Skip to main content
. 2021 Dec 20;25(1):103651. doi: 10.1016/j.isci.2021.103651

Table 3.

Prediction (AUROC) of each model at different hours in the sepsis studies

Study Model Algorithm Different hours
−48 −24 −12 −10 −8 −6 −5 −4 −3 −2 −1 −0.25 0
Delahanty et al. (2019) RoS Gradient boosting 0.97 0.93
Barton et al. (2019) MLA Gradient boosted trees 0.83 0.84 0.88
Kam and Kim (2017) SepLSTM long short-term memory 0.93 0.94 0.96 0.99
Bloch et al. (2019) SVM-RBF SVM-RBF 0.8141 0.8879 0.8807 0.8639 0.8675
Nemati et al. (2018) Weilbull-Cox proportional hazards Weilbull-Cox proportional hazards 0.79 0.8 0.81 0.82
Lauritsen et al. (2020) CNN-LSTM CNN-LSTM 0.752 0.792 0.842 0.879
Scherpf et al. (2019) RNN RNN 0.76 0.79 0.81

Abbreviation:RoS: Risk of Sepsis; MLA: machine learning algorithm; LSTM: long short-term memory; SVM-RBF: support vector machines with radial basis function; CNN-LSTM: convolutional neural network-long short-term memory; RNN: recurrent neural network.