Abstract
This study developed a new α-Fe2O3 (hematite) nanoparticles-loaded spherical biochar (H-SB) through the direct pyrolysis of glucose-derived spherical hydrochar and FeCl3. The optimal impregnation ratio (hydrochar and FeCl3) was 1/1.25 (wt/wt). H-SB was applied to remove paracetamol (PRC) from water. Results indicated that H-SB exhibited a relatively low surface area (127 m2/g) and total pore volume (0.089 cm3/g). The presence of iron particles in its surface was confirmed by scanning electron microscopy with energy dispersive spectroscopy. The dominant form of iron nanoparticles (α-Fe2O3) in its surface was confirmed by X-ray powder diffraction and Raman spectrum. The crystallite size of α-Fe2O3 in H-SB was 27.4 nm. The saturation magnetization of H-SB was 6.729 cmu/g. The analysis of Fourier-transform infrared spectroscopy demonstrated that the C-O and O-H groups were mainly responsible for loading α-Fe2O3 nanoparticles in its surface. The adsorption study indicated the amount of PRC adsorbed by H-SB slightly decreased within solution pH from 2 to 11. The adsorption reached a fast saturation after 120 min. The Langmuir maximum adsorption capacity of H-SB was 49.9 mg/g at 25 °C and pH 7.0. Ion-dipole interaction and π-π interaction played an important role in adsorption mechanisms, while hydrogen bonding and pore filling were minor. Therefore, H-SB can serve as a promising material for treating PRC-contaminated water streams.
Electronic Supplementary Material
Supplementary material is available in the online version of this article at 10.1007/s11814-021-1013-z.
Keywords: Adsorption, Hematite, Ion-dipole Interaction, Nanoparticle, Paracetamol, Spherical Biochar
Acknowledgements
The study was supported by The Youth Incubator for Science and Technology Program, managed by Youth Development Science and Technology Center-Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is “37/2020/HĐ-KHCNT-VU” (30/12/2020).
Supporting Information
Nano-sized hematite-assembled carbon spheres for effectively adsorbing paracetamol in water: Important role of iron
Footnotes
Authors’ Contribution
Ton That Loc: Data Curation, Formal analysis, Project Administration. Nguyen Duy Dat: Formal analysis, Investigation, Writing — Review & Editing. Hai Nguyen Tran: Visualization, Validation, Funding acquisition, Project Administration, Supervision, Writing — Review & Editing. All authors read and approved the final manuscript.
Supporting Information
Additional information as noted in the text. This information is available via the Internet at www.springer.com/chemistry/journal/11814.
References
- 1.Bhateria R, Singh R. J. Water Process. Eng. 2019;31:100845. doi: 10.1016/j.jwpe.2019.100845. [DOI] [Google Scholar]
- 2.Abdelbasir S M, Shalan A E. Korean J. Chem. Eng. 2019;36:1209. doi: 10.1007/s11814-019-0306-y. [DOI] [Google Scholar]
- 3.Ihsanullah I. Chem. Eng. J. 2020;388:124340. doi: 10.1016/j.cej.2020.124340. [DOI] [Google Scholar]
- 4.Zhang P, O’Connor D, Wang Y, Jiang L, Xia T, Wang L, Tsang D C W, Ok Y S, Hou D. J. Hazard. Mater. 2020;384:121286. doi: 10.1016/j.jhazmat.2019.121286. [DOI] [PubMed] [Google Scholar]
- 5.Jain M, Yadav M, Kohout T, Lahtinen M, Garg V K, Sillanpää M. Water Resour. Ind. 2018;20:54. doi: 10.1016/j.wri.2018.10.001. [DOI] [Google Scholar]
- 6.Kaur J, Kaur M, Ubhi M K, Kaur N, Greneche J-M. Mater. Chem. Phys. 2021;258:124002. doi: 10.1016/j.matchemphys.2020.124002. [DOI] [Google Scholar]
- 7.Tran H N, Tomul F, Nguyen H T H, Nguyen D T, Lima E C, Le G T, Chang C-T, Masindi V, Woo S H. J. Hazard. Mater. 2020;394:122255. doi: 10.1016/j.jhazmat.2020.122255. [DOI] [PubMed] [Google Scholar]
- 8.Yu L, Falco C, Weber J, White RJ, Howe J Y, Titirici M-M. Langmuir. 2012;28:12373. doi: 10.1021/la3024277. [DOI] [PubMed] [Google Scholar]
- 9.Tran H N, Lee C-K, Nguyen T V, Chao H-P. Environ. Technol. 2018;39:2747. doi: 10.1080/09593330.2017.1365941. [DOI] [PubMed] [Google Scholar]
- 10.Sevilla M, Fuertes A B. Chem. Eur. J. 2009;15:4195. doi: 10.1002/chem.200802097. [DOI] [PubMed] [Google Scholar]
- 11.Huang F-C, Lee C-K, Han Y-L, Chao W-C, Chao H-P. J. Taiwan. Inst. Chem. Eng. 2014;45:2805. doi: 10.1016/j.jtice.2014.08.004. [DOI] [Google Scholar]
- 12.Solanki A, Boyer T H. Chemosphere. 2019;218:818. doi: 10.1016/j.chemosphere.2018.11.179. [DOI] [PubMed] [Google Scholar]
- 13.Tomul F, Arslan Y, Kabak B, Trak D, Tran H N. J. Chem. Technol. Biotechnol. 2021;96:869. doi: 10.1002/jctb.6613. [DOI] [Google Scholar]
- 14.Leone V O, Pereira M C, Aquino S F, Oliveira L C A, Correa S, Ramalho T C, Gurgel L V A, Silva A C. New J. Chem. 2018;42:437. doi: 10.1039/C7NJ03214E. [DOI] [Google Scholar]
- 15.Nguyen DT, Tran HN, Juang R-S, Dat ND, Tomul F, Ivanets A, Woo S H, Hosseini-Bandegharaei A, Nguyen V P, Chao H-P. J. Environ. Chem. Eng. 2020;8:104408. doi: 10.1016/j.jece.2020.104408. [DOI] [Google Scholar]
- 16.Bursztyn Fuentes A L, Canevesi R L S, Gadonneix P, Mathieu S, Celzard A, Fierro V. Ind. Crops Prod. 2020;155:112740. doi: 10.1016/j.indcrop.2020.112740. [DOI] [Google Scholar]
- 17.Wong S, Lim Y, Ngadi N, Mat R, Hassan O, Inuwa I M, Mohamed N B, Low J H. Powder Technol. 2018;338:878. doi: 10.1016/j.powtec.2018.07.075. [DOI] [Google Scholar]
- 18.Spessato L, Bedin K C, Cazetta A L, Souza I P A F, Duarte V A, Crespo L H S, Silva M C, Pontes R M, Almeida V C. J. Hazard. Mater. 2019;371:499. doi: 10.1016/j.jhazmat.2019.02.102. [DOI] [PubMed] [Google Scholar]
- 19.R. a. Markets, https://www.researchandmarkets.com/reports/4997604/paracetamol-market-growth-trends-covid-19 (2021).
- 20.Pandolfi S, Simonetti V, Ricevuti G, Chirumbolo S. J. Med. Virol. 2021;93:5704. doi: 10.1002/jmv.27158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Cairns R, Brown J A. Med. J. Aust. 2019;211:218. doi: 10.5694/mja2.50296. [DOI] [PubMed] [Google Scholar]
- 22.Lee W J, Goh P S, Lau W J, Ismail A F. Arab. J. Sci. Eng. 2020;45:7109. doi: 10.1007/s13369-020-04446-1. [DOI] [Google Scholar]
- 23.Bunting S Y, Lapworth D J, Crane E J, Grima-Olmedo J, Koroša A, Kuczyñska A, Mali N, Rosenqvist L, van Viet M E, Togola A, Lopez B. Environ. Pollut. 2021;269:115945. doi: 10.1016/j.envpol.2020.115945. [DOI] [PubMed] [Google Scholar]
- 24.Nunes B. Non-steroidal anti-inflammatory drugs in water: emerging contaminants and ecological impact. Cham: Springer International Publishing; 2020. [Google Scholar]
- 25.Spreitzer D, Schenk J. Steel Res. Int. 2019;90:1900108. doi: 10.1002/srin.201900108. [DOI] [Google Scholar]
- 26.Cao D, Li H, Pan L, Li J, Wang X, Jing P, Cheng X, Wang W, Wang J, Liu Q. Sci. Rep. 2016;6:32360. doi: 10.1038/srep32360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Kanungo S B, Mishra S K. J. Therm. Anal. 1996;46:1487. doi: 10.1007/BF01979262. [DOI] [Google Scholar]
- 28.Sui L-L, Peng L-N, Xu H-B. Korean J. Chem. Eng. 2021;38:498. doi: 10.1007/s11814-020-0722-z. [DOI] [Google Scholar]
- 29.Dar M I, Shivashankar S A. RSC Adv. 2014;4:4105. doi: 10.1039/C3RA45457F. [DOI] [Google Scholar]
- 30.Ahmmad B, Leonard K, Shariful Islam M, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y. Adv. Powder Technol. 2013;24:160. doi: 10.1016/j.apt.2012.04.005. [DOI] [Google Scholar]
- 31.Fouad D E, Zhang C, El-Didamony H, Yingnan L, Mekuria T D, Shah A H. Results Phys. 2019;12:1253. doi: 10.1016/j.rinp.2019.01.005. [DOI] [Google Scholar]
- 32.Sephra P J, Baraneedharan P, Sivakumar M, Thangadurai TD, Nehru K. J. Mater. Sci.: Mater. Electron. 2018;29:6898. [Google Scholar]
- 33.Tadic M, Trpkov D, Kopanja L, Vojnovic S, Panjan M. J. Alloys Compd. 2019;792:599. doi: 10.1016/j.jallcom.2019.03.414. [DOI] [Google Scholar]
- 34.Ohemeng-Boahen G, Sewu D D, Tran H N, Woo S H. Colloids Surf. A. 2021;625:126911. doi: 10.1016/j.colsurfa.2021.126911. [DOI] [Google Scholar]
- 35.Dashamiri S, Ghaedi M, Dashtian K, Rahimi M R, Goudarzi A, Jannesar R. Ultrason. Sonochem. 2016;31:546. doi: 10.1016/j.ultsonch.2016.02.008. [DOI] [PubMed] [Google Scholar]
- 36.Waters K E, Rowson N A, Greenwood R W, Williams A J. Sep. Purif. Technol. 2007;56:9. doi: 10.1016/j.seppur.2007.01.011. [DOI] [Google Scholar]
- 37.Ranjithkumar V, Sangeetha S, Vairam S. J. Hazard. Mater. 2014;273:127. doi: 10.1016/j.jhazmat.2014.03.034. [DOI] [PubMed] [Google Scholar]
- 38.Bernal V, Giraldo L, Moreno-Piraján J C. Thermochim. Acta. 2020;683:178467. doi: 10.1016/j.tca.2019.178467. [DOI] [Google Scholar]
- 39.Nematollahi D, Shayani-Jam H, Alimoradi M, Niroomand S. Electrochim. Acta. 2009;54:7407. doi: 10.1016/j.electacta.2009.07.077. [DOI] [Google Scholar]
- 40.Galhetas M, Andrade M A, Mestre A S, Kangni-foli E, Villa de Brito M J, Pinto M L, Lopes H, Carvalho A P. Phys. Chem. Chem. Phys. 2015;17:12340. doi: 10.1039/C4CP05273K. [DOI] [PubMed] [Google Scholar]
- 41.Afolabi I C, Popoola S I, Bello O S. Spectrochim. Acta A. 2020;243:118769. doi: 10.1016/j.saa.2020.118769. [DOI] [PubMed] [Google Scholar]
