-78-00047-sup1.cif (594.4KB, cif)

Supporting information file. DOI: 10.1107/S2056989021013116/wm5629Isup3.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021013116/wm5629Isup3.hkl

e-78-00047-Isup3.hkl (452.2KB, hkl)

CCDC reference: 2127513

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Institute of Bioorganic Chemistry, Academy Sciences of Uzbekistan, for providing laboratory facilities.

supplementary crystallographic information

Crystal data

C16H13N3OS F(000) = 1232
Mr = 295.35 Dx = 1.329 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 11.7685 (3) Å Cell parameters from 9141 reflections
b = 16.3641 (3) Å θ = 2.7–71.1°
c = 16.3798 (3) Å µ = 1.96 mm1
β = 110.646 (2)° T = 566 K
V = 2951.85 (11) Å3 Prismatic, yellow
Z = 8 0.25 × 0.23 × 0.20 mm

Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer 5685 independent reflections
Radiation source: micro-focus sealed X-ray tube 4788 reflections with I > 2σ(I)
Detector resolution: 10.00000 pixels mm-1 Rint = 0.022
ω scans θmax = 71.4°, θmin = 4.0°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) h = −14→14
Tmin = 0.639, Tmax = 1.000 k = −19→17
16801 measured reflections l = −19→20

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.6163P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 0.32 e Å3
5685 reflections Δρmin = −0.42 e Å3
390 parameters Extinction correction: SHELXL (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00124 (12)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.46771 (5) 0.62649 (4) 0.89046 (3) 0.07206 (19)
O1A 0.69766 (15) 0.59324 (9) 0.65155 (11) 0.0755 (4)
N1A 0.48752 (12) 0.75527 (8) 0.72159 (9) 0.0456 (3)
N1B 0.22774 (13) 0.73699 (9) 0.57212 (9) 0.0474 (3)
S1B 0.04219 (5) 0.86597 (6) 0.63642 (4) 0.1030 (3)
O1B 0.30121 (15) 0.90703 (8) 0.41700 (10) 0.0690 (4)
C2A 0.49005 (14) 0.67801 (10) 0.73853 (10) 0.0430 (4)
C2B 0.22279 (15) 0.81489 (10) 0.58376 (10) 0.0444 (4)
N3A 0.55988 (13) 0.62176 (8) 0.71623 (10) 0.0487 (3)
N3B 0.24924 (13) 0.87402 (8) 0.53417 (9) 0.0461 (3)
C4A 0.63788 (17) 0.64470 (11) 0.67217 (12) 0.0523 (4)
C4B 0.28038 (16) 0.85368 (11) 0.46179 (11) 0.0476 (4)
C4A' 0.63881 (16) 0.73161 (11) 0.65427 (12) 0.0488 (4)
C4B' 0.28702 (15) 0.76640 (10) 0.44719 (10) 0.0441 (4)
C5A 0.7150 (2) 0.76334 (13) 0.61289 (15) 0.0663 (5)
H5A 0.767186 0.728822 0.597752 0.080*
C5B 0.31931 (18) 0.73805 (12) 0.37776 (12) 0.0572 (5)
H5B 0.336243 0.775028 0.340470 0.069*
C6A 0.7128 (2) 0.84521 (14) 0.59469 (16) 0.0719 (6)
H6A 0.763410 0.866124 0.567158 0.086*
C6B 0.3260 (2) 0.65590 (14) 0.36481 (14) 0.0699 (6)
H6B 0.347755 0.637057 0.318813 0.084*
C7A 0.6353 (2) 0.89685 (13) 0.61719 (15) 0.0669 (5)
H7A 0.633301 0.952178 0.603750 0.080*
C7B 0.3002 (2) 0.60060 (13) 0.42011 (16) 0.0738 (6)
H7B 0.304581 0.544836 0.410662 0.089*
C8A 0.56154 (18) 0.86710 (11) 0.65916 (14) 0.0570 (5)
H8A 0.510698 0.902433 0.674732 0.068*
C8B 0.2684 (2) 0.62723 (12) 0.48872 (14) 0.0644 (5)
H8B 0.251967 0.589664 0.525684 0.077*
C8A' 0.56261 (15) 0.78398 (10) 0.67853 (11) 0.0443 (4)
C8B' 0.26094 (16) 0.71106 (10) 0.50270 (11) 0.0455 (4)
C9A 0.5550 (2) 0.53429 (12) 0.73431 (16) 0.0712 (6)
H9AA 0.543485 0.503622 0.682028 0.107*
H9AB 0.488631 0.524014 0.754066 0.107*
H9AC 0.629728 0.517988 0.778655 0.107*
C9B 0.2411 (2) 0.96167 (12) 0.55107 (14) 0.0673 (5)
H9BA 0.308740 0.989779 0.544197 0.101*
H9BB 0.242392 0.969168 0.609523 0.101*
H9BC 0.166757 0.983288 0.510518 0.101*
C10A 0.40897 (15) 0.64886 (10) 0.78644 (11) 0.0464 (4)
C10B 0.18531 (16) 0.84207 (12) 0.65864 (11) 0.0520 (4)
N11A 0.29256 (13) 0.64598 (9) 0.73505 (9) 0.0459 (3)
N11B 0.27899 (14) 0.84235 (9) 0.73404 (9) 0.0458 (3)
H11A 0.2709 (18) 0.6657 (12) 0.6816 (13) 0.056 (5)*
H11B 0.3453 (19) 0.8211 (12) 0.7308 (13) 0.060 (6)*
C12A 0.19183 (15) 0.62418 (10) 0.76017 (11) 0.0458 (4)
C12B 0.28641 (16) 0.86210 (10) 0.82016 (10) 0.0460 (4)
C13A 0.17430 (18) 0.65831 (12) 0.83199 (13) 0.0579 (5)
H13A 0.231162 0.694273 0.868105 0.070*
C13B 0.1889 (2) 0.88031 (13) 0.84467 (13) 0.0615 (5)
H13B 0.110617 0.880890 0.803547 0.074*
C14A 0.0710 (2) 0.63823 (14) 0.84934 (16) 0.0687 (6)
H14A 0.058768 0.660791 0.897690 0.082*
C14B 0.2088 (2) 0.89785 (15) 0.93166 (14) 0.0733 (6)
H14B 0.143062 0.910500 0.948369 0.088*
C15A −0.01364 (19) 0.58550 (15) 0.79631 (16) 0.0728 (6)
H15A −0.083359 0.573110 0.808191 0.087*
C15B 0.3230 (2) 0.89684 (15) 0.99301 (13) 0.0743 (6)
H15B 0.335113 0.909440 1.050847 0.089*
C16A 0.00499 (18) 0.55107 (15) 0.72556 (15) 0.0713 (6)
H16A −0.051928 0.514896 0.689846 0.086*
C16B 0.4194 (2) 0.87709 (17) 0.96852 (14) 0.0799 (7)
H16B 0.497078 0.875101 1.010346 0.096*
C17A 0.10845 (17) 0.57004 (13) 0.70712 (12) 0.0580 (5)
H17A 0.121368 0.546455 0.659469 0.070*
C17B 0.40270 (19) 0.86009 (14) 0.88256 (12) 0.0637 (5)
H17B 0.468896 0.847365 0.866451 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0501 (3) 0.1132 (5) 0.0526 (3) −0.0013 (3) 0.0178 (2) 0.0220 (3)
O1A 0.0852 (10) 0.0582 (8) 0.1095 (12) 0.0080 (7) 0.0668 (10) −0.0077 (8)
N1A 0.0427 (7) 0.0479 (8) 0.0540 (8) 0.0015 (6) 0.0267 (6) 0.0025 (6)
N1B 0.0546 (8) 0.0508 (8) 0.0435 (7) 0.0033 (6) 0.0257 (6) 0.0007 (6)
S1B 0.0536 (3) 0.1936 (8) 0.0591 (3) 0.0382 (4) 0.0165 (3) −0.0226 (4)
O1B 0.0907 (10) 0.0565 (8) 0.0774 (9) −0.0040 (7) 0.0513 (8) 0.0100 (7)
C2A 0.0387 (8) 0.0476 (9) 0.0469 (8) −0.0015 (6) 0.0201 (7) 0.0002 (7)
C2B 0.0423 (9) 0.0539 (10) 0.0380 (8) 0.0038 (7) 0.0152 (7) −0.0023 (7)
N3A 0.0499 (8) 0.0422 (7) 0.0625 (9) −0.0013 (6) 0.0304 (7) −0.0013 (6)
N3B 0.0495 (8) 0.0443 (7) 0.0464 (7) −0.0005 (6) 0.0195 (6) −0.0044 (6)
C4A 0.0521 (10) 0.0519 (10) 0.0633 (11) −0.0020 (8) 0.0333 (9) −0.0068 (8)
C4B 0.0489 (9) 0.0503 (9) 0.0484 (9) −0.0023 (7) 0.0229 (8) 0.0002 (7)
C4A' 0.0469 (9) 0.0512 (9) 0.0569 (10) −0.0034 (7) 0.0290 (8) −0.0030 (7)
C4B' 0.0445 (9) 0.0489 (9) 0.0425 (8) −0.0018 (7) 0.0198 (7) −0.0030 (7)
C5A 0.0646 (12) 0.0689 (13) 0.0855 (14) −0.0023 (10) 0.0513 (11) 0.0005 (10)
C5B 0.0658 (12) 0.0649 (11) 0.0512 (10) 0.0001 (9) 0.0335 (9) −0.0045 (8)
C6A 0.0704 (14) 0.0738 (14) 0.0899 (15) −0.0128 (11) 0.0511 (12) 0.0088 (11)
C6B 0.0848 (15) 0.0734 (13) 0.0648 (12) 0.0046 (11) 0.0429 (11) −0.0170 (10)
C7A 0.0699 (13) 0.0544 (11) 0.0843 (14) −0.0078 (10) 0.0371 (11) 0.0123 (10)
C7B 0.0952 (17) 0.0519 (11) 0.0867 (15) 0.0033 (11) 0.0476 (13) −0.0166 (10)
C8A 0.0580 (11) 0.0485 (10) 0.0733 (12) 0.0009 (8) 0.0339 (10) 0.0057 (8)
C8B 0.0857 (15) 0.0480 (10) 0.0714 (13) 0.0014 (9) 0.0425 (11) −0.0013 (8)
C8A' 0.0409 (8) 0.0473 (9) 0.0498 (9) −0.0028 (7) 0.0222 (7) 0.0001 (7)
C8B' 0.0504 (9) 0.0468 (9) 0.0442 (8) 0.0017 (7) 0.0227 (7) −0.0018 (7)
C9A 0.0849 (15) 0.0444 (10) 0.0987 (16) −0.0026 (10) 0.0505 (13) 0.0025 (10)
C9B 0.0868 (15) 0.0460 (10) 0.0687 (12) 0.0036 (10) 0.0270 (11) −0.0114 (9)
C10A 0.0412 (9) 0.0513 (9) 0.0518 (9) −0.0005 (7) 0.0228 (7) 0.0051 (7)
C10B 0.0501 (10) 0.0655 (11) 0.0435 (9) 0.0082 (8) 0.0203 (8) −0.0063 (8)
N11A 0.0415 (7) 0.0561 (8) 0.0453 (8) −0.0012 (6) 0.0217 (6) 0.0100 (6)
N11B 0.0475 (8) 0.0537 (8) 0.0415 (7) 0.0071 (6) 0.0222 (6) −0.0045 (6)
C12A 0.0385 (8) 0.0533 (9) 0.0500 (9) 0.0032 (7) 0.0213 (7) 0.0141 (7)
C12B 0.0560 (10) 0.0462 (9) 0.0415 (8) 0.0035 (7) 0.0241 (8) −0.0018 (6)
C13A 0.0570 (11) 0.0587 (11) 0.0684 (11) 0.0054 (9) 0.0348 (9) 0.0052 (9)
C13B 0.0619 (12) 0.0770 (13) 0.0520 (10) 0.0144 (10) 0.0280 (9) −0.0044 (9)
C14A 0.0647 (13) 0.0808 (14) 0.0776 (14) 0.0150 (11) 0.0461 (12) 0.0154 (11)
C14B 0.0842 (16) 0.0910 (15) 0.0588 (12) 0.0145 (12) 0.0426 (12) −0.0071 (11)
C15A 0.0501 (11) 0.0950 (16) 0.0849 (15) 0.0072 (11) 0.0380 (11) 0.0303 (13)
C15B 0.0956 (17) 0.0875 (15) 0.0461 (10) −0.0038 (13) 0.0329 (11) −0.0109 (10)
C16A 0.0486 (11) 0.0888 (15) 0.0742 (13) −0.0137 (10) 0.0187 (10) 0.0193 (11)
C16B 0.0736 (15) 0.116 (2) 0.0473 (11) −0.0050 (13) 0.0174 (10) −0.0126 (11)
C17A 0.0507 (10) 0.0729 (12) 0.0521 (10) −0.0069 (9) 0.0203 (8) 0.0098 (9)
C17B 0.0556 (11) 0.0883 (15) 0.0490 (10) 0.0010 (10) 0.0207 (9) −0.0083 (9)

Geometric parameters (Å, º)

S1A—C10A 1.6385 (17) C8B—C8B' 1.399 (2)
O1A—C4A 1.219 (2) C8B—H8B 0.9300
N1A—C2A 1.292 (2) C9A—H9AA 0.9600
N1A—C8A' 1.392 (2) C9A—H9AB 0.9600
N1B—C2B 1.293 (2) C9A—H9AC 0.9600
N1B—C8B' 1.392 (2) C9B—H9BA 0.9600
S1B—C10B 1.6401 (18) C9B—H9BB 0.9600
O1B—C4B 1.220 (2) C9B—H9BC 0.9600
C2A—N3A 1.367 (2) C10A—N11A 1.332 (2)
C2A—C10A 1.511 (2) C10B—N11B 1.334 (2)
C2B—N3B 1.368 (2) N11A—C12A 1.430 (2)
C2B—C10B 1.510 (2) N11A—H11A 0.88 (2)
N3A—C4A 1.404 (2) N11B—C12B 1.420 (2)
N3A—C9A 1.467 (2) N11B—H11B 0.87 (2)
N3B—C4B 1.399 (2) C12A—C17A 1.379 (3)
N3B—C9B 1.470 (2) C12A—C13A 1.382 (3)
C4A—C4A' 1.453 (3) C12B—C13B 1.375 (2)
C4B—C4B' 1.455 (2) C12B—C17B 1.390 (3)
C4A'—C8A' 1.396 (2) C13A—C14A 1.382 (3)
C4A'—C5A 1.401 (2) C13A—H13A 0.9300
C4B'—C8B' 1.392 (2) C13B—C14B 1.390 (3)
C4B'—C5B 1.399 (2) C13B—H13B 0.9300
C5A—C6A 1.371 (3) C14A—C15A 1.372 (3)
C5A—H5A 0.9300 C14A—H14A 0.9300
C5B—C6B 1.367 (3) C14B—C15B 1.365 (3)
C5B—H5B 0.9300 C14B—H14B 0.9300
C6A—C7A 1.385 (3) C15A—C16A 1.374 (3)
C6A—H6A 0.9300 C15A—H15A 0.9300
C6B—C7B 1.387 (3) C15B—C16B 1.369 (3)
C6B—H6B 0.9300 C15B—H15B 0.9300
C7A—C8A 1.373 (3) C16A—C17A 1.389 (3)
C7A—H7A 0.9300 C16A—H16A 0.9300
C7B—C8B 1.375 (3) C16B—C17B 1.380 (3)
C7B—H7B 0.9300 C16B—H16B 0.9300
C8A—C8A' 1.396 (2) C17A—H17A 0.9300
C8A—H8A 0.9300 C17B—H17B 0.9300
C2A—N1A—C8A' 117.91 (14) H9AA—C9A—H9AB 109.5
C2B—N1B—C8B' 117.44 (14) N3A—C9A—H9AC 109.5
N1A—C2A—N3A 124.89 (14) H9AA—C9A—H9AC 109.5
N1A—C2A—C10A 116.71 (14) H9AB—C9A—H9AC 109.5
N3A—C2A—C10A 118.39 (14) N3B—C9B—H9BA 109.5
N1B—C2B—N3B 125.33 (14) N3B—C9B—H9BB 109.5
N1B—C2B—C10B 116.84 (15) H9BA—C9B—H9BB 109.5
N3B—C2B—C10B 117.83 (15) N3B—C9B—H9BC 109.5
C2A—N3A—C4A 121.39 (14) H9BA—C9B—H9BC 109.5
C2A—N3A—C9A 122.23 (15) H9BB—C9B—H9BC 109.5
C4A—N3A—C9A 116.35 (15) N11A—C10A—C2A 112.34 (14)
C2B—N3B—C4B 121.15 (14) N11A—C10A—S1A 127.74 (13)
C2B—N3B—C9B 122.32 (15) C2A—C10A—S1A 119.91 (12)
C4B—N3B—C9B 116.47 (15) N11B—C10B—C2B 111.73 (14)
O1A—C4A—N3A 120.23 (17) N11B—C10B—S1B 130.79 (13)
O1A—C4A—C4A' 125.05 (17) C2B—C10B—S1B 117.47 (13)
N3A—C4A—C4A' 114.72 (14) C10A—N11A—C12A 126.80 (14)
O1B—C4B—N3B 120.52 (16) C10A—N11A—H11A 119.1 (13)
O1B—C4B—C4B' 124.74 (16) C12A—N11A—H11A 113.5 (13)
N3B—C4B—C4B' 114.73 (14) C10B—N11B—C12B 131.43 (15)
C8A'—C4A'—C5A 119.71 (17) C10B—N11B—H11B 114.1 (13)
C8A'—C4A'—C4A 119.49 (15) C12B—N11B—H11B 114.0 (13)
C5A—C4A'—C4A 120.80 (16) C17A—C12A—C13A 120.63 (17)
C8B'—C4B'—C5B 120.06 (16) C17A—C12A—N11A 117.17 (16)
C8B'—C4B'—C4B 119.62 (14) C13A—C12A—N11A 122.12 (17)
C5B—C4B'—C4B 120.33 (16) C13B—C12B—C17B 119.80 (16)
C6A—C5A—C4A' 120.07 (19) C13B—C12B—N11B 125.03 (17)
C6A—C5A—H5A 120.0 C17B—C12B—N11B 115.15 (16)
C4A'—C5A—H5A 120.0 C14A—C13A—C12A 119.0 (2)
C6B—C5B—C4B' 119.92 (18) C14A—C13A—H13A 120.5
C6B—C5B—H5B 120.0 C12A—C13A—H13A 120.5
C4B'—C5B—H5B 120.0 C12B—C13B—C14B 119.2 (2)
C5A—C6A—C7A 120.17 (18) C12B—C13B—H13B 120.4
C5A—C6A—H6A 119.9 C14B—C13B—H13B 120.4
C7A—C6A—H6A 119.9 C15A—C14A—C13A 121.0 (2)
C5B—C6B—C7B 120.16 (18) C15A—C14A—H14A 119.5
C5B—C6B—H6B 119.9 C13A—C14A—H14A 119.5
C7B—C6B—H6B 119.9 C15B—C14B—C13B 121.2 (2)
C8A—C7A—C6A 120.58 (19) C15B—C14B—H14B 119.4
C8A—C7A—H7A 119.7 C13B—C14B—H14B 119.4
C6A—C7A—H7A 119.7 C14A—C15A—C16A 119.72 (19)
C8B—C7B—C6B 120.80 (19) C14A—C15A—H15A 120.1
C8B—C7B—H7B 119.6 C16A—C15A—H15A 120.1
C6B—C7B—H7B 119.6 C14B—C15B—C16B 119.32 (19)
C7A—C8A—C8A' 120.18 (18) C14B—C15B—H15B 120.3
C7A—C8A—H8A 119.9 C16B—C15B—H15B 120.3
C8A'—C8A—H8A 119.9 C15A—C16A—C17A 120.3 (2)
C7B—C8B—C8B' 119.73 (19) C15A—C16A—H16A 119.9
C7B—C8B—H8B 120.1 C17A—C16A—H16A 119.9
C8B'—C8B—H8B 120.1 C15B—C16B—C17B 120.8 (2)
N1A—C8A'—C4A' 121.56 (15) C15B—C16B—H16B 119.6
N1A—C8A'—C8A 119.17 (15) C17B—C16B—H16B 119.6
C4A'—C8A'—C8A 119.26 (16) C12A—C17A—C16A 119.35 (19)
C4B'—C8B'—N1B 121.68 (15) C12A—C17A—H17A 120.3
C4B'—C8B'—C8B 119.33 (16) C16A—C17A—H17A 120.3
N1B—C8B'—C8B 118.99 (16) C16B—C17B—C12B 119.6 (2)
N3A—C9A—H9AA 109.5 C16B—C17B—H17B 120.2
N3A—C9A—H9AB 109.5 C12B—C17B—H17B 120.2
C8A'—N1A—C2A—N3A −1.0 (3) C4A—C4A'—C8A'—C8A −178.35 (17)
C8A'—N1A—C2A—C10A 179.14 (14) C7A—C8A—C8A'—N1A 179.63 (18)
C8B'—N1B—C2B—N3B −1.0 (3) C7A—C8A—C8A'—C4A' −0.4 (3)
C8B'—N1B—C2B—C10B 179.33 (14) C5B—C4B'—C8B'—N1B −179.59 (16)
N1A—C2A—N3A—C4A 0.6 (3) C4B—C4B'—C8B'—N1B 0.4 (3)
C10A—C2A—N3A—C4A −179.57 (16) C5B—C4B'—C8B'—C8B 0.6 (3)
N1A—C2A—N3A—C9A −177.51 (18) C4B—C4B'—C8B'—C8B −179.50 (18)
C10A—C2A—N3A—C9A 2.4 (3) C2B—N1B—C8B'—C4B' −0.5 (2)
N1B—C2B—N3B—C4B 2.7 (3) C2B—N1B—C8B'—C8B 179.35 (18)
C10B—C2B—N3B—C4B −177.67 (15) C7B—C8B—C8B'—C4B' −0.6 (3)
N1B—C2B—N3B—C9B 179.73 (17) C7B—C8B—C8B'—N1B 179.5 (2)
C10B—C2B—N3B—C9B −0.6 (2) N1A—C2A—C10A—N11A 75.1 (2)
C2A—N3A—C4A—O1A −178.66 (18) N3A—C2A—C10A—N11A −104.80 (18)
C9A—N3A—C4A—O1A −0.5 (3) N1A—C2A—C10A—S1A −103.97 (17)
C2A—N3A—C4A—C4A' 0.9 (3) N3A—C2A—C10A—S1A 76.14 (19)
C9A—N3A—C4A—C4A' 179.10 (17) N1B—C2B—C10B—N11B 83.6 (2)
C2B—N3B—C4B—O1B 178.41 (17) N3B—C2B—C10B—N11B −96.12 (19)
C9B—N3B—C4B—O1B 1.2 (3) N1B—C2B—C10B—S1B −96.53 (18)
C2B—N3B—C4B—C4B' −2.6 (2) N3B—C2B—C10B—S1B 83.78 (19)
C9B—N3B—C4B—C4B' −179.78 (16) C2A—C10A—N11A—C12A −177.47 (15)
O1A—C4A—C4A'—C8A' 177.6 (2) S1A—C10A—N11A—C12A 1.5 (3)
N3A—C4A—C4A'—C8A' −1.9 (3) C2B—C10B—N11B—C12B −179.09 (17)
O1A—C4A—C4A'—C5A −2.2 (3) S1B—C10B—N11B—C12B 1.0 (3)
N3A—C4A—C4A'—C5A 178.19 (18) C10A—N11A—C12A—C17A −133.70 (19)
O1B—C4B—C4B'—C8B' −179.87 (18) C10A—N11A—C12A—C13A 49.3 (3)
N3B—C4B—C4B'—C8B' 1.1 (2) C10B—N11B—C12B—C13B 5.4 (3)
O1B—C4B—C4B'—C5B 0.1 (3) C10B—N11B—C12B—C17B −176.2 (2)
N3B—C4B—C4B'—C5B −178.91 (16) C17A—C12A—C13A—C14A −0.8 (3)
C8A'—C4A'—C5A—C6A −1.4 (3) N11A—C12A—C13A—C14A 176.03 (17)
C4A—C4A'—C5A—C6A 178.5 (2) C17B—C12B—C13B—C14B 1.1 (3)
C8B'—C4B'—C5B—C6B −0.4 (3) N11B—C12B—C13B—C14B 179.36 (19)
C4B—C4B'—C5B—C6B 179.66 (18) C12A—C13A—C14A—C15A −0.3 (3)
C4A'—C5A—C6A—C7A 0.1 (4) C12B—C13B—C14B—C15B −0.4 (4)
C4B'—C5B—C6B—C7B 0.3 (3) C13A—C14A—C15A—C16A 1.0 (3)
C5A—C6A—C7A—C8A 1.1 (4) C13B—C14B—C15B—C16B −0.9 (4)
C5B—C6B—C7B—C8B −0.3 (4) C14A—C15A—C16A—C17A −0.6 (3)
C6A—C7A—C8A—C8A' −0.9 (3) C14B—C15B—C16B—C17B 1.5 (4)
C6B—C7B—C8B—C8B' 0.5 (4) C13A—C12A—C17A—C16A 1.2 (3)
C2A—N1A—C8A'—C4A' −0.1 (2) N11A—C12A—C17A—C16A −175.84 (17)
C2A—N1A—C8A'—C8A 179.82 (16) C15A—C16A—C17A—C12A −0.4 (3)
C5A—C4A'—C8A'—N1A −178.49 (18) C15B—C16B—C17B—C12B −0.8 (4)
C4A—C4A'—C8A'—N1A 1.6 (3) C13B—C12B—C17B—C16B −0.5 (3)
C5A—C4A'—C8A'—C8A 1.5 (3) N11B—C12B—C17B—C16B −179.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H11A···N1B 0.88 (2) 2.05 (2) 2.913 (2) 166.7 (18)
N1B—H11B···N1A 0.87 (2) 2.04 (2) 2.907 (2) 171.6 (19)
C9A—H9AB···S1A 0.96 2.87 3.424 (2) 118
C13B—H13B···S1B 0.93 2.58 3.243 (3) 129
C7Ai—H7A···O1B 0.93 2.49 3.386 (3) 162
C7Bii—H7B···O1A 0.93 2.47 3.385 (3) 166

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Georg Forster Research Fellowship for Experienced Researchers of the Alexander von Humboldt Foundation grant UZB 1186936 GF-E to B. Elmuradov.

References

  1. Baglai, I., Maraval, V., Voitenko, Z. V., Duhayon, C., Volovenko, Y. M. & Chauvin, R. (2014). Turk. J. Chem. 38, 121–126.
  2. Belskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arkivoc, pp. 275–332.
  3. Britsun, V. N., Esipenko, A. N. & Lozinskii, M. O. (2008). Chem. Heterocycl. Compd, 44, 1429–1459.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Guo, W. S., Xin, X., Zhao, K. L., Wen, L. R. & Li, M. (2015). RSC Adv. 5, 70429–70432.
  6. Jagodziński, T. S. (2003). Chem. Rev. 103, 197–228. [DOI] [PubMed]
  7. Koketsu, M. & Ishihara, H. (2007). Synthesis, 4, 15–25.
  8. Kotipalli, T., Kavala, V., Janreddy, D., Bandi, V., Kuo, Ch.-W. & Yao, Ch.-F. (2016). Eur. J. Org. Chem. pp. 1182–1193.
  9. Krayushkin, M. M., Yarovenko, V. N. & Zavarzin, I. V. (2004). Russ. Chem. Bull. 53, 517–527.
  10. Kundu, P., Mondal, A. & Chowdhury, C. (2016). J. Org. Chem. 81, 6596–6608. [DOI] [PubMed]
  11. Li, H. Zh., Xue, W. J. & Wu, A. X. (2014). Tetrahedron, 70, 4645–4651.
  12. Li, M., Sun, K. N. & Wen, L. R. (2016). RSC Adv. 6, 21535–21539.
  13. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  14. Mereiter, K., Gaith, A. H. & Fröhlich, J. (2000). Private communication (refcode: QAJVAY). CCDC, Cambridge, England.
  15. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Saitkulov, F. E., Tashniyazov, A. A., Mamadrahimov, A. A. & Shakhidoyatov, K. M. (2014). Acta Cryst. E70, o788. [DOI] [PMC free article] [PubMed]
  17. Shakhidoyatov, Kh. M., Egamov, D. I. & Askarov, I. R. (1997). Uzbek Chem. J, 6, 26–27.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Skelton, B. W. & Massi, M. (2018). Private communication (refcode: AGECIB). CCDC, Cambridge, England.
  21. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  22. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  23. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
  24. Utayeva, F. R., Okmanov, R. Y., Mukarramov, N. I., Shakhidoyatov, K. M. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o1094. [DOI] [PMC free article] [PubMed]
  25. Voitenko, Z. V., Samoilenko, V. P., Kovtunenko, V. A., Gurkevich, V. Yu., Tyltin, A. K., Shcherbakov, M. V. & Shishkin, O. V. (1999). Chem. Heterocycl. Compd. 35, 600–607.
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Xiao, H.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o2854–o2855.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021013116/wm5629sup1.cif

e-78-00047-sup1.cif (594.4KB, cif)

Supporting information file. DOI: 10.1107/S2056989021013116/wm5629Isup3.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021013116/wm5629Isup3.hkl

e-78-00047-Isup3.hkl (452.2KB, hkl)

CCDC reference: 2127513

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES