Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jan 1;78(Pt 1):88–91. doi: 10.1107/S205698902101344X

Crystal structure and mol­ecular docking study of diethyl 2,2′-({[(1E,1′E)-(hydrazine-1,2-diyl­idene)bis­(methanylyl­idene)]bis­(4,1-phenyl­ene)}bis­(­oxy))di­acetate

Said Daoui a,*, Sevgi Kansiz b,*, Feyzi Alkim Aktas c, Necmi Dege d, Eiad Saif e,f,*, Noureddine Benchat a, Khalid Karrouchi g
PMCID: PMC8739207  PMID: 35079432

The title Schiff base adopts an E configuration. The mol­ecular structure is stabilized by an C—H⋯O and C—H⋯N hydrogen bonds.

Keywords: crystal structure, Schiff base, hydrazine, mol­ecular docking

Abstract

The title Schiff base, C22H24N2O6, adopts an E configuration. The mol­ecule is planar, the mean planes of the phenyl ring system (r.m.s deviation = 0.0059 Å) forms a dihedral angle of 0.96 (4)° with the mean plane of the phenyl ring moiety (r.m.s deviation = 0.0076 Å). In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds into chains extending along the c-axis and b-axis directions, respectively. A mol­ecular docking study between the title mol­ecule and 5-HT2C, which is a G protein receptor and ligand-gated ion channels found in nervous systems (PDB ID: 6BQH) was executed. The experiment shows that it is a good potential agent because of its affinity and ability to stick to the active sites of the receptor.

Chemical context

Compounds with an azomethine group (–C=N–) are known as Schiff bases, which are usually synthesized from the condensation of active carbonyl groups and primary amines (Yang et al., 2001). Furthermore, these derivatives represent an important class of organic compounds, especially in the medicinal and pharmaceutical fields (Murtaza et al., 2014). It is well known from the literature that Schiff bases display excellent biological properties, such as anti­oxidant and analgesic (Karrouchi et al., 2016), anti­bacterial and cytotoxic (Maaref et al., 2020), anti­diabetic (Karrouchi et al., 2022) and anti-inflammatory activities (Rana et al., 2012). These deriv­atives are also used as corrosion inhibitors, which relies on their ability to spontaneously form a monolayer on the surface being protected (El Arrouji et al., 2020). In this study, the title compound, diethyl 2,2′-({[(1E,1′E)-(hydrazine-1,2-diyl­idene)bis(methanylyl­idene)]bis­(4,1-phenyl­ene)}bis­(­oxy))di­acetate, was characterized by single crystal X-ray and studied by Hirshfeld surface analysis. graphic file with name e-78-00088-scheme1.jpg

Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1. The asymmetric unit contains one independent mol­ecule, which is planar, the mean plane of the C5–C10 phenyl ring (r.m.s deviation = 0.006 Å) forms a dihedral angle of 0.96 (4)° with the mean plane of the C16–C20 phenyl ring (r.m.s deviation = 0.008 Å). The C3—O1 and C14—O4 bond lengths in the mol­ecule are 1.213 (8) and 1.212 (8) Å, respectively, while the C11—N1 and C22—N2 bond lengths are 1.274 (7) and 1.275 (7) Å, respectively (Table 1). These results suggest a double-bond character for the C=O and C=N bonds. The N1—N2 bond distance, 1.419 (7) Å, is compatible with 1.411 Å (Manawar et al., 2019; Kansiz et al., 2021). These results suggest a single bond character for N—N, as expected from hydrazine structures. The exocyclic angles C4—C3—O2 [115.4 (6)°], O1—C3—O2 [125.4 (8)°], C15—C14—O4 [125.5 (7)°] and C15—C14—O5 [111.9 (6)°] deviate significantly from the normal value of 120°; this may be due to steric repulsion (H4A⋯H10 = 2.22 Å and H15B⋯H17 = 2.32 Å). Bond lengths and angles are within normal ranges and are comparable to those observed in related structures (see Database survey section).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.93 2.57 3.483 (9) 169
C4—H4B⋯N1ii 0.97 2.69 3.618 (10) 161

Symmetry codes: (i) -x, y+{\script{1\over 2}}, -z-{\script{3\over 2}}; (ii) x-1, y, z.

Supra­molecular features

In the crystal, there are two inter­molecular hydrogen bonds. The C6—H6⋯O4i hydrogen bond links the mol­ecules to each other along the c-axis direction while the C4—H4B⋯N1ii hydrogen bond links the mol­ecules to each other along the b-axis direction (symmetry codes as in Table 1). A view of the crystal packing is shown in Fig. 2.

Figure 2.

Figure 2

The crystal packing of the title compound with the inter­molecular C—H⋯O hydrogen bonds shown as dashed lines.

Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of May 2021; Groom et al., 2016) for the ethyl 2-(p-tol­yloxy)acetate skeleton revealed seven similar compounds, viz.: ethyl 4-[1-(4-bromo­phen­yl)-3-methyl-5-oxo-4,5-di­hydro-1H-1,2,4-triazol-4-yl­imino­meth­yl]phen­oxy­acetate (EKEYEY; Thamotharan et al., 2003), di[3-fluoro-6-meth­oxy-4-(eth­oxy­carbonyl­meth­oxy)benz­yl] ether (HIGLEP; Wallner et al., 2007), ethyl (2-fluoro-4-hy­droxy­methyl-5-meth­oxy­phen­oxy)acetate (HIGLIT; Wallner et al., 2007), diethyl 3,3-bis­{3-[4-(2-eth­oxy-2-oxoeth­oxy)-3-meth­oxy­phen­yl]acrylo­yl}penta­nedioate (JUMJEI; Xu et al., 2015), ethyl (4-{3-[2,4-bis­(2-eth­oxy-2-oxoeth­oxy)phen­yl]-3-oxoprop-1-en-1-yl}phen­oxy)acetate (PIXWAW; Liu, 2014), ethyl [(2-oxo-2H-chromen-7-yl)­oxy]acetate (WIHDEY; Fun et al., 2013) and ethyl {4-[(E)-2-(3,4,5-tri­meth­oxy­phen­yl)vin­yl]phen­oxy}acetate (XEWZIJ; Baolin et al., 2007). In EKEYEY, the eth­oxy­carbonyl­meth­oxy group is oriented at an angle of 29.42 (15)° with respect to the mean plane of the benzene ring. The mean plane of the 2H-chromene ring system (O1/C1–C9, r.m.s deviation = 0.026 Å) forms a dihedral angle of 81.71 (6)° with the mean plane of ethyl 2-hy­droxy­acetate moiety (O1/N3/C9/C10, r.m.s deviation = 0.026 Å) in WIHDEY. This dihedral angle for the title compound is smaller than in both EKEYEY and WIHDEY with a value of 4.38 (8)°. The C10—C11 bond distance of 1.516 (2) Å in WIHDEY, corresponding to a single bond, is slightly longer than observed for the title compound [C3—C4 = 1.498 (10) Å]. This bond length is also longer than in XEWZIJ [C18–C19 = 1.493 (3) Å; Baolin et al., 2007)].

Mol­ecular docking study

Mol­ecular docking is a substantial process for finding the inter­actions between small mol­ecules and macromolecules. Inter­molecular bonds that occur between ligand and receptor are indicated by mol­ecular docking. In this study, AutoDockVina (Trott & Olson, 2010) was used for predictive binding sites between the title mol­ecule and the 5-HT2C receptor (Peng et al., 2018). 6BQH is a serotonin receptor, which can be efficient for designing drugs to treat ailments such as anxiety, aggression, sleep disorders, and other psychological diseases. The three-dimensional structure of 6BQH was taken from the Protein Data Bank (PDB). Before the docking calculations, the receptor must be prepared for efficient insertion. For this reason, all water and ligand mol­ecules were cleared on receptor active sites. According to these active sites, grid box dimensions were defined as 100 x 80 x 110 Å. In addition, –x, y, z centres were adjusted to be −40.569, 33.142, 45.392, respectively, and then the 5-HT2C receptor was saved in PDBQT format for the calculations. In the next step, rotatable angles for the coupling structure were determined and recorded in PDBQT format. Discovery Studio Visualizer (Biovia, 2017) was used for observations and preparations. All docking calculations were calculated with AutoDockVina. Twenty variable links were decided by AutoDockVina for the ligands connected to the receptor of the protein. The best affinity energy was observed in the first calculation, which is −6.2 kcal mol−1. The bonding type of inter­action is represented in Fig. 3. The 2D and 3D visuals of the inter­molecular inter­actions for the best binding pose of the title compound docked into macromolecule 6BQH can be seen in Fig. 4. In addition, docking conformation can be seen in Fig. 5. Consequently, the title compound could be a possible mol­ecule for drug design to treat psychological disorders, because its ability is suitable to stick to active sites of the receptor.

Figure 3.

Figure 3

Three-dimensional visual of the inter­molecular inter­actions for the best binding pose of the title compound docking with 6BQH.

Figure 4.

Figure 4

Two-dimensional visual of the inter­molecular inter­actions for the best binding pose of the title compound docking with 6BQH.

Figure 5.

Figure 5

Three-dimensional conformation of the title compound with 6BQH.

Synthesis and crystallization

Hydrazine hydrate (0.013 g, 0.24 mmol) was added dropwise to a solution of ethyl 2-(4-formyl­phen­oxy)acetate (0.5 g, 0.48 mmol) in ethanol (20 ml), and the mixture was refluxed for 4 h. After cooling, the solvent was removed under reduced pressure, and the residue was purified by recrystallization from ethanol to afford single crystals (yield 80%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and U iso(H) = 1.5U eq(C) for methyl H atoms, and U iso(H) = 1.2U eq(C) for all other H atoms. The crystal studied was refined as a two-component inversion twin, but the absolute structure was indeterminate.

Table 2. Experimental details.

Crystal data
Chemical formula C22H24N2O6
M r 412.43
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 8.1864 (4), 9.2061 (5), 27.7903 (18)
V3) 2094.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.68 × 0.44 × 0.22
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.945, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 11156, 4091, 2453
R int 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.073, 0.246, 1.01
No. of reflections 4091
No. of parameters 254
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.67
Absolute structure Refined as an inversion twin, but the absolute structure was indeterminate
Absolute structure parameter −1 (4)

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2017/1 (Sheldrick, 2015a ), SHELXL2017/1 (Sheldrick, 2015b ), PLATON (Spek, 2020) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902101344X/zn2012sup1.cif

e-78-00088-sup1.cif (436KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902101344X/zn2012Isup2.hkl

e-78-00088-Isup2.hkl (326.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698902101344X/zn2012Isup3.cml

CCDC reference: 2129693

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows. Conceptualization, SD, SK, and KK; synthesis, SD and KK; writing (review and editing of the manuscript) SD, SK, FAA and KK; formal analysis, SD, KK and NB; crystal-structure determination, KK, SK and ND; validation, KK, ES and NB; project administration, KK, SD, ES and SK; mol­ecular docking, FAA.

supplementary crystallographic information

Crystal data

C22H24N2O6 Dx = 1.308 Mg m3
Mr = 412.43 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9754 reflections
a = 8.1864 (4) Å θ = 2.2–27.8°
b = 9.2061 (5) Å µ = 0.10 mm1
c = 27.7903 (18) Å T = 296 K
V = 2094.4 (2) Å3 Prism, colorless
Z = 4 0.68 × 0.44 × 0.22 mm
F(000) = 872

Data collection

Stoe IPDS 2 diffractometer 4091 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2453 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.037
rotation method scans θmax = 26.0°, θmin = 2.3°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −8→10
Tmin = 0.945, Tmax = 0.979 k = −11→11
11156 measured reflections l = −27→34

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.073 w = 1/[σ2(Fo2) + (0.1576P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.246 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.50 e Å3
4091 reflections Δρmin = −0.67 e Å3
254 parameters Absolute structure: Refined as an inversion twin
2 restraints Absolute structure parameter: −1 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O6 0.4659 (6) −0.4221 (5) −0.88303 (18) 0.0861 (14)
O3 −0.9934 (5) −0.3444 (5) −0.61477 (18) 0.0815 (13)
N2 −0.1980 (6) −0.3968 (4) −0.76468 (19) 0.0658 (12)
O2 −1.2412 (6) −0.2842 (6) −0.5611 (2) 0.0968 (15)
N1 −0.3161 (6) −0.3494 (5) −0.73078 (19) 0.0671 (13)
O4 0.7008 (8) −0.4943 (6) −0.9435 (2) 0.122 (2)
O5 0.8443 (9) −0.2982 (8) −0.9259 (3) 0.145 (2)
O1 −1.3702 (7) −0.4910 (7) −0.5761 (2) 0.123 (2)
C19 0.0707 (7) −0.3464 (5) −0.7945 (2) 0.0587 (13)
C8 −0.5825 (7) −0.4041 (5) −0.7005 (2) 0.0590 (13)
C3 −1.2583 (9) −0.4068 (9) −0.5824 (3) 0.090 (2)
C5 −0.8617 (7) −0.3742 (6) −0.6434 (2) 0.0659 (15)
C16 0.3406 (8) −0.3906 (6) −0.8529 (2) 0.0656 (15)
C11 −0.4446 (7) −0.4275 (5) −0.7311 (2) 0.0618 (14)
H11 −0.448969 −0.504718 −0.752671 0.074*
C9 −0.7122 (7) −0.5040 (6) −0.7029 (2) 0.0689 (15)
H9 −0.705537 −0.581369 −0.724270 0.083*
C18 0.2009 (7) −0.2516 (5) −0.7937 (2) 0.0655 (15)
H18 0.198036 −0.172160 −0.773028 0.079*
C17 0.3358 (7) −0.2717 (6) −0.8230 (2) 0.0677 (15)
H17 0.421932 −0.205814 −0.822424 0.081*
C10 −0.8487 (7) −0.4902 (6) −0.6743 (2) 0.0677 (15)
H10 −0.931717 −0.558927 −0.675966 0.081*
C22 −0.0682 (7) −0.3205 (5) −0.7625 (2) 0.0617 (14)
H22 −0.061751 −0.246143 −0.739922 0.074*
C20 0.0776 (9) −0.4663 (5) −0.8255 (2) 0.0710 (16)
H20 −0.009621 −0.530867 −0.827039 0.085*
C6 −0.7324 (8) −0.2740 (6) −0.6404 (2) 0.0764 (17)
H6 −0.739197 −0.196246 −0.619141 0.092*
C21 0.2131 (8) −0.4884 (6) −0.8537 (2) 0.0756 (17)
H21 0.218970 −0.569887 −0.873361 0.091*
C4 −1.1264 (9) −0.4449 (8) −0.6175 (3) 0.0857 (19)
H4A −1.086821 −0.542135 −0.610821 0.103*
H4B −1.171001 −0.444297 −0.649865 0.103*
C7 −0.5976 (8) −0.2901 (6) −0.6684 (2) 0.0711 (16)
H7 −0.513326 −0.222775 −0.665958 0.085*
C14 0.7176 (9) −0.3829 (8) −0.9207 (3) 0.0848 (19)
C15 0.6016 (8) −0.3258 (7) −0.8849 (3) 0.0785 (17)
H15A 0.653522 −0.320003 −0.853552 0.094*
H15B 0.565809 −0.229246 −0.894006 0.094*
C12 0.9676 (12) −0.3616 (12) −0.9585 (5) 0.145 (2)
H12A 1.024040 −0.440591 −0.942466 0.175*
H12B 0.914541 −0.400186 −0.986975 0.175*
C13 1.0808 (13) −0.2527 (12) −0.9718 (4) 0.145 (2)
H13A 1.161245 −0.293458 −0.993055 0.218*
H13B 1.024480 −0.175271 −0.987935 0.218*
H13C 1.133662 −0.215559 −0.943555 0.218*
C2 −1.3727 (13) −0.2480 (11) −0.5256 (4) 0.139 (3)
H2A −1.381933 −0.323663 −0.501410 0.167*
H2B −1.477161 −0.237448 −0.541630 0.167*
C1 −1.3215 (13) −0.1070 (10) −0.5029 (4) 0.139 (3)
H1A −1.401592 −0.077904 −0.479592 0.209*
H1B −1.217725 −0.119369 −0.487328 0.209*
H1C −1.312388 −0.033665 −0.527309 0.209*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O6 0.080 (3) 0.089 (3) 0.089 (3) 0.000 (2) 0.019 (3) −0.013 (2)
O3 0.069 (3) 0.093 (3) 0.082 (3) −0.014 (2) 0.010 (2) −0.004 (2)
N2 0.066 (3) 0.055 (2) 0.076 (3) 0.001 (2) −0.002 (3) −0.001 (2)
O2 0.077 (3) 0.097 (3) 0.117 (4) 0.014 (3) 0.032 (3) 0.019 (3)
N1 0.063 (3) 0.063 (2) 0.076 (3) 0.001 (2) 0.005 (3) 0.000 (2)
O4 0.132 (5) 0.109 (4) 0.124 (4) 0.004 (4) 0.050 (4) −0.017 (3)
O5 0.118 (4) 0.160 (4) 0.159 (5) −0.008 (3) 0.057 (4) −0.021 (4)
O1 0.091 (4) 0.144 (4) 0.133 (5) −0.035 (4) 0.027 (4) 0.004 (4)
C19 0.060 (3) 0.051 (2) 0.065 (3) 0.004 (2) −0.002 (3) 0.002 (2)
C8 0.059 (3) 0.054 (2) 0.064 (3) 0.003 (2) −0.005 (3) 0.004 (2)
C3 0.071 (5) 0.096 (5) 0.102 (5) −0.003 (4) −0.002 (4) 0.034 (4)
C5 0.056 (3) 0.071 (3) 0.071 (4) 0.003 (3) 0.004 (3) 0.008 (3)
C16 0.068 (3) 0.063 (3) 0.066 (4) 0.002 (3) 0.002 (3) −0.001 (3)
C11 0.066 (4) 0.052 (2) 0.067 (3) 0.005 (2) −0.010 (3) 0.004 (2)
C9 0.064 (4) 0.064 (3) 0.079 (4) −0.005 (3) −0.006 (3) −0.008 (3)
C18 0.062 (3) 0.056 (3) 0.078 (4) 0.006 (2) 0.001 (3) −0.005 (3)
C17 0.064 (3) 0.063 (3) 0.077 (4) −0.002 (3) −0.004 (3) −0.003 (3)
C10 0.061 (3) 0.064 (3) 0.078 (4) −0.016 (3) −0.001 (3) −0.007 (3)
C22 0.062 (3) 0.047 (2) 0.076 (4) −0.002 (2) −0.002 (3) −0.003 (2)
C20 0.075 (4) 0.056 (3) 0.082 (4) −0.006 (3) −0.001 (4) −0.001 (3)
C6 0.075 (4) 0.069 (3) 0.085 (4) −0.003 (3) 0.002 (4) −0.018 (3)
C21 0.082 (4) 0.062 (3) 0.083 (4) −0.006 (3) 0.009 (4) −0.015 (3)
C4 0.079 (5) 0.099 (4) 0.079 (4) −0.018 (4) 0.004 (4) 0.007 (4)
C7 0.064 (4) 0.060 (3) 0.089 (4) −0.007 (3) −0.007 (4) −0.004 (3)
C14 0.082 (5) 0.089 (4) 0.083 (5) 0.011 (4) 0.017 (4) −0.004 (4)
C15 0.075 (4) 0.082 (3) 0.078 (4) −0.001 (3) 0.008 (4) 0.006 (3)
C12 0.118 (4) 0.160 (4) 0.159 (5) −0.008 (3) 0.057 (4) −0.021 (4)
C13 0.118 (4) 0.160 (4) 0.159 (5) −0.008 (3) 0.057 (4) −0.021 (4)
C2 0.121 (5) 0.146 (5) 0.151 (6) 0.013 (5) 0.061 (5) 0.007 (5)
C1 0.121 (5) 0.146 (5) 0.151 (6) 0.013 (5) 0.061 (5) 0.007 (5)

Geometric parameters (Å, º)

O6—C16 1.355 (7) C18—H18 0.9300
O6—C15 1.422 (8) C17—H17 0.9300
O3—C5 1.367 (7) C10—H10 0.9300
O3—C4 1.432 (8) C22—H22 0.9300
N2—C22 1.275 (7) C20—C21 1.372 (9)
N2—N1 1.419 (7) C20—H20 0.9300
O2—C3 1.282 (9) C6—C7 1.359 (9)
O2—C2 1.497 (10) C6—H6 0.9300
N1—C11 1.274 (7) C21—H21 0.9300
O4—C14 1.212 (8) C4—H4A 0.9700
O5—C14 1.306 (9) C4—H4B 0.9700
O5—C12 1.477 (10) C7—H7 0.9300
O1—C3 1.213 (8) C14—C15 1.474 (9)
C19—C18 1.378 (7) C15—H15A 0.9700
C19—C20 1.403 (8) C15—H15B 0.9700
C19—C22 1.463 (8) C12—C13 1.415 (10)
C8—C7 1.382 (8) C12—H12A 0.9700
C8—C9 1.406 (8) C12—H12B 0.9700
C8—C11 1.431 (8) C13—H13A 0.9600
C3—C4 1.498 (10) C13—H13B 0.9600
C5—C10 1.375 (8) C13—H13C 0.9600
C5—C6 1.407 (8) C2—C1 1.502 (10)
C16—C17 1.375 (8) C2—H2A 0.9700
C16—C21 1.379 (8) C2—H2B 0.9700
C11—H11 0.9300 C1—H1A 0.9600
C9—C10 1.376 (8) C1—H1B 0.9600
C9—H9 0.9300 C1—H1C 0.9600
C18—C17 1.385 (8)
C16—O6—C15 118.7 (5) C20—C21—C16 120.4 (5)
C5—O3—C4 116.0 (5) C20—C21—H21 119.8
C22—N2—N1 111.5 (5) C16—C21—H21 119.8
C3—O2—C2 114.9 (6) O3—C4—C3 111.2 (6)
C11—N1—N2 112.6 (4) O3—C4—H4A 109.4
C14—O5—C12 112.0 (7) C3—C4—H4A 109.4
C18—C19—C20 118.5 (5) O3—C4—H4B 109.4
C18—C19—C22 119.3 (5) C3—C4—H4B 109.4
C20—C19—C22 122.2 (5) H4A—C4—H4B 108.0
C7—C8—C9 117.4 (6) C6—C7—C8 121.6 (6)
C7—C8—C11 124.6 (5) C6—C7—H7 119.2
C9—C8—C11 118.0 (5) C8—C7—H7 119.2
O1—C3—O2 125.4 (8) O4—C14—O5 122.6 (7)
O1—C3—C4 119.2 (8) O4—C14—C15 125.5 (7)
O2—C3—C4 115.4 (6) O5—C14—C15 111.9 (6)
O3—C5—C10 125.5 (5) O6—C15—C14 107.8 (6)
O3—C5—C6 115.3 (5) O6—C15—H15A 110.1
C10—C5—C6 119.2 (6) C14—C15—H15A 110.1
O6—C16—C17 124.4 (6) O6—C15—H15B 110.1
O6—C16—C21 115.1 (5) C14—C15—H15B 110.1
C17—C16—C21 120.5 (6) H15A—C15—H15B 108.5
N1—C11—C8 124.2 (5) C13—C12—O5 109.2 (8)
N1—C11—H11 117.9 C13—C12—H12A 109.8
C8—C11—H11 117.9 O5—C12—H12A 109.8
C10—C9—C8 121.7 (5) C13—C12—H12B 109.8
C10—C9—H9 119.1 O5—C12—H12B 109.8
C8—C9—H9 119.1 H12A—C12—H12B 108.3
C19—C18—C17 121.6 (5) C12—C13—H13A 109.5
C19—C18—H18 119.2 C12—C13—H13B 109.5
C17—C18—H18 119.2 H13A—C13—H13B 109.5
C16—C17—C18 119.0 (6) C12—C13—H13C 109.5
C16—C17—H17 120.5 H13A—C13—H13C 109.5
C18—C17—H17 120.5 H13B—C13—H13C 109.5
C5—C10—C9 119.7 (5) O2—C2—C1 105.5 (8)
C5—C10—H10 120.2 O2—C2—H2A 110.6
C9—C10—H10 120.2 C1—C2—H2A 110.6
N2—C22—C19 122.0 (5) O2—C2—H2B 110.6
N2—C22—H22 119.0 C1—C2—H2B 110.6
C19—C22—H22 119.0 H2A—C2—H2B 108.8
C21—C20—C19 120.0 (6) C2—C1—H1A 109.5
C21—C20—H20 120.0 C2—C1—H1B 109.5
C19—C20—H20 120.0 H1A—C1—H1B 109.5
C7—C6—C5 120.4 (5) C2—C1—H1C 109.5
C7—C6—H6 119.8 H1A—C1—H1C 109.5
C5—C6—H6 119.8 H1B—C1—H1C 109.5
C22—N2—N1—C11 −177.6 (5) C20—C19—C22—N2 −7.5 (8)
C2—O2—C3—O1 0.7 (11) C18—C19—C20—C21 1.1 (8)
C2—O2—C3—C4 −179.3 (7) C22—C19—C20—C21 −177.9 (6)
C4—O3—C5—C10 0.8 (9) O3—C5—C6—C7 −177.8 (6)
C4—O3—C5—C6 179.7 (5) C10—C5—C6—C7 1.2 (9)
C15—O6—C16—C17 −1.0 (9) C19—C20—C21—C16 −2.3 (9)
C15—O6—C16—C21 179.3 (5) O6—C16—C21—C20 −178.5 (6)
N2—N1—C11—C8 179.8 (5) C17—C16—C21—C20 1.8 (9)
C7—C8—C11—N1 3.4 (9) C5—O3—C4—C3 176.2 (5)
C9—C8—C11—N1 −176.4 (5) O1—C3—C4—O3 −171.2 (6)
C7—C8—C9—C10 −0.4 (8) O2—C3—C4—O3 8.8 (9)
C11—C8—C9—C10 179.4 (5) C5—C6—C7—C8 0.0 (10)
C20—C19—C18—C17 0.6 (8) C9—C8—C7—C6 −0.4 (9)
C22—C19—C18—C17 179.6 (5) C11—C8—C7—C6 179.8 (5)
O6—C16—C17—C18 −179.8 (5) C12—O5—C14—O4 −5.3 (13)
C21—C16—C17—C18 −0.1 (9) C12—O5—C14—C15 174.9 (8)
C19—C18—C17—C16 −1.1 (9) C16—O6—C15—C14 −178.8 (5)
O3—C5—C10—C9 176.9 (6) O4—C14—C15—O6 −1.8 (11)
C6—C5—C10—C9 −2.0 (9) O5—C14—C15—O6 178.0 (6)
C8—C9—C10—C5 1.6 (9) C14—O5—C12—C13 165.9 (10)
N1—N2—C22—C19 −178.9 (5) C3—O2—C2—C1 176.1 (8)
C18—C19—C22—N2 173.6 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O4i 0.93 2.57 3.483 (9) 169
C4—H4B···N1ii 0.97 2.69 3.618 (10) 161

Symmetry codes: (i) −x, y+1/2, −z−3/2; (ii) x−1, y, z.

Funding Statement

This work was funded by Ondokuz Mayis Üniversitesi grant PYO.FEN.1906.19.001.

References

  1. Baolin, L., Jian, G., Xiquan, Z., Yitian, L. & Huaiming, H. (2007). Z. Naturforsch. B: Chem. Sci. 62, 244–248.
  2. Biovia (2017). Discovery Studio Visualizer. Vol. 936. Biovia, San Diego, CA, USA.
  3. El Arrouji, S., Karrouchi, K., Berisha, A., Alaoui, K. I., Warad, I., Rais, Z., Radi, S., Taleb, M., Ansar, M. & Zarrouk, A. (2020). Colloids Surf. A Physicochem. Eng. Asp. 604, 125325.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Fun, H.-K., Quah, C. K., Aich, K., Das, S. & Goswami, S. (2013). Acta Cryst. E69, o502. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Kansiz, S., Tatlidil, D., Dege, N., Aktas, F. A., Al-Asbahy, S. O. M. & Alaman Agar, A. (2021). Acta Cryst. E77, 658–662. [DOI] [PMC free article] [PubMed]
  8. Karrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., El Abbes Faouzi, M. & Ansar, M. (2016). Annales Pharmaceutiques Françaises, 74, 431–438. [DOI] [PubMed]
  9. Karrouchi, K., Fettach, S., Tamer, Ö., Avci, D., Başoğlu, A., Atalay, Y., Ayaz, Z., Radi, S., Ghabbour, H. A., Mabkhot, Y. N., Faouzi, M. E. A. & Ansar, M. (2022). J. Mol. Struct. 1248, 131506.
  10. Liu, X. (2014). Acta Cryst. E70, o51.
  11. Maaref, H., Sheikhhosseini, E., Foroughi, M. M., Akhgar, M. R. & Jahani, S. (2020). Appl. Organomet. Chem. 34, e5557.
  12. Manawar, R. B., Mamtora, M. J., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E76, 53–61. [DOI] [PMC free article] [PubMed]
  13. Murtaza, G., Mumtaz, A., Khan, F. A., Ahmad, S., Azhar, S., Khan, S. A., Najam-Ul-Haq, M., Atif, M., Khan, S. A., Maalik, A., Azhar, S. & Murtaza, G. (2014). Acta Pol. Pharm. 71, 531–535. [PubMed]
  14. Peng, Y., McCorvy, J. D., Harpsøe, K., Lansu, K., Yuan, S., Popov, P., Qu, L., Pu, M., Che, T., Nikolajsen, L. F., Huang, X.-P., Wu, Y., Shen, L., Bjørn-Yoshimoto, W. E., Ding, K., Wacker, D., Han, G. W., Cheng, J., Katritch, V., Jensen, A. A., Hanson, M. A., Zhao, S., Gloriam, D. E., Roth, B. L., Stevens, R. C. & Liu, Z.-J. (2018). Cell, 172, 719–730. [DOI] [PMC free article] [PubMed]
  15. Rana, K., Pandurangan, A., Singh, N. & Tiwari, A. K. (2012). Int. J. Curr. Pharm. Res. 4, 5–11.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  20. Thamotharan, S., Parthasarathi, V., Sunagar, V., Badami, B. & Schenk, K. J. (2003). Acta Cryst. E59, o1272–o1274.
  21. Trott, O. & Olson, A. J. (2010). J. Comput. Chem. 31, 455–461. [DOI] [PMC free article] [PubMed]
  22. Wallner, F. K., Spjut, S., Boström, D. & Elofsson, M. (2007). Org. Biomol. Chem. 5, 2464–2471. [DOI] [PubMed]
  23. Xu, G., Wang, J., Si, G., Wang, M., Wu, B. & Zhou, S. (2015). Dyes Pigments, 123, 267–273.
  24. Yang, Z. H., Wang, L. X., Zhou, Z. H., Zhou, Q. L. & Tang, C. C. (2001). Tetrahedron Asymmetry, 12, 1579–1582.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902101344X/zn2012sup1.cif

e-78-00088-sup1.cif (436KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902101344X/zn2012Isup2.hkl

e-78-00088-Isup2.hkl (326.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698902101344X/zn2012Isup3.cml

CCDC reference: 2129693

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES