ABSTRACT
Some mucoromycotan fungi establish symbiotic associations with endohyphal bacteria. Here, the genome of Entomortierella parvispora E1425 (synonymously known as Mortierella parvispora E1425), which harbors a cultured Burkholderiaceae-related endobacterium (BRE) designated Mycoavidus sp. strain B2-EB, was sequenced. We provide genomic information to elucidate fungal-BRE symbiotic features.
ANNOUNCEMENT
Soilborne fungi of Mortierella spp. harbor Burkholderiaceae-related endobacteria (BRE) (1–7) that can protect the host from nematode attack and inhibit zygospore formation (8, 9). Entomortierella parvispora E1425 (JCM 39028, synonymously known as Mortierella parvispora E1425) isolated from forest soil possesses a cultivable BRE named Mycoavidus sp. strain B2-EB (JCM 33615) (6, 10). Here, we conducted whole-genome sequencing of the host fungus.
To eliminate the endobacteria, germinated sporangiospores of E1425 were treated with ciprofloxacin (50 μg mL−1) at 23°C for 24 h and then incubated on fresh LCA medium (6) until fungal colonies appeared (9). After confirming the absence of BRE by diagnostic PCR in accordance with Takashima et al. (9), an endobacterium-cured line of E1425 was established and incubated on half-strength cornmeal-malt-yeast (CMMY) medium (2) at 23°C for 7 days (9). DNA and RNA were extracted from homogenized mycelia of endobacterium-cured E1425 using phenol-chloroform extraction (11) with a Genomic tip 100/G (Qiagen) and an RNeasy minikit (Qiagen), respectively. DNA libraries were constructed using a 1D Genomic DNA library kit (Oxford Nanopore Technologies) and a TruSeq DNA PCR-free prep kit (Illumina) and then sequenced on GridION (Oxford Nanopore Technologies) and Illumina HiSeq 2500 (2 × 150 bp) instruments, respectively. An RNA library was constructed using a TruSeq RNA library prep kit (Illumina) and sequenced on the HiSeq 2500 platform (2 × 150 bp).
Overall, 16.6-, 4.8-, and 7.4-Gbp reads were generated from the DNA-Nanopore, DNA-HiSeq, and RNA-HiSeq libraries, respectively. To determine the chromosomal genome, the DNA-Nanopore reads were processed using SeqKit (12), NanoFilt (13), and Canu (14) and then assembled using SMARTdenovo (15), followed by a polishing step using Nanopolish (16) and Pilon (17) with the cleaned DNA-HiSeq reads using Cutadapt (18). To obtain the mitochondrial genome, 5% of the cleaned DNA-Nanopore and DNA-HiSeq reads were assembled and circularized using Unicycler (19). The Cutadapt-cleaned RNA-HiSeq reads were mapped to the genome sequences using HISAT (20) to determine transcriptional sequences. The chromosomal genome was annotated using Barrnap, tRNAscan-SE (21), AUGUSTUS (22), and KofamKOALA (23), whereas the mitochondrial genome was annotated using MFannot. The software version and parameter settings are described in Table 1.
TABLE 1.
Software version and parameter settings used for data processing
| Software | Version | Process | Parameter setting(s) | Website |
|---|---|---|---|---|
| SeqKit | 0.7.2 | Quality control | seq -m 1000 | https://github.com/shenwei356/seqkit |
| NanoFilt | 2.0.0 | Quality control | -q 8 | https://github.com/wdecoster/nanofilt |
| Cutadapt | 1.16 | Quality control | --overlap 10, --minimum-length 51, --quality-cutoff 20 | https://github.com/marcelm/cutadapt |
| Canu | 1.7.1 | Read correction | -correct, genomeSize = 40m | https://github.com/marbl/canu |
| SMARTdenovo | Not available | Assembly | Default settings | https://github.com/ruanjue/smartdenovo |
| Nanopolish | 0.10.1 | Genome polish | Default settings | https://github.com/jts/nanopolish |
| Pilon | 1.22 | Genome polish | Default settings | https://github.com/broadinstitute/pilon |
| Unicycler | 0.4.7 | Assembly, genome closing | Default settings | https://github.com/rrwick/Unicycler |
| HISAT | 2.1.0 | Read mapping | --rna-strandness RF, --max-introlen 10000 | https://github.com/DaehwanKimLab/hisat2 |
| Barrnap | 0.9 | rRNA prediction | --kingdom euk | https://github.com/tseemann/barrnap |
| tRNAscan-SE | 2.0 | tRNA prediction | Sequence source: Eukaryotic | http://lowelab.ucsc.edu/tRNAscan-SE/ |
| AUGUSTUS | 3.3.3 | CDS prediction | cDNA file: the transcriptional sequences | http://bioinf.uni-greifswald.de/webaugustus/ |
| KofamKOALA | 2021-02-04 | Gene annotation | Default settings | https://www.genome.jp/tools/kofamkoala/ |
| MFannot | Not available | Mitochondrial genome annotation | Genetic code: 4 | https://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl |
The chromosomal genome had a total size of 38,663,708 bp (coverage, ×409) in 19 contigs with a GC content of 49.4% and an N50 value of 2,802,632 bp. The circularized mitochondrial genome had a size of 66,033 bp (coverage, ×3,965) with a GC content of 24.0%. In total, 20 rRNAs, 192 tRNAs, and 11,641 coding DNA sequences (CDSs) were predicted from the chromosomal sequences, whereas 2 rRNAs, 25 tRNAs, and 29 CDSs were encoded in the mitochondrial genome. Genome annotation revealed that E1425 can synthesize various amino acids and fatty acids, which potentially served as nutrients for endobacterial growth (4, 10). Further study will be necessary to elucidate the interactions between the host fungus and BRE.
Data availability.
The genome sequence of Entomortierella parvispora E1425 was deposited in the DDBJ/ENA/GenBank databases with the accession numbers BQFW01000001 to BQFW01000019 and LC659289 for the mitochondrion. The raw read data are available with the accession numbers DRA010776 and DRA013164 for the DNA sequencing (DNA-seq) and transcriptome (RNA-seq) libraries, respectively.
ACKNOWLEDGMENTS
This research was supported by the Institute for Fermentation, Osaka (IFO), and JSPS KAKENHI grants 17K07695 to T.N. as well as 20K21301 to K.N.
Contributor Information
Yong Guo, Email: yong.guo.1985@vc.ibaraki.ac.jp.
Tomoyasu Nishizawa, Email: tomoyasu.nishizawa.agr@vc.ibaraki.ac.jp.
Antonis Rokas, Vanderbilt University.
REFERENCES
- 1.Wagner L, Stielow B, Hoffmann K, Petkovits T, Papp T, Vágvölgyi C, de Hoog GS, Verkley G, Voigt K. 2013. A comprehensive molecular phylogeny of the Mortierellales (Mortierellomycotina) based on nuclear ribosomal DNA. Persoonia 30:77–93. doi: 10.3767/003158513X666268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Sato Y, Narisawa K, Tsuruta K, Umezu M, Nishizawa T, Tanaka K, Yamaguchi K, Komatsuzaki M, Ohta H. 2010. Detection of betaproteobacteria inside the mycelium of the fungus Mortierella elongata. Microbes Environ 25:321–324. doi: 10.1264/jsme2.me10134. [DOI] [PubMed] [Google Scholar]
- 3.Ohshima S, Sato Y, Fujimura R, Takashima Y, Hamada M, Nishizawa T, Narisawa K, Ohta H. 2016. Mycoavidus cysteinexigens gen. nov. sp. nov., an endohyphal bacterium isolated from a soil isolate of the fungus Mortierella elongata. Int J Syst Evol Microbiol 66:2052–2057. doi: 10.1099/ijsem.0.000990. [DOI] [PubMed] [Google Scholar]
- 4.Sharmin D, Guo Y, Nishizawa T, Ohshima S, Sato Y, Takashima Y, Narisawa K, Ohta H. 2018. Comparative genomic insights into endofungal lifestyles of two bacterial endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica. Microbes Environ 33:66–76. doi: 10.1264/jsme2.ME17138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK, Wu S, Desirò A, Vande Pol N, Du Z, Zienkiewicz A, Zienkiewicz K, Morin E, Tisserant E, Splivallo R, Hainaut M, Henrissat B, Ohm R, Kuo A, Yan J, Lipzen A, Nolan M, Labutti K, Barry K, Goldstein AH, Labbé J, Schadt C, Tuskan G, Grigoriev I, Martin F, Vilgalys R, Bonito G. 2017. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ Microbiol 19:2964–2983. doi: 10.1111/1462-2920.13669. [DOI] [PubMed] [Google Scholar]
- 6.Takashima Y, Seto K, Degawa Y, Guo Y, Nishizawa T, Ohta H, Narisawa K. 2018. Prevalence and intra-family phylogenetic divergence of Burkholderiaceae-related endobacteria associated with species of Mortierella. Microbes Environ 33:417–427. doi: 10.1264/jsme2.ME18081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Okrasińska A, Bokus A, Duk K, Gęsiorska A, Sokołowska B, Miłobędzka A, Wrzosek M, Pawłowska J. 2021. New endohyphal relationships between Mucoromycota and Burkholderiaceae representatives. Appl Environ Microbiol 87:e02707-20. doi: 10.1128/AEM.02707-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Büttner H, Niehs SP, Vandelannoote K, Cseresnyés Z, Dose B, Richter I, Gerst R, Figge MT, Stinear TP, Pidot SJ, Hertweck C. 2021. Bacterial endosymbionts protect beneficial soil fungus from nematode attack. Proc Natl Acad Sci USA 118:e2110669118. doi: 10.1073/pnas.2110669118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Takashima Y, Degawa Y, Nishizawa T, Ohta H, Narisawa K. 2020. Aposymbiosis of a Burkholderiaceae-related endobacterium impacts on sexual reproduction of its fungal host. Microbes Environ 35:ME19167. doi: 10.1264/jsme2.ME19167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Guo Y, Takashima Y, Sato Y, Narisawa K, Ohta H, Nishizawa T. 2020. Mycoavidus sp. strain B2-EB: comparative genomics reveals minimal genomic features required by a cultivable Burkholderiaceae-related endofungal bacterium. Appl Environ Microbiol 86:e01018-20. doi: 10.1128/AEM.01018-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218. doi: 10.1016/S0022-2836(61)80047-8. [DOI] [Google Scholar]
- 12.Shen W, Le S, Li Y, Hu F. 2016. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11:e0163962. doi: 10.1371/journal.pone.0163962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34:2666–2669. doi: 10.1093/bioinformatics/bty149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. doi: 10.1101/gr.215087.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Liu H, Wu S, Li A, Ruan J. 2021. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021:1–9. doi: 10.46471/gigabyte.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733–735. doi: 10.1038/nmeth.3444. [DOI] [PubMed] [Google Scholar]
- 17.Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi: 10.1371/journal.pone.0112963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. doi: 10.14806/ej.17.1.200. [DOI] [Google Scholar]
- 19.Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. doi: 10.1371/journal.pcbi.1005595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. doi: 10.1038/nmeth.3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Chan PP, Lowe TM. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol 1962:1–14. doi: 10.1007/978-1-4939-9173-0_1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Stanke M, Morgenstern B. 2005. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467. doi: 10.1093/nar/gki458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H. 2020. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36:2251–2252. doi: 10.1093/bioinformatics/btz859. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The genome sequence of Entomortierella parvispora E1425 was deposited in the DDBJ/ENA/GenBank databases with the accession numbers BQFW01000001 to BQFW01000019 and LC659289 for the mitochondrion. The raw read data are available with the accession numbers DRA010776 and DRA013164 for the DNA sequencing (DNA-seq) and transcriptome (RNA-seq) libraries, respectively.
