Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2022 Jan 10;12:352. doi: 10.1038/s41598-021-04164-0

Controllable shifting, steering, and expanding of light beam based on multi-layer liquid-crystal cells

Urban Mur 1, Miha Ravnik 1,2, David Seč 1,3,
PMCID: PMC8748706  PMID: 35013419

Abstract

Shaping and steering of light beams is essential in many modern applications, ranging from optical tweezers, camera lenses, vision correction to 3D displays. However, current realisations require increasingly greater tunability and aim for lesser specificity for use in diverse applications. Here, we demonstrate tunable light beam control based on multi-layer liquid-crystal cells and external electric field, capable of extended beam shifting, steering, and expanding, using a combination of theory and full numerical modelling, both for liquid crystal orientations and the transmitted light. Specifically, by exploiting three different function-specific and tunable birefringent nematic layers, we show an effective liquid-crystal beam control device, capable of precise control of outgoing light propagation, with possible application in projectors or automotive headlamps.

Subject terms: Physics, Theory and computation, Materials for optics, Liquid crystals


Diverse photonic applications rely on beam shaping and steering which is today at the macroscopic device level predominantly done with mechanically movable parts or prefabricated integrated circuits13. Alternative approaches also include using complex optical properties of different soft, solid, or composite materials, such as arrays of lenses and mirrors of specific shapes4,5, metasurfaces6,7 or fibres8. Soft liquid crystalline (LC) materials are major optically active materials that exhibit tuneability due to their inherent optical anisotropy (i.e. birefringence) and ability to change their spatial birefringent profile with external fields, such as with electric field and confining surfaces9,10.

Liquid crystals are used in tunable lenses, where external electric field1116 or other external stimuli17 are used to change optical properties of the lens. LC lenses can also be generalised for use in beam shaping18 and beam steering19,20. Beam steering employs spatially varying director profiles to transform the refractive indices and thus guide light in a specific direction19,2125; however, with rather small steering angles (<10) and rather high electric fields needed15,21,26. Therefore, beam steering is often realised by reflection, rather than refraction from LC cells27. One of the used methods is constructing a grating that deflects light2830, where the deflecting angles can be up to 3031,32 and efficiency can be even more than 90%32,33. Such devices are sensitive to incoming polarization and reflect light also in more than one diffraction order27. Another interesting example is to use LC elastomer fibres which rotate mirrors in order to deflect light into selected directions34. Overall, in most of the studied examples, the tuning of the beam steering and shaping is rather limited (up to 8 continuously)35 and devices are optimized for only two steering angles (diffractive orders)—0 in off state and non-zero deflection in on state.

Achieving larger optical beam control by LC ordering can be done either by stacking LC cells in an array28 or by utilising nonlinear optical effects3639. For beam steering, multiple adjacent LC cells can be used to improve steering angle in a dual-twist Pancharatnam phase device40, where deflection angles up to 80 can be obtained and still maintaining very high efficiency. Expanding these effects, wave front shaping and switching between different helical modes can be achieved by a cascade of Pancharatnam-Berry phase optical elements41. Similarly, cascading multiple cycloidal diffractive waveplates results in multiple diffraction angles42. In nematic liquid crystals the interplay of material nonlinearity and optical intensity can lead to non-diffracting laser beam, called “nematicons”. Higher power laser beams can realign the nematic director configuration and create a self-confining extraordinarily polarized laser beam with no diffraction, which propagates at a walk-off angle36. This angle can be tuned with reorientation of the bulk nematic configuration, either via electric43 and magnetic fields44,45 or different colloidal inclusions46,47. Such steering of the beams was observed to achieve angles as large as 5548,49.

In this paper, we explore as the central scientific question the use of (three) close-stacked liquid crystal layers for light beam modulation and control, using combination of theory and full numerical simulations based on Landau-de Gennnes free energy minimisation, analytical Ansaetze and FDFD light simulations. Specifically, the three stacked LC layers each perform one designed function/modulation of the beam: one layer shifts the beam, second deflects the beam, and the third layer expands the beam, overall together, enabling an extensive beam modulation. Such an array of building blocks can—by applying external electric field—change the incoming beam orientation by more than 25 and focal spot continuously. The stacked liquid crystal device can also partition the incoming light beam into multiple beams (in multiple steps according to the number of building blocks). More generally, this work is aimed as a contribution towards possible experimental realisation of efficient, simple and wide-use control of light beams—including steering, shifting, focusing and expanding—which could be used in wide use applications such as projectors and automotive headlamps.

Results

The beam control device (grey box in scheme in Fig. 1) consists of multiple stacked building blocks (in principle, it can also be only one building block—special liquid crystal cell), which can shape and transform the incoming light into a desired spatially varying intensity profile, by means of locally tunable LC birefringence.

Figure 1.

Figure 1

Schematic view of a liquid crystal (LC) beam control device. The device is composed of a single or stacks of LC building blocks (LC b.b.) with some examples shown below. Blue cylinders represent nematic director and p shows the polarization of the incoming light. The desired light profile is defined by locally tunable birefringent structure in the LC building blocks.

The building block of such a device is a plan-parallel cell filled with a nematic liquid crystal. To realise specific director field configurations, such as those shown in Fig. 1, various external fields can be used like different anchoring types and strengths. In this work, nematic director profiles are both calculated by a full tensorial Landau-de Gennes free energy minimisation approach50,51 and also set by different analytical Ansatz functions mimicking either numerically or experimentally known fields. By using a free energy minimisation we show on a selected example how the used nematic director fields can possibly be created in practice by use of different anchoring types at the boundaries and applying static electric field as induced by electrodes with fixed electric potentials. Similar approaches have been used to explain and guide experiments in the past52,53. More details on the used methodological approach is given in “Methods”. Experimentally, spatially varying 3D structures can also be stabilized by patterned anchoring, which can be achieved by use of various techniques, for example self-assembled monolayers54,55, photoalignment56,57 or in-situ polymerisation58. Due to the inherent birefringence of the nematic medium, the local average molecular orientation—the director field—governs the optical properties of the material. For a polarization laying in plane defined by the optical axis, which is parallel to the nematic director, and the wave vector of light, the refractive index of the material depends on the angle between the wave vector and the optical axis—nematic director field. Hence by rotating the nematic director field, optical properties of the material for a selected polarization (i.e. extraordinary beam) are tuned whereas remaining unaltered for the orthogonal polarization pointing out of plane (i.e. for ordinary beam). The director configuration in each building block is taken as stationary, stabilized either by surface anchoring or appropriate external fields (e.g. electric). The surface anchoring can be weak or strong, which in turn affects the needed strength of the external fields. Employing complex electric fields results in non-uniform birefringent optical profiles. Here we present the beam control device that consists of three different building blocks to achieve extensive control over the light beam (as shown in Fig. 2a): (i) shifter, (ii) deflector and (iii) expander building block (lens).

Figure 2.

Figure 2

Liquid crystal (LC) beam control: (a) A schematic representation of a stack of LC building blocks. Controlling the output beam for obtaining a desired beam profile and direction is done in three steps: (i) first the incoming beam is shifted, (ii) then deflected to a certain angle and (iii) eventually expanded. Such an array of tunable building blocks can control the output beam continuously and with great precision. (b) Dependence of the beam shift s on the building block length d1 for a fixed θ=45. λ is wavelength in vacuum. Beam shifter building block has a uniform LC director field (note the blue cylinder representing nematic director—i.e. optical axis). (c) Beam shift dependence on the LC director angle θ. Maximum shift is obtained, when the director is aligned at an angle of approximately 50. Length of the block was fixed at d1=40λ. Theoretically predicted shift is obtained as s=d1tanδ, where δ is a walk-off angle, given by Eq. (1). (d) Simulated electric field intensity |E|2 in a shifter building block for an in-plane polarized Gaussian input beam. The beam is gradually shifted throughout the building block (note the yellow box representing the shifter building block) and the shape of the beam is preserved. (e) An example of simulated electric field intensity |E|2 for the expander building block: Incoming perpendicular Gaussian beam is expanded in order to illuminate a larger area, using a radially escaped LC director profile.

LC beam control

A beam shifter (see scheme in Fig. 2b) is constructed of a LC cell with a uniform director field, which is oriented at an angle θ relative to the cell surface normal, uniformly across the whole cell of width d1. In such a building block, the beam incident angle (α) is the same as refracted angle as the phase front shape remains unchanged and the beam only gets shifted. The shift s, when director angle θ is constant, is dependent on the length of the building block d1 and can be calculated as s=d1tanδ, where δ is a walk-off angle obtained from Eq. (1) as presented in Fig. 2b for θ=45. The most relevant parameter for pre-positioning the beam for deflection is the beam shift s at a fixed length of the block d1. Its dependence on the director angle θ for d1=40λ is shown in Fig. 2c. For used material parameters, the maximal shift per unit length of the building block is at director angle θ50. Note that shifting also works for Gaussian beams with high waist-to-wavelength ratio (here at least 5:1) as shown in Fig. 2d. The incident perpendicular Gaussian beam with the in-plane polarization gets gradually shifted along the building block length and the outgoing beam is again perpendicular to the building block, but shifted upwards by s (see also inset in Fig. 2b). Such shifter building block is used to re-position or pre-position the beam relative to the profile in the deflector or expander building blocks, as shown later.

The third building block—the expander—is essentially a liquid crystal micro-lens, that expands the beam to a broader area (see Fig. 2e). We use a simple radially escaped +1 disclination line profile that is known to act as a diverging lens with positive birefringent nematics59,60, where the refractive index varies radially from the centre of the escaped line profile. The extraordinary beam acquires a phase shift which depends on the distance from the centre of the lens which can also be tuned by using external electric field61. This allows us to continuously affect the focusing of light front as well as the effective focal length (numerical aperture) of the lens according to the desired application. We should comment that other LC cell lens profiles could be used such as hole-patterned microlenses, cylindrical and rectangular lenses, changing surface profiles of the cells, planar cells with floating-ring electrodes, etc.6265.

Deflecting the beam

The deflector building block (second building block in Fig. 2a) can steer the incoming perpendicular beam continuously to a desired predefined angle γ as shown in Fig. 3c. We modelled such cell profile using Q-tensor Landau-de Gennes free energy minimisation approach51 to numerically calculate the ordering of a nematic liquid crystal in the presence of electric field (electric potential), induced by electrodes, as presented in Fig. 3a, b. We assumed three electrodes—one on the incoming side of the LC cell and two on outgoing side (see in Fig. 3a). By applying different voltages on one electrode, various clinotropic (bent-aligned) director field configurations are obtained by means of free energy minimisation. Note that by changing the voltage V0 on the electrode (Fig. 3c) deflection angle can be controlled.

Figure 3.

Figure 3

Deflecting the beam with a planar LC cell and applied voltage. (a) Electrode distribution and simulated electric potential for V0=30V. (b) Simulated director field profile for electric potential shown in (a). Strong planar anchoring was used as a boundary condition on the electrodes. (c) Simulated light deflection by use of simulated director field for four different voltages at the electrode. Waist of the beam was set to w0=3.33λ, while the length of the building block was fixed to d2=40λ.

To study different material parameters and properties of such cells, we use a LC cell with clinotropic (bent-aligned) director field inside the building block as induced by electric field. In this deflector geometry, the rate of change K of the director angle in the lateral direction (i.e. perpendicular to the incoming wave vector) and the building block length—together with the material parameters of refractive index birefringence, elastic constant and surface anchoring strength—control the deflection angle. In a longer building block (see Fig. 4b), the deflection angle is larger as bigger phase shift accumulation difference between upper and lower end of the beam leads to wave fronts inclined at a larger angle. The relation is rather linear and by changing the building block length angles up to 30 are achievable.

Figure 4.

Figure 4

Deflecting the beam. (a) The incoming Gaussian beam, which is normal to the building block, is deflected at an angle γ20 and shifted upwards. Inset shows schematic representation of the building block with the deformation thickness wd which shifts the incoming beams for the distance s and deflects it to an angle of γ as shown with simulated normalized electric field intensity |E|2. The beam deflection angle γ can be tuned by changing (b) the building block length d2, (c) position of the input beam or the (d) deformation thickness wd. (c) Dependence of the beam angle γ on the position of the incoming beam. Both (b) and (c) are calculated for w0=6.66λ and wd=40λ/d2=40λ, respectively. (d) Changing the deformation thickness wd with respect to beam waist w0 greatly affects the shift s and deflection angle γ and can be tuned with external electric fields. Length of the building block was fixed to d2=40λ.

Alternatively to changing the actual building block length, the beam angle can be tuned by shifting the position of the input beam up or down (Fig. 4c) or by changing the rate of change of the director angle K (Fig. 4d), which is here characterized by the deformation thickness wd1/K—the lateral distance within which the director turns for 90, from parallel to perpendicular orientation with respect to the building block surface normal (see Fig. 4a). Note in Fig. 4c, that for a small variation in initial position of the beam from the centre (position = 0 is in the middle of the bend region), the deflection angle changes only slightly. Mainly, by changing the deformation thickness wd three different regimes can be observed with respect to its ratio to beam waist thickness w0 (w0/wd).

When beam diameter 2w0 is comparable to the deformation thickness wd [wd2w0, see Fig. 4d, insets (i) and (ii)], we observe large deflection angles but also beam splitting. In this regime, the bend area is narrow and there are steep changes in the refractive index profile which leads to different parts of the incoming beam following different diffraction paths, in turn splitting the beam into multiple high- and low-intensity regions. In actual experimental setting, such beam splitting will be strongly affected (and will likely disappear) due to light scattering and defocusing caused by thermal fluctuations of the nematic director and illumination with a non-coherent light will blur the output signal66. Note that the beam gets also shifted upwards when travelling through the building block.

As we gradually increase the deformation thickness towards the values greater than the beam diameter [wd>2w0, see Fig. 4d, inset (iii) and inset (iv) for a beam with smaller waist] the largest deflection angles occur. However, despite eliminating the splitting, brighter areas appear after the deflection and the beam is still not entirely uniform.

With a larger deformation thickness (wd2w0) we encounter a linear regime, where deflection angle is roughly linearly dependent on the deformation thickness (γwd) [see insets (v) and (vi) in Fig. 4d, where wd10w0], and notably deflection angles of up to γ=20 can still be achieved. Additionally, with wdw0, there is only weak dependence on the waist thickness w0, which opens further application possibilities as beams of different sizes and shapes can be mutually controlled. Note also that in this regime (iii) the shift s is close to zero which can be particularly useful as there is no need for an additional shifter building block to eliminate the shift.

Combining several LC building blocks—i.e. forming stacks of LC cells—results in a tunable beam control device, capable of different manipulations of the beam. As already presented in Fig. 4c, tuning of the deflection angle can be achieved by a combination of a shifter and a deflector: by varying the director angle in the shifter building block, the position of the incoming beam on the deflector can be altered and as a result, the beam deflects to a different angle. Experimentally, tuning the director field configuration can be achieved by locally modulating electric field in the liquid crystal cell, for example by using electrodes on the surface of the cell as shown in Fig. 3c. Similar setup, presented in Fig. 5a, can be used to expand the deflected beam. In such setup, the beam can be controlled in two ways: (i) tuning the deflection angle via deflector parameters as presented in the previous section and (ii) tuning the illuminated area by changing the lens power. However, by expanding the deflected beam, some brighter areas appear. Since the deflected beam does not travel through the centre of the expander, but more through the bottom part, the block, as it has an escaped disclination profile, then acts additionally as a deflector and expands the beam non-uniformly, resulting in much brighter spots at the bottom part.

Figure 5.

Figure 5

Stacking of building blocks into a multi-layer beam control device. (a) Simulated electric field intensity |E|2 for a double building block device consisting of a deflector and an expander. The beam is efficiently deflected, but expanded non-uniformly, since it does not pass through the centre of the expander block (dashed line). (b) Simulated electric field intensity |E|2 for a triple building block device consisting of a shifter, a deflector and an expander. The shifter pre-positions the beam and thus ensures that it passes through the centre of the expander (dashed line). Uniformity of the expansion is improved. All building blocks in both panels are 40λ long with the in-between spacing of 6.67λ.

This non-uniformity of the outgoing light can be addressed by adding another building block—a shifter—that compensates for the shift due to propagation at an angle after deflection [see Fig. 5b]. The incoming beam is thus firstly lifted upwards in order to pass the lens through its centre. Note, that this creates a more uniform output beam even if the lens is unchanged, but reduces the control of the deflection angle of expanded beam since shifting the beam also slightly changes the deflection angle as presented in Fig. 4c. The shifter building block could be incorporated in the deflector cell, when precise local director control is possible. Understanding its own effect can also help in designing such a device. Overall, the presented mutual tuning of nematic birefringence fields in the different building blocks results in a simple and precise tunable micro device capable of controlling the incoming light direction and shape.

Colour tuning: spectral dependence

Different beam control applications rely on non-monochromatic light, so we additionally explored the effect of different wavelengths of incoming beam—spectral dependence—in the performance of the beam control device. We varied the wavelength of the incoming beam by ±30% to cover a broader light spectrum—this can roughly cover the whole visible light (i.e. from 380 to 750nm). We particularly focused on the deflector (Fig. 6a) and analysed the deflected beam angle γ and corresponding shifts s with respect to the incoming beam wavelength. By changing the wavelength, both deflection angle and shift change, but the change is roughly linear and only around 4 for a 60% change in wavelength.

Figure 6.

Figure 6

Colour tuning in 3 layer stacked device. (a) Wavelength dependence of the beam control with a three-building block device. (i) There is a slight change of shift and deflection angle produced by the deflector building block when the wavelength of the light is changed. (ii) By optimizing the device parameters for a central wavelength of the input spectrum, the effects can be minimized and could be further improved by selecting a LC with appropriate dispersion properties. (b) The propagation of white light emitted by an RGB light source into the beam control device. Note good beam colour control. Logarithmic values of RGB intensities are used to plot panel (i). There is good alignment of the intensity peaks of three different wavelengths further away from the lens (at the position, marked by dashed line) as shown in (ii).

To emulate the white light (i.e. broader wavelength light) passing through beam control device, we generate an RGB superposition of three beams with different wavelengths: (i) λ1=450nm, (ii) λ2=540nm and (iii) λ3=667.5nm. This beam then passes through a device with a maximal deflection angle, already shown in Figs. 5b and 6a. We observe good colour robustness of the beam manipulation device (see Fig. 6b), with only minor colour-dispersion and an expanded cone of light that is propagating at an angle with respect to the input beam. Overall, the results show that the presented beam manipulation device can be used for a manipulation of broad wavelength light beams.

Tuning of the beam control device

By tuning the liquid crystal orientation in the shifter and the deflector different—continuous and tunable—beam deflection angles and beam expansion can be achieved. The desired beam angle is selected by realising the proper deformation thickness wd and its orientation in the deflector (for deflecting either up or down). The maximum deflection angle is pre-determined by lengths of shifter and deflector building blocks.

Then the director angle in the shifter is selected so that the beam passes through the centre of the expander building block and is uniformly expanded. Notably, the deflection angle dependence on the position of the beam centre (i.e. shift produced by the shifter building block) presented in Fig. 4c needs to be taken into the account. Subsequent angle changes due to shifting the beam can be minimized by using thinner expander building block, so that smaller shift is needed to ensure a more uniform expansion. The expansion itself could be further improved by optimizing and tuning the lens. Figure 7 presents three cases of beam control: Fig. 7a shows non-deflected beam that is only expanded (see the peak at y=0 in Fig. 7d), and Fig. 7b, c shows beam deflection for approximately 15 and 20, respectively. Additionally, we show the intensity profile (Fig. 7d, dashed line) for a beam deflected upwards. In Fig. 7e–h we show that the absorption—losses—of the device do not change its characteristics, rather than just the magnitude of the transmitted intensity. Propagation with absorption was calculated by adding of isotropic complex permittivity ε of different magnitudes to the liquid crystal dielectric tensor. Significant deviations (>10%) in the magnitudes of output intensity profiles only occur when the values of ε are in the order of 10-4 to 10-5, while typically values ε in the liquid crystals are in the order of 10-767.

Figure 7.

Figure 7

Tuning of beam control device. (a) LC beam controller in an “off” state. The LC director field is homogeneous in first (shift) and second (deflector) building blocks, so there is no shift or deflection. The total deflection angle is thus γ=0 and the beam is only expanded. (b) Medium beam deflection of γ15. The deflector deformation width is set to wd=66.6λ to achieve the desired deflection angle for a selected beam waist (see Fig. 4) and the shifter building block angle is kept at θ=0 because the beam will already get shifted enough by deflector. (c) Large beam deflection. The deflector deformation width is narrowed to wd=40λ to achieve larger deflection angle and the shifter building block is adjusted to the angle θ23 to compensate for a larger decentering of the beam due to larger deflection angle. The beam is expanded fully downwards to an angle of γ20. (d) Intensity profiles of all three beams at the position marked with the vertical dashed line in panels (ac). Dashed line represents the profile of the beam after large deflection in the opposite direction. Expander building block (lens) remains unchanged for all cases. (eg) Propagation of the beam through the lossy material with the same parameters as in (ac), respectively. Complex part of permittivity was set to ε=5×10-4. (h) Intensity profiles of all three beams at the position marked with the vertical dashed line in panels (eg) for different values of ε.

Partitioning the beam

More complex intensity profiles can be obtained by splitting the incoming beam and controlling each part of the beam separately. In Fig. 8, we show beam splitting into two beams by using a double-shifter building block (see yellow inset in Fig. 8a) with the director angle of the opposite sign in the upper and lower portion of the block. Deflecting each split beam is done by two deflectors, one on top of the other. An expander block, which essentially acts as a pair of deflectors with the opposite orientation, can be used if the deflection in the opposite direction is desired (see inset in Fig. 8a). By tuning the position of the splitting area of the director field, which equals moving the double-shifter from Fig. 8a up or down, intensity in each part of the beam can be determined (Fig. 8b). Additionally, the beams can be deflected at different angles by shifting the expander block up or down, relative to the centre of the beam (Fig. 8c) or can propagate along the same direction, being parallel to each other, if an actual double deflector block is used (Fig. 8d). Moreover, each beam could further be split or expanded by using additional building blocks.

Figure 8.

Figure 8

Splitting and controlling the beam. (a) Two shifters can be used as a beam splitter: the beam is passed along the border between two areas with different (uniform) nematic director orientation. Separated beams can be deflected at the same or different angle, each with its own deflector or by lens. (b) By tuning the position of the splitting area of the director field, intensity in each part of the beam can be determined. (c) If the centre of the lens does not coincide with the plane of splitting, the separated beams hit the lens at different distances from its centre and are deflected at different angles. (d) Split beams can be deflected in the same direction by using a pair of deflectors.

Towards experimental realisation

The specific experimental approach we see as exciting for realisation of the proposed multi-layer liquid-crystal cells is to use the Two-Photon Polymerisation Direct Laser Writing (2PP-DLW), an emerging processing technique, which can fabricate polymer structures on the micro and even nanoscales58,68,69. Such procedure could allow not only for fabrication of thin walls of polymer-networked liquid crystals with the thickness of as small as 1μm68 between different elements of the cell (i.e. building blocks of our device—the shifter, deflector and expander), but could also realise highly-diverse spatially varying effective surface anchoring profiles on these printed separating walls, overall allowing precise and customized prefabrication of different devices. Because of their small thickness, notably, the polymer walls would enable smooth transition of light between building blocks without too much undesired diffraction or shift, that would otherwise occur in a usually much thicker (100μm) glass separators. We note that in our work we used exemplary values of the material and geometric parameters; therefore, any optimisation could further improve the performance of our device.

More generally, different experimental realisations of the beam control elements were reported that relate to our work. Beam shifting based on walk-off was realised experimentally in static70, voltage36 or magnetic field controlled44,45 planar liquid crystal cells. Similarly, beam steering was reported with voltage driven device49, where self-guiding and solitonic states can be achieved with higher power. Beam deflection by voltage driven bent-align cell was achieved in positive21 and negative22 birefringence liquid crystal cells. Different experimentally realisable structures for electrically tunable LC lenses were reported71,72, such as curved lens73, gradient index (GRIN) lens74, Fresnel type lens75, multi-layered lens76 and polymer dispersed liquid crystal PDLC lens77. Overall, there is exciting—experimental and theoretical—progress realising beam and light steering with liquid crystals, typically relying on manipulation of single liquid crystals layers, which could be adapted and used for design of also multi-layered nematic devices.

Discussion

In this work we show tunable beam control device capable of controlling the outgoing light intensity propagation direction and profile with great precision. The beam control device is based on multiple stacked nematic liquid crystal cells—building blocks. To emphasize and demonstrate the fundamental beam control, we used rather simple building blocks—shifter, deflector, and lens cells, but there is no principal limitation to use more advanced elements with multiple beam control functions or more elements. In the demonstrated approach the mutual tuning of each building block contributes to the total effect on the incoming beam. The beam can be deflected continuously in arbitrary direction (up or down in our case) and is then expanded (or focused) to provide a desired intensity profile. The beam can also be split into multiple sub-beams and each sub-beam can be controlled individually—its direction, intensity and profile. To obtain a full 3D-dimensional beam control, which is beyond the scope of this paper, additional deflector building blocks could be implemented, in combination with a polarization rotator (for example half-wave plate), to steer the beam in different directions of the solid angle.

The presented beam control device is—with properly designed material parameters—capable of controlling a broad-wavelength light with only little colour dispersion, which opens additional possibilities for applications. Furthermore, by adding additional building blocks, more complex intensity profiles can be obtained. Future research will be directed to optimize the material parameters and find the optimal building block structures to simplify the realisation of such an adaptive beam control device.

Methods

Light simulations

Nematic materials are used in optical applications importantly due to their ability to control the light via direction dependant refractive index—i.e. the birefringence, which originates from the orientational organization of molecules along a preferred direction, called director (equivalent to the optical axis)50. The local orientation of the director can be widely tuned with external fields, such as confining surfaces, electric or magnetic fields50. Poynting vector of a light beam is generally not parallel to the wave vector when it travels through uniaxial birefringent material78. The walk-off angle δ between the wave vector and the Poynting vector for a polarization laying in the plane of the optical axis can be expressed via index ellipsoid79 as:

tanδ=1-no2ne2tanθ1+no2ne2tan2θ 1

where θ is the angle between the wave vector and the optical axis and no and ne are the ordinary and extraordinary refractive indices of the birefringent medium. In addition to beam intensity modulation and relocation, also the phase profile of the beam can be altered via birefringence, for example by changing the angle between the wave vector and the optical axis. Therefore both the phase and intensity profile of the input beam can be controlled by LC nematic director configuration.

The full vectorial control over the shaping of the light beams with the liquid-crystal beam control device is explored by using finite-difference frequency-domain (FDFD) numerical modelling based on solving the matrix form of the Maxwell curl equations written in the frequency domain:

((×ε-1×)-ω2μ)H=Hsrc 2

where H is nodal magnetic field vector, Hsrc is a nodal source vector, ω is frequency of the light and ε and μ are space-dependant matrices of material parameters in the units of ε0 and μ0, respectively. Dielectric permittivity tensor ε depends on the local orientation of the optical axis, which is parallel to the nematic director. Director field profile is included in the nematic order parameter tensor Q:

Qij=S23ninj-δij+P2ei(1)ej(1)-ei(2)ej(2) 3

where S is the degree of order and ni are components of the nematic director which was either determined analytically or by use of minimisation of Landau–de Gennes free energy as explained below. e(1)n is the secondary director and e(2)=n×e(1). The second term in Eq. (3) accounts for biaxiality P, which quantifies fluctuations around the secondary director e(1). ε is calculated from Q as50:

ε=ε¯I+23εamolQ, 4

where ε¯ is the average dielectric permittivity and εamol=(ε-ε)/S is the molecular dielectric anisotropy for a degree of order S. They are both related to the refractive indices of birefringent material at a given temperature, which were extracted from the literature80 . Grid spacing of at least λ/10 is used, where λ is the wavelength of light in vacuum. The source vector is calculated using the total-field/scattered-field (TF/SF) formulation81 as:

Hsrc=(MA-AM)H~src 5

where A=((×ε-1×)-ω2μI) is the wave matrix from Eq. (2), M is the masking matrix, denoting the areas where total or scattered field is to be calculated and H~src is the source field, propagating through vacuum. Perfectly matched layer (PML) with the thickness larger than λ/2 is used to truncate the domain and simulate infinite boundary conditions in all directions.

The solution of such linear system is the full vector field H consisting of a total magnetic field in the regions where the elements of masking matrix M equal to zero and scattered magnetic field in the regions where they equal to one. Following the Maxwell equations, electric vector field in every point is obtained as

E=1ωε-1×H 6

Liquid crystal free energy minimisation and electric potential calculations

Minimisation of Landau–de Gennes free energy51 was used to numerically calculate ordering of a nematic liquid crystal in the presence of electric field, induced by electrodes, as presented in Fig. 3. In addition to the Landau expansion, describing the temperature-driven phase transition, the free energy expression consisted of a single elastic constant approximation (Kel=1.264×10-11N) elastic free energy used to describe nematic distortions and the term describing the coupling with the static electric field. Static electric field was obtained as a gradient of electric potential V which was determined by numerically solving the analogue to the Laplace equation in an anisotropic dielectric medium

i(εij(jV))=0, 7

where εij are the components of dielectric tensor, by applying boundary conditions set by voltage on the electrodes. The minimum of the free energy was found via solving the Euler–Lagrange equations, while simultaneously relaxing the electric potential. A finite difference based explicit relaxation method was used. During the relaxation the Q-tensor and electric potential V on all lattice sites were updated in each time step until the steady state was achieved, normally after 1·1052·105 relaxation steps.

Ansaetze for liquid crystal birefringence profiles

Birefringence profiles (i.e. the director field) in the liquid crystal (LC) cells for calculations presented in other figures were determined by analytical formulas

nshift=(cosθ,sinθ,0),θ=cons. 8
ndef=(cosθ(y),sinθ(y),0),θ(y)=0ywd/2π212-ywdwd/2>y>-wd/2π/2y-wd/2 9
nexp=(cosθ(y),sinθ(y),0),θ(y)=π/2ywd/2π(1-ywd)wd/2>y>0-πywd0y>-wd/2π/2y-wd/2 10

for a shifter, deflector and expander, respectively, where wd is the deformation thickness in the block. Also these director field configurations could be obtained from full numerical simulations with free energy minimisation.

Computational domain was restricted to two dimensions due to high computer memory (RAM) consumption. The derivatives in the third dimension were eliminated, meaning that the obtained results are invariant in that particular direction. Modulation of the beam is therefore done in 2D only, but could in principle be extended to 3D by use of more complex 3D nematic director field profiles in individual cells or stacking multiple cells with orthogonal orientations. 2D configuration allowed us to simulate cells with the sizes of tens of wavelengths, i.e. actually roughly reach the sizes of actual devices. All three components of fields were taken into account. The code was developed in Matlab R2019a and run on Intel Xeon nodes with 190 GB RAM. Refractive indices of LC were set to no=1.5, ne=1.880 and the index of the surrounding isotropic material to no=1.5, to match the ordinary refractive index of LC.

Acknowledgements

This work was supported by the Slovenian Research Agency ARRS under Contracts Nos. P1-0099, J1-2462, J1-1697, and N1-0195. The work was also partially supported by ERC Advanced grant LOGOS (grant number 884928). D.S. acknowledges support from the Ministry of Education, Science and Sport, EU Cohesion Policy, under Contract Raziskovalci-2.1-UL-FMF-952012 and from Adria Tehnik d.o.o.

Author contributions

D.S. conceived and led the work. U.M. and D.S. performed numerical simulations, supervised by M.R. All authors analysed the results and contributed in writing the manuscript.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Davidson N, Bokor N. Anamorphic beam shaping for laser and diffuse light. Prog. Opt. 2003;45:1. [Google Scholar]
  • 2.Du H, Chau F, Zhou G. Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators. Micromachines. 2016;7:69. doi: 10.3390/mi7040069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Heck MJ. Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics. 2017;6:93. [Google Scholar]
  • 4.Chronis N, Liu G, Jeong K-H, Lee L. Tunable liquid-filled microlens array integrated with microfluidic network. Opt. Express. 2003;11:2370. doi: 10.1364/oe.11.002370. [DOI] [PubMed] [Google Scholar]
  • 5.Matsuo S, Juodkazis S, Misawa H. Femtosecond laser microfabrication of periodic structures using a microlens array. Appl. Phys. A. 2005;80:683. [Google Scholar]
  • 6.Yu N, et al. light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science. 2011;334:333. doi: 10.1126/science.1210713. [DOI] [PubMed] [Google Scholar]
  • 7.Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica. 2017;4:139. [Google Scholar]
  • 8.Lee H, Park J, Oh K. Recent progress in all-fiber non-gaussian optical beam shaping technologies. J. Lightwave Technol. 2019;37:2590. [Google Scholar]
  • 9.Khoo, I. & Saleh, B. Liquid Crystals. Wiley Series in Pure and Applied Optics (Wiley, 2007).
  • 10.Chigrinov, V. G. Liquid Crystal Photonics (Nova Science Publishers, Inc., 2014).
  • 11.Fray A, Hilsum C, Jones D. Some properties of liquid crystals as infrared modulators. Infrared Phys. 1978;18:35. [Google Scholar]
  • 12.Sato S. Liquid-crystal lens-cells with variable focal length. Jpn. J. Appl. Phys. 1979;18:1679. [Google Scholar]
  • 13.Tseng M-C, et al. Tunable lens by spatially varying liquid crystal pretilt angles. J. Appl. Phys. 2011;109:083109. [Google Scholar]
  • 14.Fan F, et al. Low voltage tunable liquid crystal lens. Opt. Lett. 2013;38:4116. doi: 10.1364/OL.38.004116. [DOI] [PubMed] [Google Scholar]
  • 15.Algorri JF, et al. Positive-negative tunable liquid crystal lenses based on a microstructured transmission line. Sci. Rep. 2020;10:469. doi: 10.1038/s41598-020-67141-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Jamali A, Bryant D, Bhowmick AK, Bos PJ. Large area liquid crystal lenses for correction of presbyopia. Opt. Express. 2020;28:33982. doi: 10.1364/OE.408770. [DOI] [PubMed] [Google Scholar]
  • 17.Begel L, Galstian T. Liquid crystal lens with corrected wavefront asymmetry. Appl. Opt. 2018;57:5072. doi: 10.1364/AO.57.005072. [DOI] [PubMed] [Google Scholar]
  • 18.Sio LD, et al. Beam shaping diffractive wave plates [invited] Appl. Opt. 2018;57:A118. doi: 10.1364/AO.57.00A118. [DOI] [PubMed] [Google Scholar]
  • 19.Masuda S, Takahashi S, Nose T, Sato S, Ito H. Liquid-crystal microlens with a beam-steering function. Appl. Opt. 1997;36:4772. doi: 10.1364/ao.36.004772. [DOI] [PubMed] [Google Scholar]
  • 20.Yin K, He Z, Wu S. Reflective polarization volume lens with small f-number and large diffraction angle. Adv. Opt. Mater. 2020;8:2000170. [Google Scholar]
  • 21.Fray A, Jones D. Large-angle beam deflector using liquid crystals. Electron. Lett. 1975;11:358. [Google Scholar]
  • 22.Sasaki A, Ishibashi T. Liquid-crystal light deflector. Electron. Lett. 1979;15:293. [Google Scholar]
  • 23.Apter B, Bahat-Treidel E, Efron U. Continuously controllable, wide-angle liquid crystal beam deflector based on the transversal field effect in a three-electrode cell. Opt. Eng. 2005;44:054001. [Google Scholar]
  • 24.Laudyn UA, et al. Curved optical solitons subject to transverse acceleration in reorientational soft matter. Sci. Rep. 2017;7:221. doi: 10.1038/s41598-017-12242-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Otón E, et al. Diffractive and refractive liquid crystal devices based on multilayer matrices. J. Lightwave Technol. 2019;37:2086. [Google Scholar]
  • 26.Tian L-L, et al. Beam steering device based on blue phase liquid crystal. Opt. Commun. 2021;481:126525. [Google Scholar]
  • 27.He Z, et al. Liquid crystal beam steering devices: Principles, recent advances, and future developments. Curr. Comput.-Aided Drug Des. 2019;9:292. [Google Scholar]
  • 28.Matic, R. M. Blazed phase liquid crystal beam steering. SPIE Proceedings 194 (1994).
  • 29.Fan F, Srivastava AK, Chigrinov VG, Kwok HS. Switchable liquid crystal grating with sub millisecond response. Appl. Phys. Lett. 2012;100:111105. [Google Scholar]
  • 30.Otón JM, Otón E, Quintana X, Geday MA. Liquid-crystal phase-only devices. J. Mol. Liq. 2018;267:469. [Google Scholar]
  • 31.Weng Y, Xu D, Zhang Y, Li X, Wu S-T. Polarization volume grating with high efficiency and large diffraction angle. Opt. Express. 2016;24:17746. doi: 10.1364/OE.24.017746. [DOI] [PubMed] [Google Scholar]
  • 32.Yin K, He Z, Wu S. Spotlighting recent advances in liquid-crystal devices for beam-steering applications. Inf. Display. 2021;37:9. [Google Scholar]
  • 33.Gao K, et al. High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design. Opt. Express. 2017;25:6283. doi: 10.1364/OE.25.006283. [DOI] [PubMed] [Google Scholar]
  • 34.Nocentini S, Martella D, Wiersma DS, Parmeggiani C. Beam steering by liquid crystal elastomer fibres. Soft Matter. 2017;13:8590. doi: 10.1039/c7sm02063e. [DOI] [PubMed] [Google Scholar]
  • 35.Morris R, Jones JC, Nagaraj M. Continuously variable diffraction gratings using electroconvection in liquid crystals for beam steering applications. J. Appl. Phys. 2019;126:224505. [Google Scholar]
  • 36.Peccianti M, Conti C, Assanto G, Luca AD, Umeton C. Routing of anisotropic spatial solitons and modulational instability in liquid crystals. Nature. 2004;432:733. doi: 10.1038/nature03101. [DOI] [PubMed] [Google Scholar]
  • 37.Alberucci A, et al. Interactions of accessible solitons with interfaces in anisotropic media: The case of uniaxial nematic liquid crystals. New J. Phys. 2013;15:043011. [Google Scholar]
  • 38.Alberucci A, Piccardi A, Kravets N, Buchnev O, Assanto G. Soliton enhancement of spontaneous symmetry breaking. Optica. 2015;2:783. [Google Scholar]
  • 39.Beeckman J, Neyts K, Hutsebaut X, Cambournac C, Haelterman M. Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells. Opt. Express. 2004;12:1011. doi: 10.1364/opex.12.001011. [DOI] [PubMed] [Google Scholar]
  • 40.Cheng H, Bhowmik AK, Bos PJ. Analysis of a dual-twist Pancharatnam phase device with ultrahigh-efficiency large-angle optical beam steering. Appl. Opt. 2015;54:10035. doi: 10.1364/AO.54.010035. [DOI] [PubMed] [Google Scholar]
  • 41.Marrucci L, Manzo C, Paparo D. Pancharatnam-berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation. Appl. Phys. Lett. 2006;88:221102. [Google Scholar]
  • 42.Chen H, Weng Y, Xu D, Tabiryan NV, Wu S-T. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate. Opt. Express. 2016;24:7287. doi: 10.1364/OE.24.007287. [DOI] [PubMed] [Google Scholar]
  • 43.Peccianti M, Dyadyusha A, Kaczmarek M, Assanto G. Tunable refraction and reflection of self-confined light beams. Nat. Phys. 2006;2:737. [Google Scholar]
  • 44.Izdebskaya Y, Shvedov V, Assanto G, Krolikowski W. Magnetic routing of light-induced waveguides. Nat. Commun. 2017;8:35. doi: 10.1038/ncomms14452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Perumbilavil S, Kauranen M, Assanto G. Magnetic steering of beam-confined random laser in liquid crystals. Appl. Phys. Lett. 2018;113:121107. [Google Scholar]
  • 46.Izdebskaya YV, Desyatnikov AS, Assanto G, Kivshar YS. Deflection of nematicons through interaction with dielectric particles. J. Opt. Soc. Am. B. 2013;30:1432. [Google Scholar]
  • 47.Izdebskaya YV. Routing of spatial solitons by interaction with rod microelectrodes. Opt. Lett. 2014;39:1681. doi: 10.1364/OL.39.001681. [DOI] [PubMed] [Google Scholar]
  • 48.Piccardi A, et al. In-plane steering of nematicon waveguides across an electrically tuned interface. Appl. Phys. Lett. 2012;100:251107. [Google Scholar]
  • 49.Barboza R, Alberucci A, Assanto G. Large electro-optic beam steering with nematicons. Opt. Lett. 2011;36:2725. doi: 10.1364/OL.36.002725. [DOI] [PubMed] [Google Scholar]
  • 50.de Gennes PG, Prost J. Physics of Liquid Crystals. Oxford: Clarendon Press; 1993. [Google Scholar]
  • 51.Ravnik M, Žumer S. Landau-de gennes modelling of nematic liquid crystal colloids. Liq. Cryst. 2009;36:1201–1214. [Google Scholar]
  • 52.Aguirre LE, et al. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets. Proc. Natl. Acad. Sci. 2016;113:1174–1179. doi: 10.1073/pnas.1518739113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Nikkhou M, et al. Light-controlled topological charge in a nematic liquid crystal. Nat. Phys. 2015;11:183–187. [Google Scholar]
  • 54.Gupta VK, Abbott NL. Design of surfaces for patterned alignment of liquid crystals on planar and curved substrates. Science. 1997;276:1533–1536. [Google Scholar]
  • 55.Prompinit P, et al. Controlling liquid crystal alignment using photocleavable cyanobiphenyl self-assembled monolayers. ACS Appl. Mater. Interfaces. 2010;2:3686–3692. doi: 10.1021/am100832p. [DOI] [PubMed] [Google Scholar]
  • 56.Chigrinov VG. Photoaligning and photopatterning-a new challenge in liquid crystal photonics. Curr. Comput.-Aided Drug Des. 2013;3:149–162. [Google Scholar]
  • 57.Nys I. Patterned surface alignment to create complex three-dimensional nematic and chiral nematic liquid crystal structures. Liq. Cryst. Today. 2020;29:65–83. [Google Scholar]
  • 58.Tartan CC, et al. Read on demand images in laser-written polymerizable liquid crystal devices. Adv. Opt. Mater. 2018;6:1800515. [Google Scholar]
  • 59.Lin H, Palffy-muhoray P, Lee MA. Liquid crystalline cores for optical fibers. Mol. Cryst. Liq. Cryst. 1991;204:189. [Google Scholar]
  • 60.Čančula M, Ravnik M, Muševič I, Žumer S. Liquid microlenses and waveguides from bulk nematic birefringent profiles. Opt. Express. 2016;24:22177. doi: 10.1364/OE.24.022177. [DOI] [PubMed] [Google Scholar]
  • 61.Harkai S, Murray BS, Rosenblatt C, Kralj S. Electric field driven reconfigurable multistable topological defect patterns. Phys. Rev. Res. 2020;2:013176. doi: 10.1103/physrevresearch.2.013176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Algorri JF, Zografopoulos DC, Urruchi V, Sánchez-Pena JM. Recent advances in adaptive liquid crystal lenses. Curr. Comput.-Aided Drug Des. 2019;9:272. [Google Scholar]
  • 63.Honma M, Nose T, Yanase S, Yamaguchi R, Sato S. Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles. Opt. Express. 2009;17:10998. doi: 10.1364/oe.17.010998. [DOI] [PubMed] [Google Scholar]
  • 64.Nose T, Yamada Y, Sato S. Improvement of optical properties and beam steering functions in a liquid crystal microlens with an extra controlling electrode by a planar structure. Jpn. J. Appl. Phys. 2000;39:6383. [Google Scholar]
  • 65.Hsu C-J, Jhang J-J, Jhang J-C, Huang C-Y. Influence of floating-ring-electrode on large-aperture liquid crystal lens. Liq. Cryst. 2017;45:40. [Google Scholar]
  • 66.Hess AJ, Poy G, Tai J-SB, Žumer S, Smalyukh II. Control of light by topological solitons in soft chiral birefringent media. Phys. Rev. X. 2020;10:178. [Google Scholar]
  • 67.Wu S-T. Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared. J. Appl. Phys. 1998;84:4462–4465. [Google Scholar]
  • 68.O’Neill JJS, Salter PS, Booth MJ, Elston SJ, Morris SM. Electrically-tunable positioning of topological defects in liquid crystals. Nat. Commun. 2020;11:1–8. doi: 10.1038/s41467-020-16059-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Gan Z, Cao Y, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 2013;4:1–7. doi: 10.1038/ncomms3061. [DOI] [PubMed] [Google Scholar]
  • 70.Piccardi A, Alberucci A, Assanto G. Power-dependent nematicon steering via walk-off. JOSA B. 2010;27:2398–2404. [Google Scholar]
  • 71.Lin H-C, Chen M-S, Lin Y-H. A review of electrically tunable focusing liquid crystal lenses. Trans. Electr. Electron. Mater. 2011;12:234–240. [Google Scholar]
  • 72.Lin Y-H, Wang Y-J, Reshetnyak V. Liquid crystal lenses with tunable focal length. Liq. Cryst. Rev. 2017;5:111–143. [Google Scholar]
  • 73.Kaur S, et al. Graphene electrodes for adaptive liquid crystal contact lenses. Opt. Express. 2016;24:8782–8787. doi: 10.1364/OE.24.008782. [DOI] [PubMed] [Google Scholar]
  • 74.Ye M, Sato S. Optical properties of liquid crystal lens of any size. Jpn. J. Appl. Phys. 2002;41:L571. [Google Scholar]
  • 75.Huang S, Li Y, Zhou P, Liu S, Su Y. Polymer network liquid crystal grating/fresnel lens fabricated by holography. Liq. Cryst. 2017;44:873–879. [Google Scholar]
  • 76.Chen H-S, Wang Y-J, Chang C-M, Lin Y-H. A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure. IEEE Photonics Technol. Lett. 2015;27:899–902. [Google Scholar]
  • 77.Lin Y-H, Tsou Y-S. A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals. J. Appl. Phys. 2011;110:114516. [Google Scholar]
  • 78.Peccianti M, Assanto G. Observation of power-dependent walk-off via modulational instability in nematic liquid crystals. Opt. Lett. 2005;30:2290–2292. doi: 10.1364/ol.30.002290. [DOI] [PubMed] [Google Scholar]
  • 79.Bregar A, White T, Ravnik M. Refraction of light on flat boundary of liquid crystals or anisotropic metamaterials. Liq. Cryst. Rev. 2017;5:53–68. [Google Scholar]
  • 80.Li J, Gauza S, Wu S-T. Temperature effect on liquid crystal refractive indices. J. Appl. Phys. 2004;96:19–24. [Google Scholar]
  • 81.Rumpf RC. Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain. Progr. Electromagne. Res. 2012;36:221–248. [Google Scholar]

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES