Skip to main content
Journal of Translational Autoimmunity logoLink to Journal of Translational Autoimmunity
. 2022 Jan 11;5:100143. doi: 10.1016/j.jtauto.2022.100143

Disease criteria of systemic lupus erythematosus (SLE); the potential role of non-criteria autoantibodies

Juan Irure-Ventura a, Marcos López-Hoyos a,b,
PMCID: PMC8761754  PMID: 35072035

Abstract

Patients with SLE show a broad spectrum of more than 200 autoantibodies. They can be pathogenic, predictive, prognostic or even an epiphenomenon. Here, we discuss different autoantibodies that have not been included in EULAR/ACR 2019 classification criteria. Most of them have been addressed to monitor and detect disease activity and not specifically as classification criteria. Indeed, markers to assess disease activity fluctuate as compared with classification criteria and their validation is different. The development of new methods will probably bring new clinical associations and be evaluated as potential classification criteria.

Keywords: Anti-nucleosome antibodies, anti-C1q antibodies, SLE, Classification criteria

Highlights

  • Most of the autoantibodies described in SLE are of utility in monitoring disease activity.

  • The validation of activity biomarkers is different from classification criteria biomarkers.

  • The new methods coming into the clinical routine will bring new associations and potentially classification criteria.

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory syndrome in which genetic, epigenetic, hormonal, environmental and immune-regulatory factors are involved [1]. Onset occurs commonly in women of reproductive age, in the third and fourth decades of life, with a male:female ratio of about 1:10 [2]. The clinical course of the disease is unpredictable with periods of remission and flares. During the course of the disease organs throughout the body, such as skin, joints, heart, kidney, or nervous and vascular systems, may be damaged [3]. This aspect, together with the variety of autoantibodies detected in SLE patients, brings around the debate about whether SLE is one single disease with several phenotypes, or a similar and common phenotype present in a range of different diseases [4].

Taking this into account, several criteria have been proposed for the classification of SLE patients since 1982 to the present. Table 1 shows the different classification criteria for SLE patients over the years [[5], [6], [7], [8], [9]]. In all cases, these criteria include both clinical and laboratory findings, giving each of them different weight, but with an increasing role for the detection of immunological parameters.

Table 1.

ACR 1982, ACR 1997, SLICC 2012 and EULAR/ACR 2019 classification criteria for SLE.

ACR 1982
ACR 1997
SLICC 2012
EULAR/ACR 2019
Entry criterion
Antinuclear antibodies (cut-off titer ≥1:80)
Criterion Criterion Criterion Clinical criteria Weight
Constitutional Fever 2
Malar rash Malar rash Acute cutaneous lupus OR Subacute cutaneous lupus Mucocutaneous Acute cutaneous lupus 6
Discoid rash Discoid rash Chronic cutaneous lupus Subacute cutaneous OR Discoid lupus 4
Photosensitivity Photosensitivity
Oral ulcers Oral ulcers Oral or nasal ulcers Oral ulcers 2
Non-scarring alopecia Non-scarring alopecia 2
Arthritis Nonerosive arthritis Synovitis Musculoskeletal Joint involvement 6
Serositis
Pleuritis
Pericarditis
Pleuritis
OR Pericarditis
Serositis
Pleuritis
OR Pericarditis
Serosal
Pleural or pericardial effusion
Acute pericarditis
5
6
Renal disorder
Persistent proteinuria
Cellular casts
Renal disorder
Persistent proteinuria
Cellular casts
Renal disease
Proteinuria OR Red blood cell cast
Renal
Proteinuria >0.5 g/24 h
Renal biopsy class II OR V lupus nephritis
Renal biopsy class III OR IV lupus nephritis
4
8
10
Neurologic disorder
Seizures
Psychosis
Neurologic disorder
Seizures
Psychosis
Neurologic disease
Seizures
Psychosis
Mononeuritis multiplex
Myelitis
Peripheral or cranial neuropathy
Acute confusional state
Neuropsychiatric
Seizure
Psychosis
Delirium
5
3
2
Hematologic disorder
Hemolytic anemia
Leukopenia
Lymphopenia
Thrombocytopenia
Hematologic disorder
Hemolytic anemia
Leukopenia
Lymphopenia
Thrombocytopenia
Hemolytic anemia
Leukopenia OR Lymphopenia
Thrombocytopenia
Hematologic
Autoimmune hemolysis
Leukopenia
Thrombocytopenia
4
3
4
Immunologic disorder
Positive LE cell
Preparation
Anti-DNA antibodies
Anti-Sm antibodies
False positive syphilis serology
Immunologic disorder
Anti-DNA antibodies
Anti-Sm antibodies
Antiphospholipid antibodies
Immunologic criteria
Anti-dsDNA antibodies
Anti-Sm antibodies
Antiphospholipid antibodies
Low complement (C3, C4, CH50)
Direct Coombs test in absence of hemolytic anemia
Immunologic criteria
SLE-specific antibodies
Anti-dsDNA OR anti-Sm
Antiphospholipid antibodies
Anti-cardiolipin OR Anti-β2GPI OR Lupus anticoagulant
Complement levels
Low C3 OR low C4
Low C3 AND low C4
3
2
3
4
Antinuclear antibodies Antinuclear antibodies Antinuclear antibodies

With regard to immunological aspects, since the ACR 1982 criteria, the detection of autoantibodies has been included, specifically the presence of antibodies to native or double stranded DNA (dsDNA) in abnormal titer or antibodies to Sm nuclear antigen. In the 1997 revision of the ACR criteria, the presence of antiphospholipid antibodies was introduced as criterion to define this immunological disorder. The SLICC 2012 criteria maintained the presence of these autoantibodies and also introduced the presence of low complement levels (low C3, low C4, or low CH50), reflecting a consumption of early factors of classic pathway of complement secondary to immunocomplexes deposits in the tissues. Finally, in the new EULAR/ACR 2019 criteria, immunological alterations have been included into classification domains within the laboratory criteria. Thus, the lupus-specific antibodies to Sm and dsDNA have been grouped into one domain, antiphospholipid antibodies into a second, and low complement levels into a third. For anti-dsDNA, there were significant concerns that tests with lower specificity would lead to misclassification. Therefore, and in view of significant advances in the methodology to detect anti-dsDNA in serum, it was decided to define anti-dsDNA by a positive result in a test that was proven to be at least 90% specific against relevant disease controls [8,9]. With this level of specificity, both SLE-specific autoantibodies were attributed an equal weight of 6 points. In comparison, positivity for antiphospholipid antibodies, defined as anticardiolipin antibodies (IgA, IgG, or IgM) at medium or high titer (>40 APL, GPL, or MPL, or > the 99th percentile) or positive anti-β2-glycoprotein I antibodies (IgA, IgG, or IgM) or positive lupus anticoagulant carry only 2 points. For low complement proteins, either low C3 or low C4 have a relative weight of 3 points, while C3 and C4 both below their limits of normal are attributed 4 points [8,10]. Moreover, the weight of antinuclear antibodies (ANA) have been reconsidered for the EULAR/ACR 2019 criteria. Positive ANA, defined as ANA level above the laboratory reference range, had a sensitivity of 97% and a specificity of 45% [7]. Therefore, the presence of ANA has been included as an entry criterion for classification [11]. The main concern in this regard was a relevant loss in sensitivity. However, a systematic literature search and meta-regression of published data on 13,080 SLE patients showed that at a low cut-off titer of ≥1:80, ANA had high sensitivity (97.8%, with a 95% confidence interval of 96.8–98.5%) [12]. In Table 2, the overall structure for classification according to ACR 1982 and 1987, the SLICC 2012, and the EULAR/ACR 2019 classification criteria for SLE is shown [13].

Table 2.

Overall structure for classification according to ACR 1982 and 1987, the SLICC 2012, and the EULAR/ACR 2019 classification criteria for SLE.

Classification of SLE
ACR 1982/1997 SLICC 2012 EULAR/ACR 2019
4 of 11 criteria Histology compatible with lupus nephritis and antinuclear antibodies or anti-dsDNA antibodies
OR
4 of 17 criteria (including at least 1 immunologic criteria)
Entry criterion:
Antinuclear antibodies
10 points (highest in each domain counted only)

The EULAR/ACR 2019 criteria have maintained the high specificity of ACR criteria (93%), reaching a high sensitivity of 96%, not statistically different from the SLICC 2012 criteria [8,10].

However, despite the consensus achieved, and the fact that anti-dsDNA or anti-Sm antibodies are included in the classification criteria, other autoantibodies are present in SLE patients, whose relevance is not well described. Moreover, the fact of including the positivity for ANA by indirect immunofluorescence (IIF) testing (cut-off titer ≥1:80) as an entry criterion, makes it possible to detect a large number of immunofluorescence patterns on HEp-2 cells associated with diverse antigenic specificities not included in the latest SLE classification criteria. Furthermore, the rapid International Consensus on Antinuclear Antibody Patterns (ICAP) nomenclature adoption for HEp-2 immunofluorescence patterns with uncommon patterns and no antigen specificity associated is being related with connective tissue diseases, such as SLE [14]. This fact, together with the rapid progression in the autoantibodies detection systems, with the introduction of panels of autoantibodies with very sensitive methods (i.e., chemiluminescence, fluoroenzymoimmunoassays or particle multianalyte testing) may bring new changes in the definition of immunological parameters criteria.

2. Autoantibody specificities in SLE patients

In contrast to other autoimmune diseases, patients with SLE show a broad spectrum of autoantibodies, more than 200, directed to a variety of intracellular and extracellular components that include proteins, nucleic acids, nucleoproteins, phospholipids, glycoproteins and glycolipids [15]. Despite these discoveries, the pathogenic role for the majority of autoantibodies associated with SLE remains challenging, and less than 10% are in common use nowadays [16].

Moreover, autoantibodies can present different roles in the disease, such as pathogenic, predictive, prognostic or protective. They can be also only an epiphenomenon. Here, we present different autoantibodies which are not included in EULAR/ACR 2019 classification criteria, despite being detected in SLE patients (Fig. 1).

Fig. 1.

Fig. 1

Main autoantibodies not included in EULAR/ACR 2019 classification criteria for SLE patients. Anti-nucleosomes, anti-histones, as well as anti-ribosomal-P, anti-RNP, anti-SSA/Ro or anti-SSB/La, anti-C1q and anti-NMDA receptor antibodies are depicted showing the main structures toward non-criteria autoantibodies can be directed in SLE patients.

2.1. Anti-nucleosome antibodies

According to in vitro studies, the nucleosome is an important primary antigen in SLE [[17], [18], [19]]. Nucleosomes consist of the core particle composed of an octamer of histones (H2A-H2B–H3–H4)2 around which the DNA is wrapped being the H1 histone located at the point where DNA enters and exits the nucleosome [20]. Anti-nucleosome antibodies, which only bind to the native nucleosome particle, but not to the individual components (DNA and histone), appear in early phases of the disease and precede the formation of anti-dsDNA and anti-histone antibodies [[21], [22], [23]]. This suggests that they might play an important role in the onset of the disease [24,25]. The prevalence of anti-nucleosome antibodies is around 70–90% in SLE patients, which is more than the positivity of anti-dsDNA antibodies and can be demonstrated in the early phase of the disease [26,27], and was found to correlate better than anti-dsDNA antibodies with SLE disease activity by some groups [[27], [28], [29], [30], [31]].

Therefore, the presence of anti-nucleosome antibodies is highly sensitive and specific for the diagnosis of SLE [30], especially when the anti-dsDNA antibodies are absent [28,32], being additional disease activity markers in the assessment of SLE disease activity [28,33,34] Besides, anti-nucleosome antibodies have been associated predominantly with severity of renal involvement in SLE, such as lupus nephritis [[35], [36], [37]]. However, there are also several weakness in the detection of anti-nucleosome antibodies as biomarkers in SLE, such as the high positivity of anti-nucleosome antibodies in patients with systemic sclerosis and mixed connective tissue diseases [30], as well as the limitations in the laboratory assays used for their detection, since different antigens (entire nucleosomes prepared by digestion or nucleosomes without histone H1) can be used for antibody detection. Consequently, autoantibodies can bind nonspecifically histone variants that are not constant in nucleosomes [38,39]. Taking into account all these aspects, despite their diagnostic power, solid phase assays for anti-nucleosome antibody detection should improve in order to replace the use of anti-dsDNA antibodies.

2.2. Anti-histones antibodies

The main targets of anti-histone antibodies are the five types of histones (H1, H2A, H2B, H3, and H4), which allow the organization of DNA.

The prevalence of anti-histone antibodies in SLE patients is about 30% [40]. Nevertheless, these autoantibodies are characteristic of a particular subset of SLE patients, since antibodies directed against H2A-H2B histones are present in around 96–100% of drug-induce SLE patients [[41], [42], [43]]. Specifically, anti-histone antibodies can be found in about 96% of patients with SLE induced by procainamide [44,45], and in 100% by isoniazide and penicillamine [46,47]. Furthermore, anti-histones antibodies are more prevalent in SLE patients with lupus nephritis in comparison with SLE patients without nephropathy [37,48,49]. Nevertheless, anti-histone antibodies are not specific of this group of patients, because they can also present in infectious diseases, primary biliary cholangitis, Sjögren's syndrome, systemic sclerosis or idiopathic (not drug-induced) SLE [43,50,51].

2.3. Anti-RNP antibodies

Small nuclear ribonucleoproteins (snRNPs) are RNA-protein complexes involved in the processing of pre-mRNA. Specifically, snRNPs are the major autoantigens of the spliceosome [52]. Anti-RNP antibodies react with proteins (70 Kd, A, C) that are associated with U1 RNA and form U1snRNP [53]. Anti-RNP antibodies are detectable in 25–40% of SLE patients [54,55]. However, these autoantibodies are not specific of SLE patients, since they can be found in patients with rheumatoid arthritis [56], Sjögren's syndrome [57] or polymyositis [58,59] among others, and high titers of anti-RNP antibodies are considered as classification criteria for mixed connective tissue disease (MCTD). Unlike other autoantibodies, anti-RNP antibodies do not correlate with disease activity.

2.4. Anti-SSA/Ro and anti-SSB/La antibodies

SSA and SSB antigens are also called Ro and La, respectively. SSA/Ro is a ribonucleoprotein which includes at least four proteins with different molecular weights (45, 52, 54, and 60 kDa) [60,61]. SSB/La is a phosphoprotein that binds to small RNAs transcribed by RNA polymerase III [62]. The highest prevalence of these autoantibodies has been found in Sjögren's syndrome where the presence of anti-SSA/Ro antibodies constitutes a classification criteria [63,64]. The prevalence of anti-SSA/Ro and anti-SSB/La antibodies in SLE patients is around 25–30%, and 10–15%, respectively [55]. In a French study, the Ro52/TRIM negative and SSA60/Ro positive testing was especially found in SLE patients and specially if antiphospholipid antibodies were detected with an OR 2.5–3.6 [65]. However, the Ro52/TRIM positive and SSA60/Ro positive was clearly associated with Sjögren's syndrome (OR 4.2), and the isolated Ro52/TRIM positive result was associated with a variety of diseases. This makes necessary to introduce the measurement of both Ro specificities separately. Similar results were also found in a Greek study [66]. No pathogenic mechanism has been identified for anti-SSA/Ro and anti-SSB/La antibodies in SLE. Nevertheless, it is known that both autoantibodies are able to cross the maternal placenta, and therefore newborns from mothers with these autoantibodies are at a higher risk of developing neonatal lupus [67]. Moreover, anti-SSA/Ro antibodies are able to bind to fetal heart tissue, inhibiting cardiac repolarization and inducing congenital heart block [68,69].

2.5. Anti-ribosomal P antibodies

Anti-Ribosomal P antibodies were originally described by Elkon et al. in 1985 by Western blot, identifying three target antigens, named P0, P1, and P2 [70], which shared an immunoreactive epitope consisting of 22 amino acids, at the carboxi-terminal end [71].

Anti-ribosomal P antibodies are not listed in the SLE classification criteria, though they are specifically detected only in SLE patients and not in other autoimmune diseases or healthy subjects [72,73]. The prevalence of anti-ribosomal P antibodies in SLE patients is 15–40% and varies with the ethnicity, being higher in Asian than in Caucasian or African American SLE patients [73,74], disease activity [75,76] and detection method [[77], [78], [79]].

The presence of these autoantibodies can be detected by IIF showing a cytoplasmic dense fine speckled pattern (AC-19 ICAP) on HEp-2 cells. However, IIF is unreliable as a screening method for anti-ribosomal P antibody detection because of its low sensitivity. Specifically, less than 30% of patients with anti-ribosomal P antibodies detected by ELISA showed an indicative staining pattern by IIF [80,81]. Moreover, the usefulness of IIF is limited, since many laboratories report only the most frequent nuclear patterns and do not take into account cytoplasmic staining patterns [82,83]. This emphasizes the importance of detecting anti-ribosomal P antibodies in ANA negative SLE patients [84]. For this purpose, there are other methods that present higher sensitivity and specificity than IIF, such as ELISA, line immunoassays and ALBIA [77,85].

The different immunoassays for anti-ribosomal P antibodies detection use the C-terminal 22 amino acid peptide or the three ribosomal P antigens, either as individual proteins or in combinations [77,86]. The sensitivity, and specificity of solid phase assays for anti-ribosomal P antibodies detection in SLE patients is about 10–40%, and almost 100%, respectively. Nevertheless, some differences are observed between the different assays according to the antigen selection [78,79,87,88], since the epitopes recognized by anti-ribosomal P antibodies in SLE patients are not only located in the conserved C-terminal peptide [89]. Consequently, solid phase assays that are able to detect antibodies directed against all three ribosomal P antigens present a higher sensitivity but at an expense of lower specificity for SLE in comparison to those directed to the C-terminal 22 amino acid peptide [77,90,91].

Anti-ribosomal P and anti-dsDNA antibodies are often found together in the sera of SLE patients. However, nearly 5–10% of SLE patients can present anti-ribosomal P antibodies as an isolated marker in the absence on anti-dsDNA or anti-Sm antibodies [92], which supports their important role as an additional tool for diagnosis. Moreover, the presence of anti-ribosomal P antibodies has been associated with several SLE disease activity parameters, such as decreased complement levels [93,94], photosensitivity [94,95], malar rash [95], or increased disease activity scores [92,96], being an important marker of lupus flares. In addition, anti-ribosomal P antibodies has been associated with lupus nephritis and renal activity [97,98], as well as with neuropsychiatric manifestations of SLE [99,100].

2.6. Anti-C1q antibodies

C1q is a key activation protein of the classical pathway of complement, since it is the protein that interacts directly with immunoglobulins. Hereditary C1q deficiency, despite being rare, has been described as a risk factor for the development of SLE [[101], [102], [103]], and low levels of C1q have been associated with disease flares and with the development of anti-C1q antibodies [[104], [105], [106]].

Anti-C1q antibodies were firstly recognized in 1971 by Agnello et al. [107], who observed that in SLE patients next to the high-molecular weight fractions, also low-molecular weight fractions contained immunoglobulins that could bind to C1q, and identified in 1988, when different researchers showed that these low-molecular weight fractions were monomeric, non-complexed IgG molecules that specifically interacted with the collagen-like tail of the C1q molecule [108,109]. They were mostly seen in patients with SLE, but the highest titers have been observed in patients with the hypocomplementemic urticaria vasculitis syndrome (HUVS), a disease that is closely related to human SLE [110]. The prevalence of anti-C1q antibodies in SLE patients is around 30–60%, and almost 100% in patients with active lupus nephritis [111,112], being an important follow-up marker [113]. Therefore, it is important to highlight the strong negative predictive value of anti-C1q antibodies for nephritis, since in the absence of anti-C1q antibodies it is very unlikely that a patient with lupus nephritis will develop a flare [[114], [115], [116]]. These findings suggest that anti-C1q antibodies could play an active role in the pathogenesis of SLE.

Detection of anti-C1q antibodies is carried out mainly by ELISA [[117], [118], [119], [120]]. These autoantibodies are mostly of the IgG isotype and bound to the collagen-like region of C1q [121]. Interestingly, anti-C1q antibodies bind to a neoepitope that, due to conformational changes, is only expressed on bound C1q. Although the levels of anti-C1q antibodies and hypocomplementemia are correlated in SLE [122,123], there is limited evidence of the pathological mechanisms involved. Recently, it was demonstrated that SLE patient-derived anti-C1q antibodies can activate the complement system in vitro. Anti-C1q IgG predominantly activate the classical pathway; anti-C1q IgA activate the lectin pathway, whereas anti-C1q IgM may trigger both pathways [124].

Complement activation, identified as low levels of C3, C4 or CH50 in the EULAR/ACR 2019 classification criteria for SLE, is very important in pathogenesis of SLE, together with the presence of autoantibodies, and the measurement of such activation is relevant. Very recently, the addition of measurement of cell-bound activation products by flow cytometry has demonstrated to predict the transition from probable lupus to EULAR/ACR 2019 classification criteria better than classical autoantibodies in a 78 patients cohort [125].

2.7. Anti-PCNA

Autoantibodies targeting the proliferating cell nuclear antigen are rarely detected in systemic autoimmune rheumatic diseases and have been considered as a specific biomarker for systemic lupus erythematosus. They were historically identified by IIF giving a pleomorphic speckled nucleoplasmic staining (AC-13 ICAP) and then confirmed by more specific immunoassays [126,127]. The target of these autoantibodies is an auxiliary protein for DNA polymerase delta, which plays a role in DNA repair and replication [128,129]. Its expression oscillates depending on the cell cycle phase, increasing in S cellular phase. The prevalence of anti-PCNA antibodies in SLE patients is around 1–10%, especially in those with arthritis and hypocomplementemia [[130], [131], [132]]. Besides, treatment with steroids reduces anti-PCNA antibody titers, becoming undetectable [55].

2.8. Anti-NMDAR

Anti-N-methyl-d-aspartate receptor (NMDAR) antibodies are a subset of anti-dsDNA antibodies that present cross-reactivity with NR2A and NR2B subunits of the NMDA receptor [133]. This receptor is distributed in the whole brain and is important in the process that influence learning and memory [134]. The prevalence of anti-NMDAR antibodies is around 30% in SLE patients and their presence show a correlation with the development of neuropsychiatric manifestations [[135], [136], [137]].

2.9. Anti-neutrophil cytoplasmic antibodies (ANCA)

Anti-neutrophil cytoplasmic antibodies can be found in 20–30% of SLE patients [138,139] but their presence is not associated with vasculitis. The presence of ANCA seems to predispose to the development of lupus nephritis [140,141]. ANCAs are directly implicated in the pathogenesis of this form of glomerular injury and are thought to directly target cytokine primed neutrophils that express myeloperoxidase (MPO) or proteinase 3 (PR3). After activation by anti-MPO or anti-PR3 antibodies, neutrophils release cytokines, toxic oxygen metabolites, and lytic proteinases, leading to endothelial damage with subsequent glomerular basement membrane rupture, and necrosis [142]. Anti-MPO antibodies are up to 7–8 times more frequent than anti-PR3 in SLE patients [141,143,144]. ANCA in SLE patients may be used as a serological marker along with clinical and histopathological assessment to differentiate vasculitis in lupus nephritis cases from SLE without nephritis [139]. Nevertheless, according to a recent international consensus on ANCA testing in non-ANCA associated vasculitides patients, routine testing is not recommended. MPO-ANCA and PR3-ANCA testing is recommended in patients with a kidney biopsy with prominent necrotizing and crescentic lesions or proliferative lupus nephritis [145].

3. Conclusions

Antibodies included in EULAR/ACR 2019 classification criteria for SLE represent only a small proportion of the total amount of autoantibodies that can be detected in SLE patients. However, it must be taken into account that despite this disease is known since many years, the pathogenic mechanisms that underlie it are continuously changing. Future research in this field will probably decipher whether SLE can be consider as a disease with multiple different clinical phenotypes that can be related with different classification criteria in which the autoantibodies may have space.

Among the autoantibodies which are not included in the classification criteria for SLE (summarized in Table 3), anti-nucleosome and anti-C1q antibodies are the only ones in which, thank to preclinical models, an association with the activity of the disease has been established. This fact is important but it does not mean that they are the only ones implicated. Nonetheless, most of the autoantibodies and biomarkers evaluated in SLE have been addressed to monitor and detect disease activity and not specifically as classification criteria. Indeed, markers to assess disease activity fluctuates as compared with classification criteria and their validation is different.

Table 3.

Summary of the main non-criteria autoantibodies in SLE.

Antibody Prevalence (%) in SLE patients Association with disease activity Clinical association References
Anti-Nucleosome 70–90 Yes Lupus nephritis [27,36]
Anti-Histones 60–70 No Drug induced lupus and lupus nephritis [40,41,48]
Anti-RNP 25–40 No [54]
Anti-SSA/Ro and anti-SSB/La 25-30/10-15 No Neonatal lupus [55,69]
Anti-Ribosomal P 15–40 No Lupus nephritis and neuropsychiatric symptoms [74,98,100]
Anti-C1q 30–60 Yes Lupus nephritis [111,115]
Anti-PCNA 1–10 No Arthritis and hypocomplementemia [130,132]
Anti-NMDAR 30 No Neuropsychiatric symptoms [136,137]
ANCA 20–30 No Lupus nephritis [138,139]

Abbreviations: RNP: Ribonucleoprotein; PCNA: Proliferating Cell Nuclear Antigen; NMDAR: N-Methyl-d-Aspartate Receptor; ANCA: Anti-Neutrophil Cytoplasmic Antibodies.

Likewise, and as a consequence of the development of new antibody detection techniques, it is relevant to establish adequate cut-off points in order to maintain good sensitivity and specificity of the different biomarkers. At the same time, this development may bring new clinical associations and perhaps new SLE subtypes.

Credit author statement

Marcos López-Hoyos and Juan Irure revised the literature, wrote the manuscript, checked the final version and did the corrections as suggested by reviewers and editors.

Both authors finally approved the revised version submitted.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Marcos Lopez-Hoyos reports a relationship with INOVA Diagnostics Inc that includes: consulting or advisory and speaking and lecture fees.

References

  • 1.Kamen D.L. Rheumatic Disease Clinics of North America; 2014. Environmental Influences on Systemic Lupus Erythematosus Expression; p. 40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Tanaka Y. State-of-the-art treatment of systemic lupus erythematosus. Int. J. Rheum. Dis. 2020;23:465–471. doi: 10.1111/1756-185X.13817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Kaul A., Gordon C., Crow M.K., Touma Z., Urowitz M.B., van Vollenhoven R., Ruiz-Irastorza G., Hughes G. Systemic lupus erythematosus. Nat. Rev. Dis. Prim. 2016;2 doi: 10.1038/NRDP.2016.39. [DOI] [PubMed] [Google Scholar]
  • 4.Agmon-Levin N., Mosca M., Petri M., Shoenfeld Y. Systemic lupus erythematosus one disease or many? Autoimmun. Rev. 2012;11:593–595. doi: 10.1016/J.AUTREV.2011.10.020. [DOI] [PubMed] [Google Scholar]
  • 5.Tan E.M., Cohen A.S., Fries J.F., Masi A.T., Mcshane D.J., Rothfield N.F., Schaller J.G., Talal N., Winchester R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–1277. doi: 10.1002/ART.1780251101. [DOI] [PubMed] [Google Scholar]
  • 6.Hochberg M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725. doi: 10.1002/ART.1780400928. [DOI] [PubMed] [Google Scholar]
  • 7.Petri M., Orbai A.M., Alarcõn G.S., Gordon C., Merrill J.T., Fortin P.R., Bruce I.N., Isenberg D., Wallace D.J., Nived O., Sturfelt G., Ramsey-Goldman R., Bae S.C., Hanly J.G., Sánchez-Guerrero J., Clarke A., Aranow C., Manzi S., Urowitz M., Gladman D., Kalunian K., Costner M., Werth V.P., Zoma A., Bernatsky S., Ruiz-Irastorza G., Khamashta M.A., Jacobsen S., Buyon J.P., Maddison P., Dooley M.A., van Vollenhoven R.F., Ginzler E., Stoll T., Peschken C., Jorizzo J.L., Callen J.P., Lim S.S., Fessler B.J., Inanc M., Kamen D.L., Rahman A., Steinsson K., Franks A.G., Sigler L., Hameed S., Fang H., Pham N., Brey R., Weisman M.H., McGwin G., Magder L.S. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–2686. doi: 10.1002/ART.34473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Aringer M., Costenbader K., Daikh D., Brinks R., Mosca M., Ramsey-Goldman R., Smolen J.S., Wofsy D., Boumpas D.T., Kamen D.L., Jayne D., Cervera R., Costedoat-Chalumeau N., Diamond B., Gladman D.D., Hahn B., Hiepe F., Jacobsen S., Khanna D., Lerstrøm K., Massarotti E., McCune J., Ruiz-Irastorza G., Sanchez-Guerrero J., Schneider M., Urowitz M., Bertsias G., Hoyer B.F., Leuchten N., Tani C., Tedeschi S.K., Touma Z., Schmajuk G., Anic B., Assan F., Chan T.M., Clarke A.E., Crow M.K., Czirják L., Doria A., Graninger W., Halda-Kiss B., Hasni S., Izmirly P.M., Jung M., Kumánovics G., Mariette X., Padjen I., Pego-Reigosa J.M., Romero-Diaz J., Rúa-Figueroa Fernández Í., Seror R., Stummvoll G.H., Tanaka Y., Tektonidou M.G., Vasconcelos C., Vital E.M., Wallace D.J., Yavuz S., Meroni P.L., Fritzler M.J., Naden R., Dörner T., Johnson S.R. European League against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 2019;78(2019):1151–1159. doi: 10.1136/annrheumdis-2018-214819. [DOI] [PubMed] [Google Scholar]
  • 9.Aringer M., Costenbader K., Daikh D., Brinks R., Mosca M., Ramsey-Goldman R., Smolen J.S., Wofsy D., Boumpas D.T., Kamen D.L., Jayne D., Cervera R., Costedoat-Chalumeau N., Diamond B., Gladman D.D., Hahn B., Hiepe F., Jacobsen S., Khanna D., Lerstrøm K., Massarotti E., McCune J., Ruiz-Irastorza G., Sanchez-Guerrero J., Schneider M., Urowitz M., Bertsias G., Hoyer B.F., Leuchten N., Tani C., Tedeschi S.K., Touma Z., Schmajuk G., Anic B., Assan F., Chan T.M., Clarke A.E., Crow M.K., Czirják L., Doria A., Graninger W., Halda-Kiss B., Hasni S., Izmirly P.M., Jung M., Kumánovics G., Mariette X., Padjen I., Pego-Reigosa J.M., Romero-Diaz J., Rúa-Figueroa Fernández Í., Seror R., Stummvoll G.H., Tanaka Y., Tektonidou M.G., Vasconcelos C., Vital E.M., Wallace D.J., Yavuz S., Meroni P.L., Fritzler M.J., Naden R., Dörner T., Johnson S.R. European league against rheumatism/American college of rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 2019;71(2019):1400–1412. doi: 10.1002/ART.40930/ABSTRACT. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Aringer M., Costenbader K., Daikh D., Brinks R., Mosca M., Ramsey-Goldman R., Smolen J.S., Wofsy D., Boumpas D.T., Kamen D.L., Jayne D., Cervera R., Costedoat-Chalumeau N., Diamond B., Gladman D.D., Hahn B., Hiepe F., Jacobsen S., Khanna D., Lerstrøm K., Massarotti E., McCune J., Ruiz-Irastorza G., Sanchez-Guerrero J., Schneider M., Urowitz M., Bertsias G., Hoyer B.F., Leuchten N., Tani C., Tedeschi S.K., Touma Z., Schmajuk G., Anic B., Assan F., Chan T.M., Clarke A.E., Crow M.K., Czirják L., Doria A., Graninger W., Halda-Kiss B., Hasni S., Izmirly P.M., Jung M., Kumánovics G., Mariette X., Padjen I., Pego-Reigosa J.M., Romero-Diaz J., Rúa-Figueroa Fernández Í., Seror R., Stummvoll G.H., Tanaka Y., Tektonidou M.G., Vasconcelos C., Vital E.M., Wallace D.J., Yavuz S., Meroni P.L., Fritzler M.J., Naden R., Dörner T., Johnson S.R. European League against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 2019;78(2019):1151–1159. doi: 10.1136/ANNRHEUMDIS-2018-214819. [DOI] [PubMed] [Google Scholar]
  • 11.Aringer M., Dörner T., Leuchten N., Johnson S.R. Toward new criteria for systemic lupus erythematosus-a standpoint. Lupus. 2016;25:805–811. doi: 10.1177/0961203316644338. [DOI] [PubMed] [Google Scholar]
  • 12.Leuchten N., Hoyer A., Brinks R., Schoels M., Schneider M., Smolen J., Johnson S.R., Daikh D., Dörner T., Aringer M., Bertsias G. Performance of antinuclear antibodies for classifying systemic lupus erythematosus: a systematic literature review and meta-regression of diagnostic data. Arthritis Care Res. 2018;70:428–438. doi: 10.1002/ACR.23292. [DOI] [PubMed] [Google Scholar]
  • 13.Aringer M., Leuchten N., Johnson S.R. New criteria for lupus. Curr. Rheumatol. Rep. 2020;22 doi: 10.1007/S11926-020-00896-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Irure-Ventura J., Rodríguez C., Vergara-Prieto E., Vargas M.L., Quirant B., Jurado A., Fernández-Pereira L., Martínez-Cáceres E., San José M., López-Hoyos M. Rare immunofluorescence patterns of autoantibodies on HEp-2 cells defined by ICAP identify different autoimmune diseases in the absence of associated specificities: a Spanish multicentre study. Rheumatology. 2021;60:3904–3912. doi: 10.1093/RHEUMATOLOGY/KEAA831. [DOI] [PubMed] [Google Scholar]
  • 15.Yaniv G., Twig G., Shor D.B.A., Furer A., Sherer Y., Mozes O., Komisar O., Slonimsky E., Klang E., Lotan E., Welt M., Marai I., Shina A., Amital H., Shoenfeld Y. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun. Rev. 2015;14:75–79. doi: 10.1016/J.AUTREV.2014.10.003. [DOI] [PubMed] [Google Scholar]
  • 16.Choi M.Y., Fritzler M.J. Autoantibodies in SLE: prediction and the p value matrix. Lupus. 2019;28:1285–1293. doi: 10.1177/0961203319868531. [DOI] [PubMed] [Google Scholar]
  • 17.Mohan C., Adams S., Stanik V., Datta S.K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 1993;177:1367–1381. doi: 10.1084/JEM.177.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Mehra S., Fritzler M.J. The spectrum of anti-chromatin/nucleosome autoantibodies: independent and interdependent biomarkers of disease. J. Immunol. Res. 2014:2014. doi: 10.1155/2014/368274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Bruns A., Bläss S., Hausdorf G., Burmester G.R., Hiepe F. 2000. Nucleosomes Are Major B and T Cell Autoantigen in Systemic Lupus Erithematosus. [DOI] [PubMed] [Google Scholar]
  • 20.Ghillani-Dalbin P., Amoura Z., Cacoub P., Charuel J.L., Diemert M.C., Piette J.C., Musset L. Testing for anti-nucleosome antibodies in daily practice: a monocentric evaluation in 1696 patients. Lupus. 2003;12:833–837. doi: 10.1191/0961203303LU475OA. [DOI] [PubMed] [Google Scholar]
  • 21.Amoura Z., Chabre H., Koutouzov S., Lotton C., Cabrespines A., Bach J.F., Jacob L. Nucleosome-restricted antibodies are detected before anti-dsDNA and/or antihistone antibodies in serum of MRL-Mp lpr/lpr and +/+ mice, and are present in kidney eluates of lupus mice with proteinuria. Arthritis Rheum. 1994;37:1684–1688. doi: 10.1002/ART.1780371118. [DOI] [PubMed] [Google Scholar]
  • 22.Kramers C., Hylkema M.N., van Bruggen M.C.J., van de Lagemaat R., Dijkman H.B.P.M., Assmann K.J.M., Smeenk R.J.T., Berden J.H.M. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo. J. Clin. Invest. 1994;94:568–577. doi: 10.1172/JCI117371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Arbuckle M.R., McClain M.T., Rubertone M.v., Scofield R.H., Dennis G.J., James J.A., Harley J.B. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 2003;349:1526–1533. doi: 10.1056/NEJMOA021933. [DOI] [PubMed] [Google Scholar]
  • 24.Mohan C., Adams S., Stanik V., Datta S.K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 1993;177:1367–1381. doi: 10.1084/JEM.177.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Simón J.A., Cabiedes J., Ortiz E., Alcocer-Varela J., Sánchez-Guerrero J. Anti-nucleosome antibodies in patients with systemic lupus erythematosus of recent onset. Potential utility as a diagnostic tool and disease activity marker. Rheumatology. 2004;43:220–224. doi: 10.1093/RHEUMATOLOGY/KEH024. [DOI] [PubMed] [Google Scholar]
  • 26.Amoura Z., Koutouzov S., Piette J.C. The role of nucleosomes in lupus. Curr. Opin. Rheumatol. 2000;12:369–373. doi: 10.1097/00002281-200009000-00003. [DOI] [PubMed] [Google Scholar]
  • 27.Augusto Gutiérrez-Adrianzén O., Koutouzov S., Maria R., Mota S., Maria M., Medeiros C., Bach J.-F., De H., Campos H. 2006. Diagnostic Value of Anti-nucleosome Antibodies in the Assessment of Disease Activity of Systemic Lupus Erythematosus: A Prospective Study Comparing Anti-nucleosome with Anti-dsDNA Antibodies.www.jrheum.org [PubMed] [Google Scholar]
  • 28.Suleiman S., Kamaliah D., Nadeem A., Naing N.N., Che Maraina C.H. Anti-nucleosome antibodies as a disease activity marker in patients with systemic lupus erythematosus. Int. J. Rheum. Dis. 2009;12:100–106. doi: 10.1111/J.1756-185X.2009.01391.X. [DOI] [PubMed] [Google Scholar]
  • 29.Gómez-Puerta J.A., Burlingame R.W., Cervera R. Anti-chromatin (anti-nucleosome) antibodies: diagnostic and clinical value. Autoimmun. Rev. 2008;7:606–611. doi: 10.1016/J.AUTREV.2008.06.005. [DOI] [PubMed] [Google Scholar]
  • 30.Bizzaro N., Villalta D., Giavarina D., Tozzoli R. Are anti-nucleosome antibodies a better diagnostic marker than anti-dsDNA antibodies for systemic lupus erythematosus? A systematic review and a study of metanalysis. Autoimmun. Rev. 2012;12:97–106. doi: 10.1016/J.AUTREV.2012.07.002. [DOI] [PubMed] [Google Scholar]
  • 31.Burlingame R.W. Recent advances in understanding the clinical utility and underlying cause of antinucleosome (antichromatin) autoantibodies. Clin. Appl. Immunol. Rev. 2004;5:351–366. doi: 10.1016/J.CAIR.2004.04.002. [DOI] [Google Scholar]
  • 32.Saisoong S., Eiam-Ong S., Hanvivatvong O., Eiam-Ong S. Correlations between antinucleosome antibodies and anti-double-stranded DNA antibodies, C3, C4, and clinical activity in lupus patients. Clin. Exp. Rheumatol. 2006;24:51–58. [PubMed] [Google Scholar]
  • 33.Li T., Prokopec S.D., Morrison S., Lou W., Reich H., Gladman D., Urowitz M., Scholey J., Fortin P.R., Boutros P.C., Wither J., Landolt-Marticorena C. Anti-nucleosome antibodies outperform traditional biomarkers as longitudinal indicators of disease activity in systemic lupus erythematosus. Rheumatology. 2015;54:449–457. doi: 10.1093/RHEUMATOLOGY/KEU326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Arinuma Y., Yanagida T., Hirohata S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2008;58:1130–1135. doi: 10.1002/ART.23399. [DOI] [PubMed] [Google Scholar]
  • 35.Bigler C., Lopez-Trascasa M., Potlukova E., Moll S., Danner D., Schaller M., Trendelenburg M. Antinucleosome antibodies as a marker of active proliferative lupus nephritis. Am. J. Kidney Dis. : Off. J. Nat. Kidney Found. 2008;51:624–629. doi: 10.1053/J.AJKD.2007.10.041. [DOI] [PubMed] [Google Scholar]
  • 36.Hung W.T., Chen Y.M., Lan J.L., Chen H.H., Chen Y.H., Chen D.Y., Hsieh C.W., Wen M.C. Antinucleosome antibodies as a potential biomarker for the evaluation of renal pathological activity in patients with proliferative lupus nephritis. Lupus. 2011;20:1404–1410. doi: 10.1177/0961203311417033. [DOI] [PubMed] [Google Scholar]
  • 37.Kiss E., Lakos G., Szegedi G., Poor G., Szodoray P. Anti-nuscleosome antibody, a reliable indicator for lupus nephritis. Autoimmunity. 2009;42:393–398. doi: 10.1080/08916930903002446. [DOI] [PubMed] [Google Scholar]
  • 38.Rekvig O.P., van der Vlag J., Seredkina N. Review: antinucleosome antibodies: a critical reflection on their specificities and diagnostic impact. Arthritis Rheumatol. 2014;66:1061–1069. doi: 10.1002/ART.38365. [DOI] [PubMed] [Google Scholar]
  • 39.Ghiggeri G.M., D’alessandro M., Bartolomeo D., Degl’innocenti M.L., Magnasco A., Lugani F., Prunotto M., Bruschi M. An update on antibodies to necleosome components as biomarkers of sistemic lupus erythematosus and of lupus flares. Int. J. Mol. Sci. 2019;20 doi: 10.3390/IJMS20225799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sun X.Y., Shi J., Han L., Su Y., Li Z.G. Anti-histones antibodies in systemic lupus erythematosus: prevalence and frequency in neuropsychiatric lupus. J. Clin. Lab. Anal. 2008;22:271–277. doi: 10.1002/JCLA.20248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Zamorano M.A.A., Pedrera R.L., Lozano M.J.C. [Drug-induced lupus] Med. Clínica. 2010;135:124–129. doi: 10.1016/J.MEDCLI.2009.04.035. [DOI] [PubMed] [Google Scholar]
  • 42.Zirwas M.J., Kress D.W., Deng J.S. The utility of antihistone antibody screening in the diagnosis of drug-induced lupus erythematosus. Arch. Dermatol. 2004;140:494–495. doi: 10.1001/ARCHDERM.140.4.494. [DOI] [PubMed] [Google Scholar]
  • 43.Didier K., Bolko L., Giusti D., Toquet S., Robbins A., Antonicelli F., Servettaz A. Autoantibodies associated with connective tissue diseases: what meaning for clinicians? Front. Immunol. 2018;9:541. doi: 10.3389/FIMMU.2018.00541/BIBTEX. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Rubin R.L., Burlingame R.W., Arnott J.E., Totoritis M.C., McNally E.M., Johnson A.D. IgG but not other classes of anti-[(H2A-H2B)-DNA] is an early sign of procainamide-induced lupus. J. Immunol. 1995;154:2483–24893. https://www.unboundmedicine.com/medline/citation/7868914/IgG_but_not_other_classes_of_anti_[_H2A_H2B__DNA]_is_an_early_sign_of_procainamide_induced_lupus_ [PubMed] [Google Scholar]
  • 45.Borchers A.T., Keen C.L., Gershwin M.E. Drug-induced lupus. Ann. N. Y. Acad. Sci. 2007;1108:166–182. doi: 10.1196/ANNALS.1422.019. [DOI] [PubMed] [Google Scholar]
  • 46.Vaghela J.H., Solanki Y., Lakhani K., Purohit B. Isoniazid-induced systemic lupus erythematosus: a case report. Drug Saf. Case Rep. 2019;6 doi: 10.1007/S40800-019-0102-Y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Salazar-Pdramo M., Rubin R.L., de la Torre I.G. Systemic lupus erythematosus induced by isoniazid. Ann. Rheum. Dis. 1992;51:1085–1087. doi: 10.1136/ARD.51.9.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Yang J., Xu Z., Sui M., Han J., Sun L., Jia X., Zhang H., Han C., Jin X., Gao F., Liu Y., Li Y., Cao J., Ling H., Zhang F., Ren H. Co-positivity for anti-dsDNA, -nucleosome and -histone antibodies in lupus nephritis is indicative of high serum levels and severe nephropathy. PLoS One. 2015;10 doi: 10.1371/JOURNAL.PONE.0140441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Cortés-Hernández J., Ordi-Ros J., Labrador M., Buján S., Balada E., Segarra A., Vilardell-Tarrés M. Antihistone and anti-double-stranded deoxyribonucleic acid antibodies are associated with renal disease in systemic lupus erythematosus. Am. J. Med. 2004;116:165–173. doi: 10.1016/J.AMJMED.2003.08.034. [DOI] [PubMed] [Google Scholar]
  • 50.Hu C.J., Zhang F.C., Li Y.Z., Zhang X. Primary biliary cirrhosis: what do autoantibodies tell us? World J. Gastroenterol. 2010;16:3616–3629. doi: 10.3748/WJG.V16.I29.3616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Nunes J.P.L., Cunha A.C., Meirinhos T., Nunes A., Araújo P.M., Godinho A.R., Vilela E.M., Vaz C. Prevalence of auto-antibodies associated to pulmonary arterial hypertension in scleroderma - a review. Autoimmun. Rev. 2018;17:1186–1201. doi: 10.1016/J.AUTREV.2018.06.009. [DOI] [PubMed] [Google Scholar]
  • 52.Patel S.B., Bellini M. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Res. 2008;36:6482–6493. doi: 10.1093/NAR/GKN658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Migliorini P., Baldini C., Rocchi V., Bombardieri S. Anti-Sm and anti-RNP antibodies. Autoimmunity. 2005;38:47–54. doi: 10.1080/08916930400022715. [DOI] [PubMed] [Google Scholar]
  • 54.Dima A., Jurcut C., Baicus C. The impact of anti-U1-RNP positivity: systemic lupus erythematosus versus mixed connective tissue disease. Rheumatol. Int. 2018;38:1169–1178. doi: 10.1007/S00296-018-4059-4. [DOI] [PubMed] [Google Scholar]
  • 55.Cozzani E., Drosera M., Gasparini G., Parodi A. Serology of lupus erythematosus: correlation between immunopathological features and clinical aspects. Autoimmune Dis. 2014 doi: 10.1155/2014/321359. 2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Mohammed Yousef A., Abdelrahman S.K., Elsayed Helmi I., Mohammed Eltaweel F., Elsayed Hamed W. Association of anti-RNP with HLADR4 and its prevalence in rheumatoid arthritis patients. J. Immunoassay Immunochem. 2018;39:595–608. doi: 10.1080/15321819.2018.1525396. [DOI] [PubMed] [Google Scholar]
  • 57.Abbara S., Seror R., Henry J., Chretien P., Gleizes A., Hacein-Bey-Abina S., Mariette X., Nocturne G. Anti-RNP positivity in primary Sjögren’s syndrome is associated with a more active disease and a more frequent muscular and pulmonary involvement. RMD Open. 2019;5 doi: 10.1136/RMDOPEN-2019-001033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Casal-Dominguez M., Pinal-Fernandez I., Corse A.M., Paik J., Albayda J., Casciola-Rosen L., Johnson C., Danoff S.K., Christopher-Stine L., Tiniakou E., Mammen A.L. Muscular and extramuscular features of myositis patients with anti-U1-RNP autoantibodies. Neurology. 2019;92:E1416–E1426. doi: 10.1212/WNL.0000000000007188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Coppo P., Clauvel J.P., Bengoufa D., Oksenhendler E., Lacroix C., Lassoued K. Inflammatory myositis associated with anti-U1-small nuclear ribonucleoprotein antibodies: a subset of myositis associated with a favourable outcome. Rheumatology. 2002;41:1040–1046. doi: 10.1093/RHEUMATOLOGY/41.9.1040. [DOI] [PubMed] [Google Scholar]
  • 60.Reichlin M. Significance of the Ro antigen system. J. Clin. Immunol. 1986;6:339–348. doi: 10.1007/BF00915372. [DOI] [PubMed] [Google Scholar]
  • 61.Franceschini F., Cavazzana I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity. 2005;38:55–63. doi: 10.1080/08916930400022954. [DOI] [PubMed] [Google Scholar]
  • 62.Chan E.K.L., Tan E.M., Keck W.M. The small nuclear ribonucleoprotein SS-B/La binds RNA with a conserved protease-resistant domain of 28 kilodaltons. Mol. Cell Biol. 1987;7:2588. doi: 10.1128/MCB.7.7.2588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Harley J.B., Alexander E.L., Bias W.B., Fox O.F., Provost T.T., Reichlin M., Yamagata H., Arnett F.C. Anti-Ro (SS-A) and anti-La (SS-B) in patients with Sjögren’s syndrome. Arthritis Rheum. 1986;29:196–206. doi: 10.1002/ART.1780290207. [DOI] [PubMed] [Google Scholar]
  • 64.Shiboski C.H., Shiboski S.C., Seror R., Criswell L.A., Labetoulle M., Lietman T.M., Rasmussen A., Scofield H., Vitali C., Bowman S.J., Mariette X., Heidenreich A.M., Lanfranchi H., Vollenweider C., Schiødt M., Devauchelle V., Gottenberg J.E., Saraux A., Pincemin M., Dörner T., Tzoufias A., Baldini C., Bombardieri S., de Vita S., Kitagawa K., Sumida T., Umehara H., Bootsma H., Kruize A.A., Radstake T.R., Vissink A., Jonsson R., Ramos-Casals M., Theander E., Challacombe S., Fisher B., Kirkham B., Larkin G., Ng F., Rauz S., Akpek E., Atkinson J., Baer A.N., Carsons S., Carteron N., Daniels T., Fox B., Greenspan J., Illei G., Nelson D., Parke A., Pillemer S., Segal B., Sivils K., Clair E.W. St, Stone D., Vivino F., Wu A. American college of rheumatology/European league against rheumatism classification criteria for primary sjögren’s syndrome: a consensus and data-driven methodology involving three international patient cohorts. Arthritis Rheumatol. 2016;69(2017):35–45. doi: 10.1002/ART.39859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Robbins A., Hentzien M., Toquet S., Didier K., Servettaz A., Pham B.N., Giusti D. Diagnostic utility of separate anti-ro60 and anti-ro52/TRIM21 antibody detection in autoimmune diseases. Front. Immunol. 2019;10 doi: 10.3389/FIMMU.2019.00444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Zampeli E., Mavrommati M., Moutsopoulos H.M., Skopouli F.N. Anti-Ro52 and/or anti-Ro60 immune reactivity: autoantibody and disease associations. Clinical and Experimental Rheumatology. 2021;38:S134–S141. https://www.clinexprheumatol.org/abstract.asp?a=14858 [PubMed] [Google Scholar]
  • 67.Izmirly P.M., Buyon J.P., Saxena A. Neonatal lupus: advances in understanding pathogenesis and identifying treatments of cardiac disease. Curr. Opin. Rheumatol. 2012;24:466–472. doi: 10.1097/BOR.0B013E328356226B. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Alexander E., Buyon J.P., Provost T.T., Guarnieri T. Anti-Ro/SS-A antibodies in the pathophysiology of congenital heart block in neonatal lupus syndrome, an experimental model. In vitro electrophysiologic and immunocytochemical studies. Arthritis Rheum. 1992;35:176–189. doi: 10.1002/ART.1780350209. [DOI] [PubMed] [Google Scholar]
  • 69.de Carolis S., Garufi C., Garufi E., de Carolis M.P., Botta A., Tabacco S., Salvi S. Autoimmune congenital heart block: a review of biomarkers and management of pregnancy. Front. Pediat. 2020;8 doi: 10.3389/FPED.2020.607515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Elkon K.B., Parnassa A.P., Foster C.L. Lupus autoantibodies target ribosomal P proteins. J. Exp. Med. 1985;162:459–471. doi: 10.1084/JEM.162.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Elkon K., Skelly S., Parnassa A., Moller W., Danho W., Weissbach H., Brot N. Identification and chemical synthesis of a ribosomal protein antigenic determinant in systemic lupus erythematosus. Proc. Natl. Acad. Sci. U. S. A. 1986;83:7419–7423. doi: 10.1073/PNAS.83.19.7419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Yalaoui S., Gorgi Y., Hajri R., Goucha R., Chaabouni L., Kooli C., Ayed K. Autoantibodies to ribosomal P proteins in systemic lupus erythematosus. Joint Bone Spine. 2002;69:173–176. doi: 10.1016/S1297-319X(02)00366-4. [DOI] [PubMed] [Google Scholar]
  • 73.Carmona-Fernandes D., Santos M.J., Canhão H., Fonseca J.E. Anti-ribosomal P protein IgG autoantibodies in patients with systemic lupus erythematosus: diagnostic performance and clinical profile. BMC Med. 2013;11 doi: 10.1186/1741-7015-11-98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Arnett F.C., Reveille J.D., Moutsopoulos H.M., Georgescu L., Elkon K.B. Ribosomal P autoantibodies in systemic lupus erythematosus. Frequencies in different ethnic groups and clinical and immunogenetic associations. Arthritis Rheum. 1996;39:1833–1839. doi: 10.1002/ART.1780391109. [DOI] [PubMed] [Google Scholar]
  • 75.Mei Y.J., Wang P., Jiang C., Wang T., Chen L.J., Li Z.J., Pan H.F. Clinical and serological associations of anti-ribosomal P0 protein antibodies in systemic lupus erythematosus. Clin. Rheumatol. 2018;37:703–707. doi: 10.1007/S10067-017-3886-0. [DOI] [PubMed] [Google Scholar]
  • 76.Kang J.H., Park D.J., Choi S.E., Yim Y.R., Kim J.E., Lee J.W., Lee K.E., Kim T.J., Park Y.W., Lee J.S., Choi Y.D., Lee J.K., Lee S.S. Protective role of anti-ribosomal P antibody in patients with lupus nephritis. Int. J. Rheum. Dis. 2019;22:913–920. doi: 10.1111/1756-185X.13517. [DOI] [PubMed] [Google Scholar]
  • 77.Mahler M., Kessenbrock K., Raats J., Fritzler M.J. Technical and clinical evaluation of anti-ribosomal P protein immunoassays. J. Clin. Lab. Anal. 2004;18:215–223. doi: 10.1002/JCLA.20026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Mahler M., Kessenbrock K., Szmyrka M., Takasaki Y., Garcia-De La Torre I., Shoenfeld Y., Hiepe F., Shun-Le C., von Mühlen C.A., Locht H., Höpfl P., Wiik A., Reeves W., Fritzler M.J. International multicenter evaluation of autoantibodies to ribosomal P proteins. Clin. Vaccine Immunol. : CVI. 2006;13:77–83. doi: 10.1128/CVI.13.1.77-83.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Mahler M., Agmon-Levin N., van Liempt M., Shoenfeld Y., Waka A., Hiepe F., Swart A., Gürtler I., Fritzler M.J. Multi-center evaluation of autoantibodies to the major ribosomal P C22 epitope. Rheumatol. Int. 2012;32:691–698. doi: 10.1007/S00296-010-1685-X. [DOI] [PubMed] [Google Scholar]
  • 80.Mahler M., Ngo J.T., Schulte-Pelkum J., Luettich T., Fritzler M.J. Limited reliability of the indirect immunofluorescence technique for the detection of anti-Rib-P antibodies. Arthritis Res. Ther. 2008;10 doi: 10.1186/AR2548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Muro Y., Sugiura K., Morita Y., Tomita Y. Evaluation of anti-ribosomal P protein immunoassay in Japanese patients with connective tissue diseases: comparison with an indirect immunofluorescence assay. Scand. J. Rheumatol. 2009;38:460–463. doi: 10.3109/03009740903008767. [DOI] [PubMed] [Google Scholar]
  • 82.Damoiseaux J., von Mühlen C.A., Garcia-De La Torre I., Carballo O.G., de Melo Cruvinel W., Francescantonio P.L.C., Fritzler M.J., Herold M., Mimori T., Satoh M., Andrade L.E.C., Chan E.K.L., Conrad K. International consensus on ANA patterns (ICAP): the bumpy road towards a consensus on reporting ANA results. Auto Immun. Highlights. 2016;7:1–8. doi: 10.1007/S13317-016-0075-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Damoiseaux J., Andrade L.E.C., Carballo O.G., Conrad K., Francescantonio P.L.C., Fritzler M.J., Garcia De La Torre I., Herold M., Klotz W., Cruvinel W.D.M., Mimori T., von Muhlen C., Satoh M., Chan E.K. Clinical relevance of HEp-2 indirect immunofluorescent patterns: the International Consensus on ANA patterns (ICAP) perspective. Ann. Rheum. Dis. 2019;78:879–889. doi: 10.1136/ANNRHEUMDIS-2018-214436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Choi M.Y., Clarke A.E., Pierre Y. st, Hanly J.G., Urowitz M.B., Romero-Diaz J., Gordon C., Bae S.C., Bernatsky S., Wallace D.J., Merrill J.T., Isenberg D.A., Rahman A., Ginzler E.M., Petri M., Bruce I.N., Dooley M.A., Fortin P.R., Gladman D.D., Sanchez-Guerrero J., Steinsson K., Ramsey-Goldman R., Khamashta M.A., Aranow C., Alarcón G.S., Manzi S., Nived O., Zoma A.A., van Vollenhoven R.F., Ramos-Casals M., Ruiz-Irastorza G., Lim S.S., Kalunian K.C., Inanc M., Kamen D.L., Peschken C.A., Jacobsen S., Askanase A., Stoll T., Buyon J., Mahler M., Fritzler M.J. Antinuclear antibody-negative systemic lupus erythematosus in an international inception cohort. Arthritis Care Res. 2019;71:893–902. doi: 10.1002/ACR.23712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Damoiseaux J., Boesten K., Giesen J., Austen J., Tervaert J.W.C. Evaluation of a novel line-blot immunoassay for the detection of antibodies to extractable nuclear antigens. Ann. N. Y. Acad. Sci. 2005;1050:340–347. doi: 10.1196/ANNALS.1313.036. [DOI] [PubMed] [Google Scholar]
  • 86.Mahler M., Kessenbrock K., Raats J., Williams R., Fritzler M.J., Blüthner M. Characterization of the human autoimmune response to the major C-terminal epitope of the ribosomal P proteins. J. Mol. Med. (Berl.) 2003;81:194–204. doi: 10.1007/S00109-003-0423-1. [DOI] [PubMed] [Google Scholar]
  • 87.Lin J.L.J., Dubljevic V., Fritzler M.J., Toh B.H. Major immunoreactive domains of human ribosomal P proteins lie N-terminal to a homologous C-22 sequence: application to a novel ELISA for systemic lupus erythematosus. Clin. Exp. Immunol. 2005;141:155–164. doi: 10.1111/J.1365-2249.2005.02816.X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Agmon-Levin N., Gilburd B., Kivity S., Porat Katz B.S., Flitman-Katzevman I., Shoenfeld N., Paran D., Langevitz P., Shoenfeld Y. Anti-ribosomal-P antibodies in lupus patients and healthy controls: evaluation of three ELISA assays. Isr. Med. Assoc. J. 2009;11:403–406. [PubMed] [Google Scholar]
  • 89.Fabien N., Moreira A., Lavergne J.P., Desbos A., Surgey P., Alves De Olivera C., Gonzalo P., Venot A., Bienvenu J., Perrier H., Reboud J.P., Monier J.C. Autoantibodies directed against the ribosomal P proteins are not only directed against a common epitope of the P0, P1 and P2 proteins. J. Autoimmun. 1999;13:103–110. doi: 10.1006/JAUT.1999.0291. [DOI] [PubMed] [Google Scholar]
  • 90.Heinlen L.D., Ritterhouse L.L., McClain M.T., Keith M.P., Neas B.R., Harley J.B., James J.A. Ribosomal P autoantibodies are present before SLE onset and are directed against non-C-terminal peptides. J. Mol. Med. (Berl.) 2010;88:719–727. doi: 10.1007/S00109-010-0618-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Zampieri S., Mahler M., Blüthner M., Qiu Z., Malmegrim K., Ghirardello A., Doria A., van Venrooij W.J., Raats J.M.H. Recombinant anti-P protein autoantibodies isolated from a human autoimmune library: reactivity, specificity and epitope recognition. Cell. Mol. Life Sci. : CMLS. 2003;60:588–598. doi: 10.1007/S000180300050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Haddouk S., Marzouk S., Jallouli M., Fourati H., Frigui M., Hmida Y.B.H., Koubaa F., Sellami W., Baklouti S., Hachicha J., Bahloul Z., Masmoudi H. Clinical and diagnostic value of ribosomal P autoantibodies in systemic lupus erythematosus. Rheumatology. 2009;48:953–957. doi: 10.1093/RHEUMATOLOGY/KEP142. [DOI] [PubMed] [Google Scholar]
  • 93.Olesińska M., Chwalińska-Sadowska H., Wiȩsik-Szewczyk E., Mielnik P., Za̧bek J. Clinical manifestation of systemic lupus erythematosus in patients with antiribosomal P protein antibodies. Pol. Arch. Med. Wewn. 2010;120:76–81. doi: 10.20452/PAMW.891. [DOI] [PubMed] [Google Scholar]
  • 94.Barkhudarova F., Dähnrich C., Rosemann A., Schneider U., Stöcker W., Burmester G.R., Egerer K., Schlumberger W., Hiepe F., Biesen R. Diagnostic value and clinical laboratory associations of antibodies against recombinant ribosomal P0, P1 and P2 proteins and their native heterocomplex in a Caucasian cohort with systemic lupus erythematosus. Arthritis Res. Ther. 2011;13 doi: 10.1186/AR3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Gerli R., Caponi L., Tincani A., Scorza R., Sabbadini M.G., Danieli M.G., de Angelis V., Cesarotti M., Piccirilli M., Quartesan R., Moretti P., Cantoni C., Franceschini F., Cavazzana I., Origgi L., Vanoli M., Bozzolo E., Ferrario L., Padovani A., Gambini O., Vanzulli L., Croce D., Bombardieri S. Clinical and serological associations of ribosomal P autoantibodies in systemic lupus erythematosus: prospective evaluation in a large cohort of Italian patients. Rheumatology. 2002;41:1357–1366. doi: 10.1093/RHEUMATOLOGY/41.12.1357. [DOI] [PubMed] [Google Scholar]
  • 96.Li J., Shen Y., He J., Jia R., Wang X., Chen X., Wang D., Han L., Zhu L., Chi X., Saschenbrecker S., Dähnrich C., Stöcker W., Schlumberger W., Li Z.G. Significance of antibodies against the native ribosomal P protein complex and recombinant P0, P1, and P2 proteins in the diagnosis of Chinese patients with systemic lupus erythematosus. J. Clin. Lab. Anal. 2013;27:87–95. doi: 10.1002/JCLA.21543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Chindalore V., Neas B., Reichlin M. The association between anti-ribosomal P antibodies and active nephritis in systemic lupus erythematosus. Clin. Immunol. Immunopathol. 1998;87:292–296. doi: 10.1006/CLIN.1998.4541. [DOI] [PubMed] [Google Scholar]
  • 98.Hirohata S. Anti-ribosomal P antibodies and lupus nephritis. Clin. Exp. Nephrol. 2011;15:471–477. doi: 10.1007/S10157-011-0462-9. [DOI] [PubMed] [Google Scholar]
  • 99.Ghirardello A., Briani C., Lucchetta M., Doria A. Anti-ribosomal P protein antibodies and neuropsychiatric systemic lupus erythematosus: cross-sectional vs. prospective studies. Lupus. 2010;19:771–773. doi: 10.1177/0961203309353914. [DOI] [PubMed] [Google Scholar]
  • 100.Hanly J.G., Urowitz M.B., Su L., Bae S.C., Gordon C., Clarke A., Bernatsky S., Vasudevan A., Isenberg D., Rahman A., Wallace D.J., Fortin P.R., Gladman D., Romero-Dirz J., Sanchez-Guerrero J., Dooley M.A., Bruce I., Steinsson K., Khamashta M., Manzi S., Ramsey-Goldman R., Sturfelt G., Nived O., van Vollenhoven R., Ramos-Casals M., Aranow C., Mackay M., Kalunian K., Alarcoń G.S., Fessler B.J., Ruiz-Irastorza G., Petri M., Lim S., Kamen D., Peschken C., Farewell V., Thompson K., Theriault C., Merrill J.T. Autoantibodies as biomarkers for the prediction of neuropsychiatric events in systemic lupus erythematosus. Ann. Rheum. Dis. 2011;70:1726–1732. doi: 10.1136/ARD.2010.148502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Pickering M.C., Botto M., Taylor P.R., Lachmann P.J., Walport M.J. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv. Immunol. 2000;76:227–324. doi: 10.1016/S0065-2776(01)76021-X. [DOI] [PubMed] [Google Scholar]
  • 102.Leffler J., Bengtsson A.A., Blom A.M. The complement system in systemic lupus erythematosus: an update. Ann. Rheum. Dis. 2014;73:1601–1606. doi: 10.1136/ANNRHEUMDIS-2014-205287. [DOI] [PubMed] [Google Scholar]
  • 103.Schejbel L., Skattum L., Hagelberg S., Åhlin A., Schiller B., Berg S., Genel F., Truedsson L., Garred P. Molecular basis of hereditary C1q deficiency--revisited: identification of several novel disease-causing mutations. Gene Immun. 2011;12:626–634. doi: 10.1038/GENE.2011.39. [DOI] [PubMed] [Google Scholar]
  • 104.Frémeaux-Bacchi V., Weiss L., Demouchy C., Blouin J., Kazatchkine M.D. Autoantibodies to the collagen-like region of C1q are strongly associated with classical pathway-mediated hypocomplementemia in systemic lupus erythematosus. Lupus. 1996;5:216–220. doi: 10.1177/096120339600500309. [DOI] [PubMed] [Google Scholar]
  • 105.Siegert C., Daha M., Westedt M., van der Voort E., Breedveld F. IgG autoantibodies against C1q are correlated with nephritis, hypocomplementemia, and dsDNA antibodies in systemic lupus erythematosus. J. Rheumatol. 1991;18:230–234. [PubMed] [Google Scholar]
  • 106.Walport M.J. Complement and systemic lupus erythematosus. Arthritis Res. 2002;4(Suppl 3):S279–S293. doi: 10.1186/AR586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Agnello V., Koffler D., Eisenberg J.W., Winchester R.J., Kunkel H.G. C1q precipitins in the sera of patients with systemic lupus erythematosus and other hypocomplementemic states: characterization of high and low molecular weight types. J. Exp. Med. 1971;134:228. /pmc/articles/PMC2139071/?report=abstract. [PMC free article] [PubMed] [Google Scholar]
  • 108.Antes U., Heinz H.‐P., Loos M. Evidence for the presence of autoantibodies to the collagen-like portion of C1q in systemic lupus erythematosus. Arthritis Rheum. 1988;31:457–464. doi: 10.1002/ART.1780310401. [DOI] [PubMed] [Google Scholar]
  • 109.Uwatoko S., Mannik M. Low-molecular weight C1q-binding immunoglobulin G in patients with systemic lupus erythematosus consists of autoantibodies to the collagen-like region of C1q. J. Clin. Invest. 1988;82:816–824. doi: 10.1172/JCI113684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Wisnieski J.J., Jones S.M. IgG autoantibody to the collagen-like region of Clq in hypocomplementemic urticarial vasculitis syndrome, systemic lupus erythematosus, and 6 other musculoskeletal or rheumatic diseases. J. Rheumatol. 1992;19:884–888. https://europepmc.org/article/med/1404125 accessed. [PubMed] [Google Scholar]
  • 111.Trendelenburg M., Lopez-Trascasa M., Potlukova E., Moll S., Regenass S., Frémeaux-Bacchi V., Martinez-Ara J., Jancova E., Picazo M.L., Honsova E., Sadallah S., Schifferli J. High prevalence of anti-C1q antibodies in biopsy-proven active lupus nephritis. Nephrol. Dial. Transplant. : Off. Publ. Eur. Dial. Trans. Assoc. Eur. Renal Assoc. 2006;21:3115–3121. doi: 10.1093/NDT/GFL436. [DOI] [PubMed] [Google Scholar]
  • 112.Schaller M., Bigler C., Danner D., Ditzel H.J., Trendelenburg M. Autoantibodies against C1q in systemic lupus erythematosus are antigen-driven. J. Immunol. 2009;183:8225–8231. doi: 10.4049/JIMMUNOL.0902642. [DOI] [PubMed] [Google Scholar]
  • 113.Bock M., Heijnen I., Trendelenburg M. Anti-C1q antibodies as a follow-up marker in SLE patients. PLoS One. 2015;10 doi: 10.1371/JOURNAL.PONE.0123572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Meyer O.C., Nicaise-Roland P., Cadoudal N., Grootenboer-Mignot S., Palazzo E., Hayem G., Dieudé P., Chollet-Martin S. Anti-C1q antibodies antedate patent active glomerulonephritis in patients with systemic lupus erythematosus. Arthritis Res. Ther. 2009;11 doi: 10.1186/AR2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Matrat A., Veysseyre-Balter C., Trolliet P., Villar E., Dijoud F., Bienvenu J., Fabien N. Simultaneous detection of anti-C1q and anti-double stranded DNA autoantibodies in lupus nephritis: predictive value for renal flares. Lupus. 2011;20:28–34. doi: 10.1177/0961203310379871. [DOI] [PubMed] [Google Scholar]
  • 116.Mok C.C., Ho L.Y., Leung H.W., Wong L.G. Performance of anti-C1q, antinucleosome, and anti-dsDNA antibodies for detecting concurrent disease activity of systemic lupus erythematosus. Transl. Res. : J. Lab. Clin. Med. 2010;156:320–325. doi: 10.1016/J.TRSL.2010.07.009. [DOI] [PubMed] [Google Scholar]
  • 117.Julkunen H., Ekblom-Kullberg S., Miettinen A. Nonrenal and renal activity of systemic lupus erythematosus: a comparison of two anti-C1q and five anti-dsDNA assays and complement C3 and C4. Rheumatol. Int. 2012;32:2445–2451. doi: 10.1007/S00296-011-1962-3. [DOI] [PubMed] [Google Scholar]
  • 118.Akhter E., Burlingame R.W., Seaman A.L., Magder L., Petri M. Anti-C1q antibodies have higher correlation with flares of lupus nephritis than other serum markers. Lupus. 2011;20:1267–1274. doi: 10.1177/0961203311411597. [DOI] [PubMed] [Google Scholar]
  • 119.Csorba K., Schirmbeck L., Dubler D., Trendelenburg M. Anti-C1q autoantibodies: standard quantification and innovative ELISA. Methods Mol. Biol. 2021;2227:107–114. doi: 10.1007/978-1-0716-1016-9_10. [DOI] [PubMed] [Google Scholar]
  • 120.Heidenreich U., Mayer G., Herold M., Klotz W., Stempfl Al-Jazrawi K., Lhotta K. Sensitivity and specificity of autoantibody tests in the differential diagnosis of lupus nephritis. Lupus. 2009;18:1276–1280. doi: 10.1177/0961203309345753. [DOI] [PubMed] [Google Scholar]
  • 121.Prada A.E., Strife C.F. IgG subclass restriction of autoantibody to solid-phase C1q in membranoproliferative and lupus glomerulonephritis. Clin. Immunol. Immunopathol. 1992;63:84–88. doi: 10.1016/0090-1229(92)90097-8. [DOI] [PubMed] [Google Scholar]
  • 122.Frémeaux-Bacchi V., Weiss L., Demouchy C., Blouin J., Kazatchkine M.D. Autoantibodies to the collagen-like region of C1q are strongly associated with classical pathway-mediated hypocomplementemia in systemic lupus erythematosus. Lupus. 1996;5:216–220. doi: 10.1177/096120339600500309. [DOI] [PubMed] [Google Scholar]
  • 123.Trendelenburg M. Antibodies against C1q in patients with systemic lupus erythematosus. Springer Semin. Immunopathol. 2005;27:276–285. doi: 10.1007/S00281-005-0007-Y. [DOI] [PubMed] [Google Scholar]
  • 124.Thanei S., Vanhecke D., Trendelenburg M. Anti-C1q autoantibodies from systemic lupus erythematosus patients activate the complement system via both the classical and lectin pathways. Clin. Immunol. 2015;160:180–187. doi: 10.1016/J.CLIM.2015.06.014. [DOI] [PubMed] [Google Scholar]
  • 125.Ramsey‐Goldman R., Alexander R.V., Conklin J., Arriens C., Narain S., Massarotti E.M., Wallace D.J., Collins C.E., Saxena A., Putterman C., Brady K., Kalunian K.C., Weinstein A. A multianalyte assay panel with cell-bound complement activation products predicts transition of probable lupus to American college of rheumatology-classified lupus. ACR Open Rheumatol. 2021;3:116–123. doi: 10.1002/ACR2.11219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Mahler M., Silverman E.D., Fritzler M.J. Novel diagnostic and clinical aspects of anti-PCNA antibodies detected by novel detection methods. Lupus. 2010;19:1527–1533. doi: 10.1177/0961203310375265. [DOI] [PubMed] [Google Scholar]
  • 127.Takasaki Y., Fishwild D., Tan E.M. Characterization of proliferating cell nuclear antigen recognized by autoantibodies in lupus sera. J. Exp. Med. 1984;159:981–992. doi: 10.1084/JEM.159.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Kogure T., Takasaki Y., Takeuchi K., Yamada H., Nawata M., Ikeda K., Matsushita M., Matsudaira R., Kaneda K., Terasawa K., Hashimoto H. Autoimmune responses to proliferating cell nuclear antigen multiprotein complexes involved in cell proliferation are strongly associated with their structure and biologic function in patients with systemic lupus erythematosus. Arthritis Rheum. 2002;46:2946–2956. doi: 10.1002/ART.10606. [DOI] [PubMed] [Google Scholar]
  • 129.Bravo R., Frank R., Blundell P.A., Macdonald-Bravo H. Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature. 1987;326:515–517. doi: 10.1038/326515A0. [DOI] [PubMed] [Google Scholar]
  • 130.Wenzel J., Bauer R., Bieber T., Böhm I. Autoantibodies in patients with Lupus erythematosus: spectrum and frequencies. Dermatology (Basel, Switzerland) 2000;201:282–283. doi: 10.1159/000018484. [DOI] [PubMed] [Google Scholar]
  • 131.Fritzler M.J., Mccarty G.A., Paul Ryan J., Douglas Kinsella T. Clinical features of patients with antibodies directed against proliferating cell nuclear antigen. Arthritis Rheum. 1983;26:140–145. doi: 10.1002/ART.1780260204. [DOI] [PubMed] [Google Scholar]
  • 132.Beyne-Rauzy O., Thébault S., Adoue D., Fortenfant F. Anti-PCNA antibodies: prevalence and predictive value. Joint Bone Spine. 2005;72:432–435. doi: 10.1016/J.JBSPIN.2004.11.005. [DOI] [PubMed] [Google Scholar]
  • 133.Degiorgio L.A., Konstantinov K.N., Lee S.C., Hardin J.A., Volpe B.T., Diamond B. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 2001;7:1189–1193. doi: 10.1038/NM1101-1189. [DOI] [PubMed] [Google Scholar]
  • 134.Ozawa S., Kamiya H., Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 1998;54:581–618. doi: 10.1016/S0301-0082(97)00085-3. [DOI] [PubMed] [Google Scholar]
  • 135.Husebye E.S., Sthoeger Z.M., Dayan M., Zinger H., Elbirt D., Levite M., Mozes E. Autoantibodies to a NR2A peptide of the glutamate/NMDA receptor in sera of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2005;64:1210–1213. doi: 10.1136/ARD.2004.029280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Steup-Beekman G.M., Steens S.C.A., van Buchem M.A., Huizinga T.W.J. Anti-NMDA receptor autoantibodies in patients with systemic lupus erythematosus and their first-degree relatives. Lupus. 2007;16:329–334. doi: 10.1177/0961203307078224. [DOI] [PubMed] [Google Scholar]
  • 137.Hanly J., McCurdy G., Fougere L., Douglas J., Thompson K. Undefined; 2004. Neuropsychiatric Events in Systemic Lupus Erythematosus: Attribution and Clinical Significance. [PubMed] [Google Scholar]
  • 138.Nasr S.H., D'Agati V.D., Park H.R., Sterman P.L., Goyzueta J.D., Dressler R.M., Hazlett S.M., Pursell R.N., Caputo C., Markowitz G.S. Necrotizing and crescentic lupus nephritis with antineutrophil cytoplasmic antibody seropositivity. Clin. J. Am. Soc. Nephrol. : CJASN. 2008;3:682–690. doi: 10.2215/CJN.04391007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Pradhan V.D., Badakere S.S., Bichile L.S., Almeida A.F. Anti-neutrophil cytoplasmic antibodies (ANCA) in systemic lupus erythematosus: prevalence, clinical associations and correlation with other autoantibodies. J. Assoc. Phys. India. 2004;52:533–537. https://pubmed.ncbi.nlm.nih.gov/15645975/ [PubMed] [Google Scholar]
  • 140.Pan H.F., Fang X.H., Wu G.C., Li W.X., Zhao X.F., Li X.P., Xu J.H., Ye D.Q. Anti-neutrophil cytoplasmic antibodies in new-onset systemic lupus erythematosus and lupus nephritis. Inflammation. 2008;31:260–265. doi: 10.1007/S10753-008-9073-3. [DOI] [PubMed] [Google Scholar]
  • 141.Pan Y., He L. Perinuclear anti-neutrophil cytoplasmic antibody in systemic lupus erythematosus indicates more severe condition. Clin. Biochem. 2021;89:38–43. doi: 10.1016/J.CLINBIOCHEM.2020.12.004. [DOI] [PubMed] [Google Scholar]
  • 142.Jennette J.C., Xiao H., Falk R.J. Pathogenesis of vascular inflammation by anti-neutrophil cytoplasmic antibodies. J. Am. Soc. Nephrol. : JASN (J. Am. Soc. Nephrol.) 2006;17:1235–1242. doi: 10.1681/ASN.2005101048. [DOI] [PubMed] [Google Scholar]
  • 143.Manolova I., Dancheva M., Halacheva K. Antineutrophil cytoplasmic antibodies in patients with systemic lupus erythematosus: prevalence, antigen specificity, and clinical associations. Rheumatol. Int. 2001;20:197–204. doi: 10.1007/S002960100108. [DOI] [PubMed] [Google Scholar]
  • 144.Galeazzi M., Morozzi G., Sebastiani G., Bellisai F., Marcolongo R., Cervera R., de Ramón Garrido D., Fernandez-Nebro A., Houssiau F., Jedryka-Goral A., Mathieu A., Papasteriades C., Piette J., Scorza R., Smolen J. Anti-neutrophil cytoplasmic antibodies in 566 European patients with systemic lupus erythematosus: prevalence, clinical associations and correlation with other autoantibodies. European Concerted Action on the Immunogenetics of SLE. Clin. Exp. Rheumatol. 1998;16:541–546. [PubMed] [Google Scholar]
  • 145.Moiseev S., Cohen Tervaert J.W., Arimura Y., Bogdanos D.P., Csernok E., Damoiseaux J., Ferrante M., Flores-Suárez L.F., Fritzler M.J., Invernizzi P., Jayne D., Jennette J.C., Little M.A., McAdoo S.P., Novikov P., Pusey C.D., Radice A., Salama A.D., Savige J.A., Segelmark M., Shoenfeld Y., Sinico R.A., Sousa M.J., Specks U., Terrier B., Tzioufas A.G., Vermeire S., Zhao M.H., Bossuyt X. International consensus on ANCA testing beyond systemic vasculitis. Autoimmun. Rev. 2020;19(2020):102618. doi: 10.1016/J.AUTREV.2020.102618. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Translational Autoimmunity are provided here courtesy of Elsevier

RESOURCES