Abstract
The outbreak of the COVID-19 pandemic has cost five million lives to date, and was caused by a positive-sense RNA virus named SARS-CoV2. The lack of drugs specific to SARS-CoV2, leads us to search for an effective and specific therapeutic approach. Small interfering RNA (siRNA) is able to activate the RNA interference (RNAi) pathway to silence the specific targeted gene and inhibit the viral replication, and it has not yet attracted enough attention as a SARS-CoV2 antiviral agent. It could be a potential weapon to combat this pandemic until the completion of full scale, effective mass vaccination. For this study, specific siRNAs were designed using a web-based bioinformatics tool (siDirect2.0) against 14 target sequences. These might have a high probability of silencing the essential proteins of SARS-CoV2. such as: 3CLpro/Mpro/nsp5, nsp7, Rd-Rp/nsp12, ZD, NTPase/HEL or nsp13, PLpro/nsp3, envelope protein (E), spike glycoprotein (S), nucleocapsid phosphoprotein (N), membrane glycoprotein (M), ORF8, ORF3a, nsp2, and its respective 5′ and 3′-UTR. Among these potential drug targets, the majority of them contain highly conserved sequences; the rest are chosen on the basis of their role in viral replication and survival. The traditional vaccine development technology using SARS-CoV2 protein takes 6–8 months; meanwhile the virus undergoes several mutations in the candidate protein chosen for vaccine development. By the time the protein-based vaccine reaches the market, the virus would have undergone several mutations, such that the antibodies against the viral sequence may not be effective in restricting the newly mutated viruses. However, siRNA technology can make sequences based on real time viral mutation status. This has the potential for suppressing SARS-CoV2 viral replication, through RNAi technology.
Abbreviations: SARS, severe acute respiratory syndrome; MERS, Middle East Respiratory Syndrome; SARS-CoV2, severe acute respiratory syndrome coronavirus 2; COVID-19, Coronavirus Disease of 2019; RNAi, RNA interference; siRNA, small interfering RNA; ORF, open reading frame; PLpro, papain like proteases; Mpro, main proteases; 3CLpro, 3-chymotrypsin like proteases; Rd-Rp, RNA dependent-RNA polymerases; nsp, non-structural protein; UTR, untranslated region
Keywords: SARS-CoV2, RNAi, siRNA, Antiviral, Therapeutics, Drug design
1. Introduction
In December 2019, the World Health Organization (WHO) announced a new type of virus called Severe Acute Respiratory Syndrome Coronavirus 2 or briefly, SARS-CoV2. SARS-CoV2 gives rise to violent damage to the world as a pandemic (called COVID-19 disease) affecting more than 222 countries and territories (Worldometer) with 253,982,410 confirmed cases, including 5,114,571 fatalities (WHO) until November 2021. The world is in great need of effective measures to prevent or treat this pandemic. Many different types of therapeutic agents of other targets (antiviral, anti-malarial, anti-cancer, etc.) have been tested to determine their potential effectiveness against SARS-CoV2, but their efficacy has not yet been confirmed (Ghosh et al., 2020). Likewise, drugs used against SARS-CoV and MERS-CoV were initially found to be ineffective against SARS-CoV2 (Naqvi et al., 2020). The tendency of potential adaptive mutations of the SARS-CoV2 genome possibly made it extremely pathogenic, causing problems in the development of drugs and vaccines (Xu et al., 2020). The challenges for the treatment require a novel dimension, especially when we are in need of an effective antiviral agent.
RNAi is a specific post-transcriptional gene-silencing mechanism that can be activated via siRNA (Saadat, 2013) and has the potential to block pathogenic viral replication and further infection in animal cells (Ge et al., 2003). siRNA-silencing technology was used to restrict HCV, HIV (Wilson et al., 2003), SARS and MERS viral replication (Li et al., 2005; Wu et al., 2005; Yi et al., 2005).
Genetic variance analyses of the complete genome in 48,635 SARS-CoV2 samples, comparing it with the reference genome (Wuhan genome) NC_045512.2, revealed a fair average of 7.23 mutations per sample (Mercatelli and Giorgi, 2020). Genetic variances of SARS-CoV2 even within the same country are an obstacle to finding a universally applicable therapeutic agent (Biswas and Mudi, 2020; Toyoshima et al., 2020). This reason leads us to think about specific siRNA-based universal therapeutics by focusing on conserved and various potential targets in SARS-CoV2 genome reference sequences. This effort may pave the way for precision/personalized medicine to treat individuals infected with SARS-CoV2.
Genome SARS-CoV2 contains 14 Open Reading Frames (ORFs), and 27 proteins (A. Wu et al., 2020). ORF1a, as well as ORF1b, is translated as a single large poly-protein. The ORF1a contains two viral proteases; papain-like proteases or PLpro (non-structural protein 3 or nsp3), and main proteases or Mpro also designated as 3-chymotrypsin-like proteases or 3CLpro (non-structural protein 5 or nsp5). Recent clinical trials of multiple antiviral agents have targeted the proteases (Ghosh et al., 2020). The ORF1b contains viral RNA-dependent RNA polymerase (Rd-Rp), which is non-structural protein 12 or nsp12. The site identified, downstream to the Rd-Rp is coding for the viral helicase (non-structural protein 13 or nsp13) (Ghosh et al., 2020). Both ORF1a and ORF1b include highly preserved sequences among the annotated genomes of SARS-CoV2 and earlier beta coronaviruses like SARS and MERS (F. Wu et al., 2020). The envelope protein (E), spike glycoprotein (S), nucleocapsid phosphoprotein (N), and membrane glycoprotein (M) are considered to be potential drug/vaccine targets (Naqvi et al., 2020). By comparing the inflammatory pathways and cytokine responses during SARS-CoV, MERS-CoV, and SARS-CoV2 infections, it has been recognized that ORF8 triggers DNA synthesis and ORF3a triggers necrotic cell death. And also nsp2 does proofreading which is necessary for viral replication (Naqvi et al., 2020). The 5′ and 3′-UTR sequences are necessary for RNA replication and transcription (Wu et al., 2005).
The siRNAs can silence the targeted genes and also inhibit the replication of the virus. Similar studies were reported for the previous SARS viruses (Li et al., 2005).
In this study, siRNAs have been designed targeting specifically conserved sequences and also other potential drug targets. These are: nsp5, nsp3, nsp12, nsp7, nsp13, nsp3, envelope protein (E), spike glycoprotein (S), nucleoprotein (N), membrane protein (M), ORF8, ORF3a, nsp2, 5′- and 3′-UTR. These siRNA sequences have the probable capability to inhibit viral replication as well as further viral infection. These sequence designs might support COVID-19 management, if found effective in drug delivery through liposome.
2. Materials and methods
2.1. Sequence retrieval & manual extraction
The reference genome of the SARS-Cov2 [NC_045512.2] was achieved from the database available at the National Center for Biotechnological Information (NCBI) (NCBI (accessed 18 February 2021)) and we manually extracted the sequences for 3CLpro/Mpro or non-structural protein 5/nsp5 [NC_045512.2:10055-10972], PLpro or non-structural protein 3/nsp3 [NC_045512.2:2720-8554], Rd-Rp or non-structural protein 12/nsp12 [NC_045512.2:13442-16236], non-structural protein 7/nsp7 [NC_045512.2:11843-12091], spike glycoprotein (S) [NC_045512.2:21563-25384], envelope protein (E) [NC_045512.2:26245-26472], membrane glycoprotein (M) [NC_045512.2:26523-27191], nucleocapsid phosphoprotein/nucleoprotein (N) [NC_045512.2:28274-29533], Open Reading Frame 8 (ORF8) [NC_045512.2:27894-28259], Open Reading Frame 3a (ORF3a) [NC_045512.2:25393-26220], non-structural protein 2(nsp2) [NC_045512.2:806-2719], Untranslated Region 5′ (5′-UTR) [NC_045512.2:1-265] and Untranslated Region 3′ (3′-UTR) [NC_045512.2:29675-29903].
2.2. siRNA design principles
Ui-Tei, K., and colleagues prescribed the characteristics of the hugely functional siRNAs, named “Ui-Tei rule”. The siRNA chosen according to the Ui-Tei rule persuades the subsequent four ambiances concurrently: (a) A/U at region 1 from the 5′terminus of the siRNA guide strand, (b) G/C in region 19, (c) AU richness (AU ≥4) in regions 1–7, and (d) the absence of long GC stretches ≥10 (Ui-Tei et al., 2004).
2.3. siRNA design web-based tool
The web-based siRNA design siDirect2.0 Tool (siDirect version 2.0 (accessed 18 February 2021)) has been used. It is used to design functional and target-specific siRNAs, which was proposed by Naito, Y., and colleagues (Naito et al., 2009). The siRNAs are satisfactory according to the Ui-Tei rule chosen in the default parameter as stated by Ui-Tei, K., and colleagues (Naito and Ui-Tei, 2012).
2.4. Target sequence selection& functional siRNA designing
21 nt targets with 2 nt overhang highly functional sequences were selected and sequence-specific siRNAs were designed with the web-based siRNA design siDirect2.0 Tool (siDirect version 2.0 (accessed 18 February 2021)) according to the Ui-Tei rule.
2.5. Off-target effect-reduced siRNA sequence selection
The siRNAs (both guide and other passenger strands) with low melting temperature (Tm) were chosen to avoid the seed-dependent off-target silencing. Even though the benchmark was fixed as Tm of 21.5 °C (Ui-Tei et al., 2008), in this study we tried to select nearly Tm < 10 °C.
2.6. Near-perfect matched off-target gene elimination
In order to exclude the near-perfect matched non-target genes, the siDirect 2.0 homology search option was used, as its accuracy level has been found to the best of all available homology search engines. Both (guide and other passenger) strands of candidate functional siRNAs that have at minimum two inconsistencies to any other non-targeted transcripts were chosen (Naito and Ui-Tei, 2012).
3. Results
In this study siRNA-based specific sequences were designed for therapeutic purposes of SARS-CoV2 with siDirect2.0 (siDirect version 2.0 (accessed 18 February 2021)) by following all the above-mentioned procedures. They are listed in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6 with the title of specific genes and also their location in the genome is mentioned in brackets.
Table 1.
List of siRNAs with the specifications of nsp2 gene.
| Target gene | Target position | Target sequence 21 nt target + 2 nt overhang |
RNA oligo sequences 21 nt guide (5′ → 3′) 21 nt passenger (5′ → 3′) |
Seed duplex stability (Tm) |
|
|---|---|---|---|---|---|
| Guide | Passenger | ||||
| nsp2 (NC_045512.2:806-2719) | 285–307 | TCCCTTAAATTCCATAATCAAGA | UUGAUUAUGGAAUUUAAGGGA CCUUAAAUUCCAUAAUCAAGA |
8.7 °C | −4.3 °C |
| 541–563 | CCCCAAAATGCTGTTGTTAAAAT | UUUAACAACAGCAUUUUGGGG CCAAAAUGCUGUUGUUAAAAU |
7.2 °C | 4.2 °C | |
| 812–834 | TTGAAATACTCCAAAAAGAGAAA | UCUCUUUUUGGAGUAUUUCAA GAAAUACUCCAAAAAGAGAAA |
10.3 °C | 4.6 °C | |
| 1397–1419 | GGGAAATTGTTAAATTTATCTCA | AGAUAAAUUUAACAAUUUCCC GAAAUUGUUAAAUUUAUCUCA |
1.8 °C | 5.3 °C | |
| 1567–1589 | TTGAATTTAGGTGAAACATTTGT | AAAUGUUUCACCUAAAUUCAA GAAUUUAGGUGAAACAUUUGU |
5.3 °C | −4.3 °C | |
Table 2.
List of siRNAs with the specifications of nsp3 gene.
| Target gene | Target position | Target sequence 21 nt target + 2 nt overhang |
RNA oligo sequences 21 nt guide (5′ → 3′) 21 nt passenger (5′ → 3′) |
Seed duplex stability (Tm) |
|
|---|---|---|---|---|---|
| Guide | Passenger | ||||
| PLpro/nsp3 (NC_045512.2:2720-8554) | 1732–1754 | TTGAAAACTGGTGATTTACAACC | UUGUAAAUCACCAGUUUUCAA GAAAACUGGUGAUUUACAACC |
6.9 °C | 10.3 °C |
| 88–110 | AGGATTGATAAAGTACTTAATGA | AUUAAGUACUUUAUCAAUCCU GAUUGAUAAAGUACUUAAUGA |
6.6 °C | 8.7 °C | |
| 609–631 | GACTATTGAAGTGAATAGTTTTA | AAACUAUUCACUUCAAUAGUC CUAUUGAAGUGAAUAGUUUUA |
4.6 °C | 8.9 °C | |
| 652–674 | GACAATGTATACATTAAAAATGC | AUUUUUAAUGUAUACAUUGUC CAAUGUAUACAUUAAAAAUGC |
−9.1 °C | 6.7 °C | |
| 727–749 | GCCAATGTTTACCTTAAACATGG | AUGUUUAAGGUAAACAUUGGC CAAUGUUUACCUUAAACAUGG |
7.2 °C | 5.3 °C | |
| 945–967 | TGCTTATGAAAATTTTAATCAGC | UGAUUAAAAUUUUCAUAAGCA CUUAUGAAAAUUUUAAUCAGC |
2.1 °C | 8.9 °C | |
| 1172–1194 | AGGAAGTTAAGCCATTTATAACT | UUAUAAAUGGCUUAACUUCCU GAAGUUAAGCCAUUUAUAACU |
−8.0 °C | 4.9 °C | |
| 1579–1601 | GTGCTTAAAAAGTGTAAAAGTGC | ACUUUUACACUUUUUAAGCAC GCUUAAAAAGUGUAAAAGUGC |
4.9 °C | −3.8 °C | |
| 1590–1612 | GTGTAAAAGTGCCTTTTACATTC | AUGUAAAAGGCACUUUUACAC GUAAAAGUGCCUUUUACAUUC |
7.2 °C | 4.9 °C | |
| 1743–1765 | TTCAACTATACAGCGTAAATATA | UAUUUACGCUGUAUAGUUGAA CAACUAUACAGCGUAAAUAUA |
6.9 °C | 6.3 °C | |
| 1813–1835 | TACTTTTACACCAGTAAAACAAC | UGUUUUACUGGUGUAAAAGUA CUUUUACACCAGUAAAACAAC |
8.2 °C | 7.2 °C | |
| 1997–2019 | CAGCGTATAATGGTTATCTTACT | UAAGAUAACCAUUAUACGCUG GCGUAUAAUGGUUAUCUUACU |
6.9 °C | 8.5 °C | |
| 2136–2158 | AGGTGATAAAAGTGTATATTACA | UAAUAUACACUUUUAUCACCU GUGAUAAAAGUGUAUAUUACA |
1.1 °C | 8.9 °C | |
| 2138–2160 | GTGATAAAAGTGTATATTACACT | UGUAAUAUACACUUUUAUCAC GAUAAAAGUGUAUAUUACACU |
1.1 °C | −4.3 °C | |
| 2387–2409 | AAGGTAAAACATTTTATGTTTTA | AAACAUAAAAUGUUUUACCUU GGUAAAACAUUUUAUGUUUUA |
6.9 °C | 8.2 °C | |
| 2490–2512 | AGCATTAAATCACACTAAAAAGT | UUUUUAGUGUGAUUUAAUGCU CAUUAAAUCACACUAAAAAGU |
4.9 °C | −10.3 °C | |
| 2522–2544 | CACAAGTTAATGGTTTAACTTCT | AAGUUAAACCAUUAACUUGUG CAAGUUAAUGGUUUAACUUCU |
4.9 °C | 4.9 °C | |
| 2531–2553 | ATGGTTTAACTTCTATTAAATGG | AUUUAAUAGAAGUUAAACCAU GGUUUAACUUCUAUUAAAUGG |
−7.5 °C | 8.2 °C | |
| 2868–2890 | TTCTTATGAACAATTTAAGAAAG | UUCUUAAAUUGUUCAUAAGAA CUUAUGAACAAUUUAAGAAAG |
7.1 °C | 8.9 °C | |
| 2913–2935 | TGGTAAACAAGCTACAAAATATC | UAUUUUGUAGCUUGUUUACCA GUAAACAAGCUACAAAAUAUC |
5.3 °C | 7.2 °C | |
| 3047–3069 | GTCACTATAAACATATAACTTCT | AAGUUAUAUGUUUAUAGUGAC CACUAUAAACAUAUAACUUCU |
6.3 °C | 6.3 °C | |
| 3056–3078 | AACATATAACTTCTAAAGAAACT | UUUCUUUAGAAGUUAUAUGUU CAUAUAACUUCUAAAGAAACU |
7.1 °C | 1.1 °C | |
| 3172–3194 | ACCATAAAACCAGTTACTTATAA | AUAAGUAACUGGUUUUAUGGU CAUAAAACCAGUUACUUAUAA |
6.6 °C | −0.3 °C | |
| 3224–3246 | ACCCTAAGTTGGACAATTATTAT | AAUAAUUGUCCAACUUAGGGU CCUAAGUUGGACAAUUAUUAU |
−1.8 °C | 9.8 °C | |
| 3524–3546 | ATGTTAACAATGCAACTAATAAA | UAUUAGUUGCAUUGUUAACAU GUUAACAAUGCAACUAAUAAA |
4.6 °C | 7.2 °C | |
| 3782–3804 | CAGCAAATAATAGTTTAAAAATT | UUUUUAAACUAUUAUUUGCUG GCAAAUAAUAGUUUAAAAAUU |
−9.1 °C | −1.4 °C | |
| 3847–3869 | GACAATTCTAGTCTTACTATTAA | AAUAGUAAGACUAGAAUUGUC CAAUUCUAGUCUUACUAUUAA |
6.3 °C | 6.9 °C | |
| 88–110 | GCCTTTTCTTAACAAAGTTGTTA | ACAACUUUGUUAAGAAAAGGC CUUUUCUUAACAAAGUUGUUA |
10.3 °C | 5.5 °C | |
| 4041–4063 | TACTAATTATATGCCTTATTTCT | AAAUAAGGCAUAUAAUUAGUA CUAAUUAUAUGCCUUAUUUCU |
10.9 °C | −8.0 °C | |
| 4051–4073 | ATGCCTTATTTCTTTACTTTATT | UAAAGUAAAGAAAUAAGGCAU GCCUUAUUUCUUUACUUUAUU |
4.9 °C | 10.9 °C | |
| 4052–4074 | TGCCTTATTTCTTTACTTTATTG | AUAAAGUAAAGAAAUAAGGCA CCUUAUUUCUUUACUUUAUUG |
6.6 °C | −4.3 °C | |
| 4053–4075 | GCCTTATTTCTTTACTTTATTGC | AAUAAAGUAAAGAAAUAAGGC CUUAUUUCUUUACUUUAUUGC |
4.6 °C | 2.1 °C | |
| 4073–4095 | TGCTACAATTGTGTACTTTTACT | UAAAAGUACACAAUUGUAGCA CUACAAUUGUGUACUUUUACU |
4.9 °C | 6.9 °C | |
| 4098–4120 | AAGTACAAATTCTAGAATTAAAG | UUAAUUCUAGAAUUUGUACUU GUACAAAUUCUAGAAUUAAAG |
6.9 °C | 6.9 °C | |
| 4220–4242 | AACTGATAAATATTATAATTTGG | AAAUUAUAAUAUUUAUCAGUU CUGAUAAAUAUUAUAAUUUGG |
−8.0 °C | 8.9 °C | |
| 4296–4318 | AGGTGTTTTAATGTCTAATTTAG | AAAUUAGACAUUAAAACACCU GUGUUUUAAUGUCUAAUUUAG |
6.9 °C | 7.2 °C | |
| 4452–4474 | TTCTTTAGAAACTATACAAATTA | AUUUGUAUAGUUUCUAAAGAA CUUUAGAAACUAUACAAAUUA |
6.9 °C | 7.1 °C | |
| 4524–4546 | GTGGTTTTTGGCATATATTCTTT | AGAAUAUAUGCCAAAAACCAC GGUUUUUGGCAUAUAUUCUUU |
3.5 °C | 5.6 °C | |
| 4600–4622 | AGCTATTTTGCAGTACATTTTAT | AAAAUGUACUGCAAAAUAGCU CUAUUUUGCAGUACAUUUUAU |
6.9 °C | −1.4 °C | |
| 4610–4632 | CAGTACATTTTATTAGTAATTCT | AAUUACUAAUAAAAUGUACUG GUACAUUUUAUUAGUAAUUCU |
6.3 °C | 6.9 °C | |
| 4972–4994 | CAGTTTAAAAGACCAATAAATCC | AUUUAUUGGUCUUUUAAACUG GUUUAAAAGACCAAUAAAUCC |
−1.4 °C | −9.1 °C | |
| 5100–5122 | CTCTCATTTTGTTAACTTAGACA | UCUAAGUUAACAAAAUGAGAG CUCAUUUUGUUAACUUAGACA |
9.8 °C | 7.4 °C | |
| 5153–5175 | TGCCTATTAATGTTATAGTTTTT | AAACUAUAACAUUAAUAGGCA CCUAUUAAUGUUAUAGUUUUU |
6.3 °C | −2.3 °C | |
| 5154–5176 | GCCTATTAATGTTATAGTTTTTG | AAAACUAUAACAUUAAUAGGC CUAUUAAUGUUAUAGUUUUUG |
4.6 °C | −8.0 °C | |
| 5168–5190 | TAGTTTTTGATGGTAAATCAAAA | UUGAUUUACCAUCAAAAACUA GUUUUUGAUGGUAAAUCAAAA |
8.9 °C | 7.7 °C | |
Table 3.
List of siRNAs with the specifications of nsp5, nsp7 and nsp12 genes.
| Target gene | Target position | Target sequence 21 nt target + 2 nt overhang |
RNA oligo sequences 21 nt guide (5′ → 3′) 21 nt passenger (5′ → 3′) |
Seed duplex stability (Tm) |
|
|---|---|---|---|---|---|
| Guide | Passenger | ||||
| 3CLpro/Mpro/nsp5 (NC_045512.2:10055-10972) | 151–173 | AACCCTAATTATGAAGATTTACT | UAAAUCUUCAUAAUUAGGGUU CCCUAAUUAUGAAGAUUUACU |
5.3 °C | 10.9 °C |
| 153–175 | CCCTAATTATGAAGATTTACTCA | AGUAAAUCUUCAUAAUUAGGG CUAAUUAUGAAGAUUUACUCA |
10.0 °C | −8.0 °C | |
| 444–466 | TGGTTTTAACATAGATTATGACT | UCAUAAUCUAUGUUAAAACCA GUUUUAACAUAGAUUAUGACU |
8.7 °C | 0.0 °C | |
| 526–548 | GACTTAGAAGGTAACTTTTATGG | AUAAAAGUUACCUUCUAAGUC CUUAGAAGGUAACUUUUAUGG |
4.9 °C | 11.7 °C | |
| 538–560 | AACTTTTATGGACCTTTTGTTGA | AACAAAAGGUCCAUAAAAGUU CUUUUAUGGACCUUUUGUUGA |
10.3 °C | −1.4 °C | |
| 594–616 | AACTATTACAGTTAATGTTTTAG | AAAACAUUAACUGUAAUAGUU CUAUUACAGUUAAUGUUUUAG |
5.3 °C | 8.5 °C | |
| 795–817 | TGCTTCATTAAAAGAATTACTGC | AGUAAUUCUUUUAAUGAAGCA CUUCAUUAAAAGAAUUACUGC |
10.0 °C | 8.9 °C | |
| nsp7 (NC_045512.2:11843-12091) | 62–84 | GAGTAGAATCATCATCTAAATTG | AUUUAGAUGAUGAUUCUACUC GUAGAAUCAUCAUCUAAAUUG |
6.9 °C | 16.0 °C |
| 65–87 | TAGAATCATCATCTAAATTGTGG | ACAAUUUAGAUGAUGAUUCUA GAAUCAUCAUCUAAAUUGUGG |
−1.4 °C | 16.2 °C | |
| RdRp/nsp12 (NC_045512.2:13442-16236) | 133–155 | TTGCTAAATTCCTAAAAACTAAT | UAGUUUUUAGGAAUUUAGCAA GCUAAAUUCCUAAAAACUAAU |
3.2 °C | −4.3 °C |
| 134–156 | TGCTAAATTCCTAAAAACTAATT | UUAGUUUUUAGGAAUUUAGCA CUAAAUUCCUAAAAACUAAUU |
4.9 °C | 2.1 °C | |
| 297–319 | GACTTCTTTAAGTTTAGAATAGA | UAUUCUAAACUUAAAGAAGUC CUUCUUUAAGUUUAGAAUAGA |
6.9 °C | 7.1 °C | |
| 407–429 | AGGTAATTGTGACACATTAAAAG | UUUAAUGUGUCACAAUUACCU GUAAUUGUGACACAUUAAAAG |
6.9 °C | 6.9 °C | |
| 417–439 | GACACATTAAAAGAAATACTTGT | AAGUAUUUCUUUUAAUGUGUC CACAUUAAAAGAAAUACUUGU |
4.6 °C | 6.9 °C | |
| 457–479 | ATGATGATTATTTCAATAAAAAG | UUUUAUUGAAAUAAUCAUCAU GAUGAUUAUUUCAAUAAAAAG |
−1.4 °C | 8.7 °C | |
| 704–726 | TTCTTATTATTCATTGTTAATGC | AUUAACAAUGAAUAAUAAGAA CUUAUUAUUCAUUGUUAAUGC |
7.2 °C | −8.0 °C | |
| 792–814 | TACATTAAGTGGGATTTGTTAAA | UAACAAAUCCCACUUAAUGUA CAUUAAGUGGGAUUUGUUAAA |
5.3 °C | 4.6 °C | |
| 1573–1595 | ATGCACTTTTCGCATATACAAAA | UUGUAUAUGCGAAAAGUGCAU GCACUUUUCGCAUAUACAAAA |
8.2 °C | 10.3 °C | |
| 1711–1733 | TTCATCAAAAATTATTGAAATCA | AUUUCAAUAAUUUUUGAUGAA CAUCAAAAAUUAUUGAAAUCA |
7.4 °C | 7.4 °C | |
| 1800–1822 | ATGTTAAAAACTGTTTATAGTGA | ACUAUAAACAGUUUUUAACAU GUUAAAAACUGUUUAUAGUGA |
−2.3 °C | −9.1 °C | |
| 2066–2088 | TGCTAATAGTGTTTTTAACATTT | AUGUUAAAAACACUAUUAGCA CUAAUAGUGUUUUUAACAUUU |
7.2 °C | 6.3 °C | |
| 2103–2125 | GCCAATGTTAATGCACTTTTATC | UAAAAGUGCAUUAACAUUGGC CAAUGUUAAUGCACUUUUAUC |
10.3 °C | 6.9 °C | |
| 2136–2158 | AACAAAATTGCCGATAAGTATGT | AUACUUAUCGGCAAUUUUGUU CAAAAUUGCCGAUAAGUAUGU |
6.3 °C | −3.3 °C | |
| 2236–2258 | ACGCATATTTGCGTAAACATTTC | AAUGUUUACGCAAAUAUGCGU GCAUAUUUGCGUAAACAUUUC |
6.9 °C | −1.8 °C | |
| 2237–2259 | CGCATATTTGCGTAAACATTTCT | AAAUGUUUACGCAAAUAUGCG CAUAUUUGCGUAAACAUUUCU |
5.3 °C | −1.8 °C | |
| 2340–2362 | AACTTTAAGTCAGTTCTTTATTA | AUAAAGAACUGACUUAAAGUU CUUUAAGUCAGUUCUUUAUUA |
7.1 °C | 4.9 °C | |
| 2362–2384 | ATCAAAACAATGTTTTTATGTCT | ACAUAAAAACAUUGUUUUGAU CAAAACAAUGUUUUUAUGUCU |
−1.4 °C | 5.6 °C | |
Table 4.
List of siRNAs with the specifications of nsp13, envelope protein (E) and nucleocapsid phosphoprotein (N) genes.
| Target Gene | Target position | Target sequence 21 nt target + 2 nt overhang |
RNA oligo sequences 21 nt guide (5′ → 3′) 21 nt passenger (5′ → 3′) |
Seed duplex stability (Tm) |
|
|---|---|---|---|---|---|
| Guide | Passenger | ||||
| ZD, NTPase/HEL/nsp13 (NC_045512.2:16237-18039) | 260–282 | GACAAGTTTTTGGTTTATATAAA | UAUAUAAACCAAAAACUUGUC CAAGUUUUUGGUUUAUAUAAA |
−8.0 °C | 3.2 °C |
| 269–291 | TTGGTTTATATAAAAATACATGT | AUGUAUUUUUAUAUAAACCAA GGUUUAUAUAAAAAUACAUGU |
6.9 °C | 1.4 °C | |
| 568–590 | AACAGTAAAGTACAAATAGGAGA | UCCUAUUUGUACUUUACUGUU CAGUAAAGUACAAAUAGGAGA |
10.9 °C | 9.8 °C | |
| 1410–1432 | ATGCTTTAAAATGTTTTATAAGG | UUAUAAAACAUUUUAAAGCAU GCUUUAAAAUGUUUUAUAAGG |
−7.5 °C | −3.8 °C | |
| 1516–1538 | TGGAGAAAAGCTGTCTTTATTTC | AAUAAAGACAGCUUUUCUCCA GAGAAAAGCUGUCUUUAUUUC |
6.9 °C | 10.3 °C | |
| 1528–1550 | GTCTTTATTTCACCTTATAATTC | AUUAUAAGGUGAAAUAAAGAC CUUUAUUUCACCUUAUAAUUC |
−2.3 °C | −9.7 °C | |
| 1665–1687 | TTGTAATGTAAACAGATTTAATG | UUAAAUCUGUUUACAUUACAA GUAAUGUAAACAGAUUUAAUG |
6.9 °C | 8.5 °C | |
| 1700–1722 | GAGCAAAAGTAGGCATACTTTGC | AAAGUAUGCCUACUUUUGCUC GCAAAAGUAGGCAUACUUUGC |
11.6 °C | 10.3 °C | |
| Envelope protein (E) (NC_045512.2:26245-26472) | 149–171 | GTCTTGTAAAACCTTCTTTTTAC | AAAAAGAAGGUUUUACAAGAC CUUGUAAAACCUUCUUUUUAC |
5.5 °C | 7.2 °C |
| 170–192 | ACGTTTACTCTCGTGTTAAAAAT | UUUUAACACGAGAGUAAACGU GUUUACUCUCGUGUUAAAAAU |
7.2 °C | 14.6 °C | |
| Nucleocapsid phosphor protein (N) (NC_045512.2:28274-29533) | 1064–1086 | AGCATATTGACGCATACAAAACA | UUUUGUAUGCGUCAAUAUGCU CAUAUUGACGCAUACAAAACA |
6.9 °C | 8.7 °C |
| 1021–1043 | GACAAAGATCCAAATTTCAAAGA | UUUGAAAUUUGGAUCUUUGUC CAAAGAUCCAAAUUUCAAAGA |
7.4 °C | 14.8 °C | |
Table 5.
List of siRNAs with the specifications of spike glycoprotein (S) gene.
| Target Gene | Target position | Target sequence 21 nt target + 2 nt overhang |
RNA oligo sequences 21 nt guide (5′ → 3′) 21 nt passenger (5′ → 3′) |
Seed duplex stability (Tm) |
|
|---|---|---|---|---|---|
| Guide | Passenger | ||||
| Spike glycoprotein (S) (NC_045512.2:21563-25384) | 167–189 | TACCTTTCTTTTCCAATGTTACT | UAACAUUGGAAAAGAAAGGUA CCUUUCUUUUCCAAUGUUACU |
12.1 °C | 10.3 °C |
| 222–244 | TGGTACTAAGAGGTTTGATAACC | UUAUCAAACCUCUUAGUACCA GUACUAAGAGGUUUGAUAACC |
8.9 °C | 11.3 °C | |
| 310–332 | TGGATTTTTGGTACTACTTTAGA | UAAAGUAGUACCAAAAAUCCA GAUUUUUGGUACUACUUUAGA |
9.8 °C | −3.3 °C | |
| 365–387 | ACGCTACTAATGTTGTTATTAAA | UAAUAACAACAUUAGUAGCGU GCUACUAAUGUUGUUAUUAAA |
6.9 °C | 11.3 °C | |
| 366–388 | CGCTACTAATGTTGTTATTAAAG | UUAAUAACAACAUUAGUAGCG CUACUAAUGUUGUUAUUAAAG |
1.4 °C | 6.3 °C | |
| 369–391 | TACTAATGTTGTTATTAAAGTCT | ACUUUAAUAACAACAUUAGUA CUAAUGUUGUUAUUAAAGUCU |
−4.3 °C | 6.9 °C | |
| 390–412 | CTGTGAATTTCAATTTTGTAATG | UUACAAAAUUGAAAUUCACAG GUGAAUUUCAAUUUUGUAAUG |
7.2 °C | 7.4 °C | |
| 413–435 | ATCCATTTTTGGGTGTTTATTAC | AAUAAACACCCAAAAAUGGAU CCAUUUUUGGGUGUUUAUUAC |
6.9 °C | −3.3 °C | |
| 414–436 | TCCATTTTTGGGTGTTTATTACC | UAAUAAACACCCAAAAAUGGA CAUUUUUGGGUGUUUAUUACC |
−0.3 °C | −3.3 °C | |
| 486–508 | TGCGAATAATTGCACTTTTGAAT | UCAAAAGUGCAAUUAUUCGCA CGAAUAAUUGCACUUUUGAAU |
10.3 °C | 1.8 °C | |
| 540–562 | AGGAAAACAGGGTAATTTCAAAA | UUGAAAUUACCCUGUUUUCCU GAAAACAGGGUAAUUUCAAAA |
7.4 °C | 10.3 °C | |
| 548–570 | AGGGTAATTTCAAAAATCTTAGG | UAAGAUUUUUGAAAUUACCCU GGUAAUUUCAAAAAUCUUAGG |
5.3 °C | −0.3 °C | |
| 568–590 | AGGGAATTTGTGTTTAAGAATAT | AUUCUUAAACACAAAUUCCCU GGAAUUUGUGUUUAAGAAUAU |
7.1 °C | 7.4 °C | |
| 569–591 | GGGAATTTGTGTTTAAGAATATT | UAUUCUUAAACACAAAUUCCC GAAUUUGUGUUUAAGAAUAUU |
6.9 °C | 5.3 °C | |
| 583–605 | AAGAATATTGATGGTTATTTTAA | AAAAUAACCAUCAAUAUUCUU GAAUAUUGAUGGUUAUUUUAA |
−0.3 °C | −1.8 °C | |
| 726–748 | TGCTTTACATAGAAGTTATTTGA | AAAUAACUUCUAUGUAAAGCA CUUUACAUAGAAGUUAUUUGA |
4.6 °C | 6.9 °C | |
| 824–846 | TTCTATTAAAATATAATGAAAAT | UUUCAUUAUAUUUUAAUAGAA CUAUUAAAAUAUAAUGAAAAU |
8.9 °C | −7.5 °C | |
| 934–956 | ATCTATCAAACTTCTAACTTTAG | AAAGUUAGAAGUUUGAUAGAU CUAUCAAACUUCUAACUUUAG |
9.8 °C | 8.9 °C | |
| 977–999 | TTGTTAGATTTCCTAATATTACA | UAAUAUUAGGAAAUCUAACAA GUUAGAUUUCCUAAUAUUACA |
−8.0 °C | 6.9 °C | |
| 986–1008 | TTCCTAATATTACAAACTTGTGC | ACAAGUUUGUAAUAUUAGGAA CCUAAUAUUACAAACUUGUGC |
10.3 °C | −2.7 °C | |
| 1245–1267 | TGGAAAGATTGCTGATTATAATT | UUAUAAUCAGCAAUCUUUCCA GAAAGAUUGCUGAUUAUAAUU |
3.5 °C | 5.3 °C | |
| 1254–1276 | TGCTGATTATAATTATAAATTAC | AAUUUAUAAUUAUAAUCAGCA CUGAUUAUAAUUAUAAAUUAC |
−8.0 °C | 8.7 °C | |
| 1577–1599 | GACCTAAAAAGTCTACTAATTTG | AAUUAGUAGACUUUUUAGGUC CCUAAAAAGUCUACUAAUUUG |
6.3 °C | −3.8 °C | |
| 1578–1600 | ACCTAAAAAGTCTACTAATTTGG | AAAUUAGUAGACUUUUUAGGU CUAAAAAGUCUACUAAUUUGG |
4.6 °C | −3.8 °C | |
| 1587–1609 | GTCTACTAATTTGGTTAAAAACA | UUUUUAACCAAAUUAGUAGAC CUACUAAUUUGGUUAAAAACA |
0.0 °C | 6.3 °C | |
| 2143–2165 | CCCACAAATTTTACTATTAGTGT | ACUAAUAGUAAAAUUUGUGGG CACAAAUUUUACUAUUAGUGU |
2.8 °C | 5.3 °C | |
| 2271–2293 | CAGTTTTTGTACACAATTAAACC | UUUAAUUGUGUACAAAAACUG GUUUUUGUACACAAUUAAACC |
−1.4 °C | 5.6 °C | |
| 2902–2924 | TCCAATTTTGGTGCAATTTCAAG | UGAAAUUGCACCAAAAUUGGA CAAUUUUGGUGCAAUUUCAAG |
7.4 °C | −3.3 °C | |
Table 6.
List of siRNAs with the specifications of membrane glycoprotein (M), ORF3a, ORF8, 3′-UTR and 5′-UTR genes.
| Target gene | Target position | Target sequence 21 nt target + 2 nt overhang |
RNA oligo sequences 21 nt guide (5′ → 3′) 21 nt passenger (5′ → 3′) |
Seed duplex stability (Tm) |
|
|---|---|---|---|---|---|
| Guide | Passenger | ||||
| Membrane glycoprotein (M) (NC_045512.2:26523-27191) | 136–158 | TTGTATATAATTAAGTTAATTTT | AAUUAACUUAAUUAUAUACAA GUAUAUAAUUAAGUUAAUUUU |
4.6 °C | −5.9 °C |
| 203–225 | CTGCTGTTTACAGAATAAATTGG | AAUUUAUUCUGUAAACAGCAG GCUGUUUACAGAAUAAAUUGG |
−10.3 °C | 11.8 °C | |
| 206–228 | CTGTTTACAGAATAAATTGGATC | UCCAAUUUAUUCUGUAAACAG GUUUACAGAAUAAAUUGGAUC |
11.3 °C | 11.8 °C | |
| ORF3a (NC_045512.2:25393-26220) | 402–424 | TTCCAAAAACCCATTACTTTATG | UAAAGUAAUGGGUUUUUGGAA CCAAAAACCCAUUACUUUAUG |
4.9 °C | 5.6 °C |
| 403–425 | TCCAAAAACCCATTACTTTATGA | AUAAAGUAAUGGGUUUUUGGA CAAAAACCCAUUACUUUAUGA |
6.6 °C | 12.6 °C | |
| ORF8 (NC_045512.2:27894-28259) | 1–23 | ATGAAATTTCTTGTTTTCTTAGG | UAAGAAAACAAGAAAUUUCAU GAAAUUUCUUGUUUUCUUAGG |
5.5 °C | 0.4 °C |
| 243–265 | TTCCTGTTTACCTTTTACAATTA | AUUGUAAAAGGUAAACAGGAA CCUGUUUACCUUUUACAAUUA |
7.2 °C | 11.8 °C | |
| 244–266 | TCCTGTTTACCTTTTACAATTAA | AAUUGUAAAAGGUAAACAGGA CUGUUUACCUUUUACAAUUAA |
6.9 °C | 14.7 °C | |
| 307–329 | TCGTTCTATGAAGACTTTTTAGA | UAAAAAGUCUUCAUAGAACGA GUUCUAUGAAGACUUUUUAGA |
3.2 °C | 13.4 °C | |
| 3′-UTR (NC_045512.2:29675-29903) | 126–148 | GCCCTAATGTGTAAAATTAATTT | AUUAAUUUUACACAUUAGGGC CCUAAUGUGUAAAAUUAAUUU |
−9.7 °C | 11.6 °C |
| 127–149 | CCCTAATGTGTAAAATTAATTTT | AAUUAAUUUUACACAUUAGGG CUAAUGUGUAAAAUUAAUUUU |
−10.3 °C | 13.5 °C | |
| 132–154 | ATGTGTAAAATTAATTTTAGTAG | ACUAAAAUUAAUUUUACACAU GUGUAAAAUUAAUUUUAGUAG |
−4.3 °C | 7.2 °C | |
| 192–214 | ATGACAAAAAAAAAAAAAAAAAA | UUUUUUUUUUUUUUUUGUCAU GACAAAAAAAAAAAAAAAAAA |
−11.3 °C | 5.6 °C | |
| 194–216 | GACAAAAAAAAAAAAAAAAAAAA | UUUUUUUUUUUUUUUUUUGUC CAAAAAAAAAAAAAAAAAAAA |
−11.3 °C | −11.3 °C | |
| 5′-UTR (NC_045512.2:1-265) | 123–145 | CGCAGTATAATTAATAACTAATT | UUAGUUAUUAAUUAUACUGCG CAGUAUAAUUAAUAACUAAUU |
6.3 °C | 6.3 °C |
| 125–147 | CAGTATAATTAATAACTAATTAC | AAUUAGUUAUUAAUUAUACUG GUAUAAUUAAUAACUAAUUAC |
4.6 °C | −8.0 °C | |
4. Discussion
Due to the advancement of modern technologies, it could be possible to produce a vaccine in a shorter time but the acquisition of knowledge related to its effect on the human body may take a much longer time; maybe years or decades.
The question still remains unanswered- how can we combat the waves of COVID-19 disease during the vaccine trial period, as an effective drug does not exist?
Thus, antiviral drugs specific to SARS-CoV2 can be designed and developed by targeting conserved enzymes such as: 3C-like protease or main protease (3CLpro/Mpro or non-structural protein 5/nsp5), non-structural protein 7/nsp7, RNA dependent RNA polymerase shortly Rd-Rp or non-structural protein 12/nsp12, papain-like protease (PLpro or non-structural protein 3/nsp3), and non-structural protein 13/nsp13 (also known as ZD, NTPase/HEL) (Zumla et al., 2016; Naqvi et al., 2020). These drug targets were confirmed by executing sequence analysis of potential drug target proteins in SARS-CoV2 beside viruses called SARS-CoV and MERS. Also, it was observed that the envelope protein (E), spike glycoprotein (S), nucleocapsid phosphoprotein (N), and membrane glycoprotein (M) are considered as potential drug/vaccine targets (Naqvi et al., 2020). By comparing the pathways in inflammation, and cytokine responses during SARS-CoV, MERS-CoV, and SARS-CoV2 infections, it was revealed that DNA synthesis is triggered by ORF8, while necrotic cell death is triggered by ORF3a. And also nsp2 is necessary for proofreading of viral replication (Naqvi et al., 2020). Both sequences of the 5′ and 3′-UTR are crucial for RNA replication and transcription (Wu et al., 2005).
RNA interference (RNAi) is a widely applied approach by which small interfering RNA (siRNA) also known as silencing RNA, silence a specific target gene with a perfectly complementary sequence, for the purpose of therapeutic usage in human diseases (Ketting, 2011). siRNA is typically 21 nt in length, and is the functional agent in RNAi, and acts as a guide for specific mRNA degradation (Elbashir et al., 2001a; Elbashir et al., 2001b). In the mammal family, siRNA is thought to have potential, not only for the gene silencing necessary for functional genomics, but also for medicinal goals, including antiviral therapy (Gitlin and Andino, 2003; Saadat, 2013).
To design specific and effective siRNA (21 nt), a practical guideline has been proposed by Ui-Tei, K., and colleagues named the “Ui-Tei rule”. The siRNA chosen according to the Ui-Tei rule persuades the subsequent four ambiances concurrently: (a) A/U in region 1 from the 5′terminus of the siRNA guide strand, (b) G/C in region 19, (c) AU richness (AU ≥4) in regions 1–7, and (d) the absence of long GC stretches ≥10 (Ui-Tei et al., 2004). To avoid the seed-dependent off-target effects, choosing siRNAs with a low melting temperature (Tm) of the seed-target duplex can minimize the seed-dependent off-target silencing. The melting temperature (Tm) of 21.5 °C may serve as the benchmark (Naito and Ui-Tei, 2012) but the seed duplex selected here was nearly Tm < 10 °C. The siRNAs that have near-perfect matches to any other non-targeted transcripts were excluded by comparing both their strands, having at minimum two mismatches to any other non-targeted transcripts (Naito and Ui-Tei, 2012). siDirect2.0 (siDirect version 2.0 (accessed 18 February 2021)) provides a functional, target-specific siRNA design web-based tool according to the procedures mentioned above (Naito et al., 2009). siDirect 2.0 would be a more suitable and sensitive homology search engine for short sequences, in comparison to other search engines (Naito and Ui-Tei, 2012).
5. Conclusion
In conclusion, it can be said that our designed RNAi sequences specific for SARS-CoV2 would be a potential weapon against COVID-19 disease all over the world. Nebulization or suspension in the systemic circulation by using a liposome-based delivery system might be an appropriate mode of administration. Further experimental validation and related trials are needed to confirm these findings.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
- NCBI National Center for Biotechnology Information. 2021. https://www.ncbi.nlm.nih.gov/nuccore/1798174254 accessed 18 February.
- siDirect version 2.0 siDirect version 2.0 highly effective, target-specific siRNA online design site. 2021. http://sidirect2.rnai.jp accessed 18 February.
- Biswas S.K., Mudi S.R. Genetic variation in SARS-CoV-2 may explain variable severity of COVID-19. J. Med. Hypn. 2020 doi: 10.1016/j.mehy.2020.109877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. J. Nat. 2001;411:494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
- Elbashir S.M., Lendeckel W., Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. J. Genes Dev. 2001;15:188–200. doi: 10.1101/gad.862301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ge Q., McManus M.T., Nguyen T., Shen C.-H., Sharp P.A., Eisen H.N., Chen J. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. 2003;100:2718–2723. doi: 10.1073/pnas.0437841100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh S., Firdous S.M., Nath A. siRNA could be a potential therapy for COVID-19. J. EXCLI. 2020;19:528. doi: 10.17179/excli2020-1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gitlin L., Andino R. Nucleic acid-based immune system: the antiviral potential of mammalian RNA silencing. J. Virol. 2003;77:7159–7165. doi: 10.1128/JVI.77.13.7159-7165.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ketting R.F. The many faces of RNAi. J. Dev. Cell. 2011;20:148–161. doi: 10.1016/j.devcel.2011.01.012. [DOI] [PubMed] [Google Scholar]
- Li T., Zhang Y., Fu L., Yu C., Li X., Li Y., Zhang X., Rong Z., Wang Y., Ning H. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. J. Gene Ther. 2005;12:751–761. doi: 10.1038/sj.gt.3302479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mercatelli D., Giorgi F.M. Geographic and genomic distribution of SARS-CoV-2 mutations. J. Front. Microbiol. 2020;11:1800. doi: 10.3389/fmicb.2020.01800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naito Y., Ui-Tei K. siRNA design software for a target gene-specific RNA interference. J. Front. Genet. 2012;3:102. doi: 10.3389/fgene.2012.00102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naito Y., Yoshimura J., Morishita S., Ui-Tei K. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinf. 2009;10:1–8. doi: 10.1186/1471-2105-10-392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naqvi A.A.T., Fatima K., Mohammad T., Fatima U., Singh I.K., Singh A., Atif S.M., Hariprasad G., Hasan G.M., Hassan M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim. Biophys. Acta Mol. basis Dis. 2020;165878 doi: 10.1016/j.bbadis.2020.165878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saadat K.A.S.M. Role of ARID3A in E2F target gene expression and cell growth. Kokubyo Gakkai Zasshi. 2013;80:15–20. PMID: 23659165. [PubMed] [Google Scholar]
- Toyoshima Y., Nemoto K., Matsumoto S., Nakamura Y., Kiyotani K. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J. Hum. Genet. 2020;65:1075–1082. doi: 10.1038/s10038-020-0808-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ui-Tei K., Naito Y., Nishi K., Juni A., Saigo K. Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res. 2008;36:7100–7109. doi: 10.1093/nar/gkn902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ui-Tei K., Naito Y., Takahashi F., Haraguchi T., Ohki-Hamazaki H., Juni A., Ueda R., Saigo K. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–948. doi: 10.1093/nar/gkh247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson J.A., Jayasena S., Khvorova A., Sabatinos S., Rodrigue-Gervais I.G., Arya S., Sarangi F., Harris-Brandts M., Beaulieu S., Richardson C.D. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl. Acad. Sci. 2003;100:2783–2788. doi: 10.1073/pnas.252758799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu A., Peng Y., Huang B., Ding X., Wang X., Niu P., Meng J., Zhu Z., Zhang Z., Wang J. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27:325–328. doi: 10.1016/j.chom.2020.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu C.-J., Huang H.-W., Liu C.-Y., Hong C.-F., Chan Y.-L. Inhibition of SARS-CoV replication by siRNA. Antivir. Res. 2005;65:45–48. doi: 10.1016/j.antiviral.2004.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu F., Zhao S., Yu B., Chen Y.-M., Wang W., Song Z.-G., Hu Y., Tao Z.-W., Tian J.-H., Pei Y.-Y. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu J., Zhao S., Teng T., Abdalla A.E., Zhu W., Xie L., Wang Y., Guo X. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020;12:244. doi: 10.3390/v12020244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi S., De Hua Y., Xiong J., Jie J., Huang B., Jin Y.X. Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res. 2005;15:193–200. doi: 10.1038/sj.cr.7290286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zumla A., Chan J.F., Azhar E.I., Hui D.S., Yuen K.-Y. Coronaviruses—drug discovery and therapeutic options. Nat. Rev. Drug Discov. 2016;15:327–347. doi: 10.1038/nrd.2015.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
