Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jan 25;39(6):819–860. doi: 10.1007/s00376-021-1371-9

Urbanization Impact on Regional Climate and Extreme Weather: Current Understanding, Uncertainties, and Future Research Directions

Yun Qian 1,, T C Chakraborty 1,2,, Jianfeng Li 1, Dan Li 3, Cenlin He 4, Chandan Sarangi 5, Fei Chen 4, Xuchao Yang 6, L Ruby Leung 1
PMCID: PMC8786627  PMID: 35095158

Abstract

Urban environments lie at the confluence of social, cultural, and economic activities and have unique biophysical characteristics due to continued infrastructure development that generally replaces natural landscapes with built-up structures. The vast majority of studies on urban perturbation of local weather and climate have been centered on the urban heat island (UHI) effect, referring to the higher temperature in cities compared to their natural surroundings. Besides the UHI effect and heat waves, urbanization also impacts atmospheric moisture, wind, boundary layer structure, cloud formation, dispersion of air pollutants, precipitation, and storms. In this review article, we first introduce the datasets and methods used in studying urban areas and their impacts through both observation and modeling and then summarize the scientific insights on the impact of urbanization on various aspects of regional climate and extreme weather based on more than 500 studies. We also highlight the major research gaps and challenges in our understanding of the impacts of urbanization and provide our perspective and recommendations for future research priorities and directions.

Key words: urbanization, regional climate, extreme weather, urban heat island, urban flooding

Acknowledgements

This research has been supported by the US Department of Energy, Office of Science, Biological and Environmental Research program, as part of the Regional and Global Modeling and Analysis (RGMA) program, Multi-sector Dynamics Modeling (MSD) program, and Earth System Model Development (ESMD) program, through the collaborative, multiprogram Integrated Coastal Modeling (ICoM) project, HyperFA-CETS project, and COMPASS-GLM project. Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830.

Footnotes

Article Highlights

• As urban areas expand and populations grow, we urgently need to better understand cities and their interactions with weather and climate.

• Urbanization can impact heat waves, atmospheric moisture, clouds, wind patterns, air pollution, boundary-layer, precipitation, and storms.

• Research gaps due to complexity of urban areas and deficiencies in current methods are identified and future priorities are highlighted.

Contributor Information

Yun Qian, Email: yun.qian@pnnl.gov.

T. C. Chakraborty, Email: tc.chakraborty@yale.edu

References

  1. Akbari H, Menon S, Rosenfeld A. Global cooling: Increasing world-wide urban albedos to offset CO2. Climatic Change. 2009;94:275–286. doi: 10.1007/s10584-008-9515-9. [DOI] [Google Scholar]
  2. Alghamdi A S, Moore T W. Detecting temporal changes in Riyadh’s urban heat island. Papers in Applied Geography. 2015;1:312–325. doi: 10.1080/23754931.2015.1084525. [DOI] [Google Scholar]
  3. Alizadeh-Choobari O, Ghafarian P, Adibi P. Inter-annual variations and trends of the urban warming in Tehran. Atmospheric Research. 2016;170:176–185. doi: 10.1016/j.atmosres.2015.12.001. [DOI] [Google Scholar]
  4. Allegrini J, Dorer V, Carmeliet J. Coupled CFD, radiation and building energy model for studying heat fluxes in an urban environment with generic building configurations. Sustainable Cities and Society. 2015;19:385–394. doi: 10.1016/j.scs.2015.07.009. [DOI] [Google Scholar]
  5. Ambrosini D, Galli G, Mancini B, Nardi I, Sfarra S. Evaluating mitigation effects of urban heat islands in a historical small center with the ENVI-Met® climate model. Sustainability. 2014;6:7013–7029. doi: 10.3390/su6107013. [DOI] [Google Scholar]
  6. Anderson G B, Bell M L, Peng R D. Methods to calculate the heat index as an exposure metric in environmental health research. Environmental Health Perspectives. 2013;121:1111–1119. doi: 10.1289/ehp.1206273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Angevine W M, White A B, Senff C J, Trainer M, Banta R M, Ayoub M A. Urban-rural contrasts in mixing height and cloudiness over Nashville in 1999. J. Geophys. Res. 2003;108:4092. [Google Scholar]
  8. Ao X Y, Wang L, Zhi X, Gu W, Yang H Q, Li D. Observed synergies between urban heat islands and heat waves and their controlling factors in Shanghai, China. J. Appl. Meteorol. Climatol. 2019;58:1955–1972. doi: 10.1175/JAMC-D-19-0073.1. [DOI] [Google Scholar]
  9. Argüeso D, Evans J P, Fita L, Bormann K J. Temperature response to future urbanization and climate change. Climate Dyn. 2014;42:2183–2199. doi: 10.1007/s00382-013-1789-6. [DOI] [Google Scholar]
  10. Armson D, Stringer P, Ennos A R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening. 2012;11:245–255. doi: 10.1016/j.ufug.2012.05.002. [DOI] [Google Scholar]
  11. Arnfield A J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology. 2003;23:1–26. doi: 10.1002/joc.859. [DOI] [Google Scholar]
  12. Arsiso B K, Tsidu G M, Stoffberg G H, Tadesse T. Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C. 2018;105:212–223. doi: 10.1016/j.pce.2018.02.009. [DOI] [Google Scholar]
  13. Ashby W C, Fritts H C. Tree growth, air pollution, and climate near LaPorte. Ind. Bull. Amer. Meteor. Soc. 1972;53:246–251. doi: 10.1175/1520-0477(1972)053<0246:TGAPAC>2.0.CO;2. [DOI] [Google Scholar]
  14. Ashie Y, Ca V T, Asaeda T. Building canopy model for the analysis of urban climate. Journal of Wind Engineering and Industrial Aerodynamics. 1999;81:237–248. doi: 10.1016/S0167-6105(99)00020-3. [DOI] [Google Scholar]
  15. Ashley W S, Bentley M L, Stallins J A. Urban-induced thunderstorm modification in the Southeast United States. Climatic Change. 2012;113:481–498. doi: 10.1007/s10584-011-0324-1. [DOI] [Google Scholar]
  16. Avissar R. Potential effects of vegetation on the urban thermal environment. Atmos. Environ. 1996;30:437–448. doi: 10.1016/1352-2310(95)00013-5. [DOI] [Google Scholar]
  17. Bader D A. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. 2018. [Google Scholar]
  18. Baik J-J, Kim Y-H, Chun H-Y. Dry and moist convection forced by an urban heat island. J. Appl. Meteorol. Climatol. 2001;40:1462–1475. doi: 10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2. [DOI] [Google Scholar]
  19. Baik J-J, Kim Y-H, Kim J-J, Han J-Y. Effects of boundary-layer stability on urban heat island-induced circulation. Theor. Appl. Climatol. 2007;89:73–81. doi: 10.1007/s00704-006-0254-4. [DOI] [Google Scholar]
  20. Baklanov, A., G. Sue, M. Alexander, and M. Athanassiadou, 2009: Meteorological and Air Quality Models for Urban Areas. Springer, 184 pp, 10.1007/978-3-642-00298-4.
  21. Barlow J F. Progress in observing and modelling the urban boundary layer. Urban Climate. 2014;10:216–240. doi: 10.1016/j.uclim.2014.03.011. [DOI] [Google Scholar]
  22. Barlow, J. F., and O. Coceal, 2009: A Review of Urban Roughness Sublayer Turbulence. Available from https://www.researchgate.net/profile/Janet-Barlow/publication/215514425_A_review_of_urban_roughness_sublayer_turbulence/links/5474dcd80cf2778985ac2424/A-review-of-urban-roughness-sublayer-turbulence.pdf.
  23. Bell T L, Rosenfeld D, Kim K-M, Yoo J-M, Lee M-I, Hahnenberger M. Midweek increase in U. S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res. 2008;113:D02209. [Google Scholar]
  24. Benz S A, Davis S J, Burney J A. Drivers and projections of global surface temperature anomalies at the local scale. Environmental Research Letters. 2021;16:064093. doi: 10.1088/1748-9326/ac0661. [DOI] [Google Scholar]
  25. Berger T, Amann C, Formayer H, Korjenic A, Pospichal B, Neururer C, Smutny R. Impacts of urban location and climate change upon energy demand of office buildings in Vienna, Austria. Building and Environment. 2014;81:258–269. doi: 10.1016/j.buildenv.2014.07.007. [DOI] [Google Scholar]
  26. Berkowicz R. A simple model for urban background pollution. Environmental Monitoring and Assessment. 2000;65:259–267. doi: 10.1023/A:1006466025186. [DOI] [Google Scholar]
  27. Best M J. Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteorol. 2005;114:91–109. doi: 10.1007/s10546-004-4834-5. [DOI] [Google Scholar]
  28. Best M J, Grimmond C S B. Key conclusions of the first international urban land surface model comparison project. Bull. Amer. Meteor. Soc. 2015;96:805–819. doi: 10.1175/BAMS-D-14-00122.1. [DOI] [Google Scholar]
  29. Block A, Keuler K, Schaller E. Impacts of anthropogenic heat on regional climate patterns. Geophys. Res. Lett. 2004;31:L12211. doi: 10.1029/2004GL019852. [DOI] [Google Scholar]
  30. Bohnenstengel S I, Evans S, Clark P A, Belcher S E. Simulations of the London urban heat island. Quart. J. Roy. Meteor. Soc. 2011;137:1625–1640. doi: 10.1002/qj.855. [DOI] [Google Scholar]
  31. Bornstein R D. Observations of the urban heat island effect in New York City. J. Appl. Meteorol. Climatol. 1968;7:575–582. doi: 10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2. [DOI] [Google Scholar]
  32. Bornstein R D. The two-dimensional URBMET urban boundary layer model. J. Appl. Meteorol. Climatol. 1975;14:1459–1477. doi: 10.1175/1520-0450(1975)014<1459:TTDUUB>2.0.CO;2. [DOI] [Google Scholar]
  33. Bornstein R D, Johnson D S. Urban-rural wind velocity differences. Atmos. Environ. 1977;11:597–604. doi: 10.1016/0004-6981(77)90112-3. [DOI] [Google Scholar]
  34. Bornstein R, Lin Q L. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ. 2000;34:507–516. doi: 10.1016/S1352-2310(99)00374-X. [DOI] [Google Scholar]
  35. Borys R D, Lowenthal D H, Cohn S A, Brown W O J. Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett. 2003;30:1538. doi: 10.1029/2002GL016855. [DOI] [Google Scholar]
  36. Bottema M. Urban roughness modelling in relation to pollutant dispersion. Atmos. Environ. 1997;31:3059–3075. doi: 10.1016/S1352-2310(97)00117-9. [DOI] [Google Scholar]
  37. Braham R R, Wilson D. Effects of St. Louis on convective cloud heights. J. Appl. Meteorol. Climatol. 1978;17:587–592. doi: 10.1175/1520-0450(1978)017<0587:EOSLOC>2.0.CO;2. [DOI] [Google Scholar]
  38. Brown, M. J., 2000: Urban parameterizations for mesoscale meteorological models. Mesoscale Atmospheric Dispersion, Z. Boybeyi, Ed., WIT Press, 193–255.
  39. Brown, M. J., 2004: Urban Dispersion-challenges for Fast Response Modeling. 13 pp. [Available online at https://ams.confex.com/ams/pdfpapers/80330.pdf.]
  40. Bueno B, Norford L, Pigeon G, Britter R. A resistance-capacitance network model for the analysis of the interactions between the energy performance of buildings and the urban climate. Building and Environment. 2012;54:116–125. doi: 10.1016/j.buildenv.2012.01.023. [DOI] [Google Scholar]
  41. Burian S, Shepherd M, Hooshialsadat P. Journal of Water Management Modeling. 2004. Urbanization impacts on Houston rainstorms. [Google Scholar]
  42. Burian S J, Shepherd J M. Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrological Processes. 2005;19:1089–1103. doi: 10.1002/hyp.5647. [DOI] [Google Scholar]
  43. Ca V T, Asaeda T, Ashie Y. Development of a numerical model for the evaluation of the urban thermal environment. Journal of Wind Engineering and Industrial Aerodynamics. 1999;81:181–196. doi: 10.1016/S0167-6105(99)00016-1. [DOI] [Google Scholar]
  44. Camilloni I, Barrucand M. Temporal variability of the Buenos Aires, Argentina, urban heat island. Theor. Appl. Climatol. 2012;107:47–58. doi: 10.1007/s00704-011-0459-z. [DOI] [Google Scholar]
  45. Cao C, Lee X, Liu S D, Schultz N, Xiao W, Zhang M, Zhao L. Urban heat islands in China enhanced by haze pollution. Nature Communications. 2016;7:12509. doi: 10.1038/ncomms12509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Cao C, Yang Y C, Lu Y, Schultze N, Gu P Y, Zhou Q, Xu J P, Lee X. Performance evaluation of a smart mobile air temperature and humidity sensor for characterizing intracity thermal environment. J. Atmos. Oceanic Technol. 2020;37:1891–1905. doi: 10.1175/JTECH-D-20-0012.1. [DOI] [Google Scholar]
  47. Carrió G G, Cotton W R. Urban growth and aerosol effects on convection over Houston. Part II: Dependence of aerosol effects on instability. Atmospheric Research. 2011;102:167–174. doi: 10.1016/j.atmosres.2011.06.022. [DOI] [Google Scholar]
  48. Carrió G G, Cotton W R, Cheng W Y Y. Urban growth and aerosol effects on convection over Houston: Part I: The August 2000 case. Atmospheric Research. 2010;96:560–574. doi: 10.1016/j.atmosres.2010.01.005. [DOI] [Google Scholar]
  49. Carruthers D, Edmunds H A, Lester A E, McHugh C A, Singles R J. Use and validation of ADMS-Urban in contrasting urban and industrial locations. International Journal of Environment and Pollution (IJEP) 2000;14:364–374. doi: 10.1504/IJEP.2000.000558. [DOI] [Google Scholar]
  50. Catalano F, Cenedese A, Falasca S, Moroni M. National Security and Human Health Implications of Climate Change. 2012. [Google Scholar]
  51. Chakraborty T, Lee X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. International Journal of Applied Earth Observation and Geoinformation. 2019;74:269–280. doi: 10.1016/j.jag.2018.09.015. [DOI] [Google Scholar]
  52. Chakraborty T, Sarangi C, Tripathi S N. Understanding diurnality and inter-seasonality of a sub-tropical urban heat island. Bound.-Layer Meteorol. 2017;163:287–309. doi: 10.1007/s10546-016-0223-0. [DOI] [Google Scholar]
  53. Chakraborty T, Hsu A, Manya D, Sheriff G. Disproportionately higher exposure to urban heat in lower-income neighborhoods: A multi-city perspective. Environmental Research Letters. 2019;14:105003. doi: 10.1088/1748-9326/ab3b99. [DOI] [Google Scholar]
  54. Chakraborty T, Hsu A, Manya D, Sheriff G. A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications. ISPRS Journal of Photogrammetry and Remote Sensing. 2020;168:74–88. doi: 10.1016/j.isprsjprs.2020.07.021. [DOI] [Google Scholar]
  55. Chakraborty T, Sarangi C, Lee X. Reduction in human activity can enhance the urban heat island: Insights from the COVID-19 lockdown. Environmental Research Letters. 2021;16:054060. doi: 10.1088/1748-9326/abef8e. [DOI] [Google Scholar]
  56. Chakraborty T, Lee X, Ermida S, Zhan W F. On the land emissivity assumption and landsat-derived surface urban heat islands: A global analysis. Remote Sensing of Environment. 2021;265:112682. doi: 10.1016/j.rse.2021.112682. [DOI] [Google Scholar]
  57. Chang H J, Franczyk J. Climate change, land-use change, and floods: Toward an integrated assessment. Geography Compass. 2008;2:1549–1579. doi: 10.1111/j.1749-8198.2008.00136.x. [DOI] [Google Scholar]
  58. Changnon S A. Inadvertent weather modification in urban areas: Lessons for global climate change. Bull. Amer. Meteor. Soc. 1992;73:619–627. doi: 10.1175/1520-0477(1992)073<0619:IWMIUA>2.0.CO;2. [DOI] [Google Scholar]
  59. Changnon S A., Jr. The La Porte weather anomaly—Fact or fiction. Bull. Amer. Meteor. Soc. 1968;49:4–11. doi: 10.1175/1520-0477-49.1.4. [DOI] [Google Scholar]
  60. Changnon S A., Jr. Inadvertent weather and precipitation modification by urbanization. Journal of the Irrigation and Drainage Division. 1973;99:27–41. doi: 10.1061/JRCEA4.0000913. [DOI] [Google Scholar]
  61. Changnon S A., Jr. More on the La Porte anomaly: A review. Bull. Amer. Meteor. Soc. 1980;61:702–711. doi: 10.1175/1520-0477(1980)061<0702:MOTLPA>2.0.CO;2. [DOI] [Google Scholar]
  62. Changnon S A, Jr., Huff F A, Semonin R G. MET-ROMEX: An investigation of inadvertent weather modification. Bull. Amer. Meteor. Soc. 1971;52:958–968. doi: 10.1175/1520-0477(1971)052<0958:MAIOIW>2.0.CO;2. [DOI] [Google Scholar]
  63. Changnon S A, Jr., Semonin R G, Huff F A. A hypothesis for urban rainfall anomalies. J. Appl. Meteorol. Climatol. 1976;15:544–560. doi: 10.1175/1520-0450(1976)015<0544:AHFURA>2.0.CO;2. [DOI] [Google Scholar]
  64. Chapman S, Watson J E W, Salazar A, Thatcher M, McAlpine C A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landscape Ecology. 2017;32:1921–1935. doi: 10.1007/s10980-017-0561-4. [DOI] [Google Scholar]
  65. Chapman L, Bell C, Bell S. Can the crowd-sourcing data paradigm take atmospheric science to a new level. A case study of the urban heat island of London quantified using Netatmo weather stations. International Journal of Climatology. 2017;37:3597–3605. [Google Scholar]
  66. Chen B Y, Wang W W, Dai W, Chang M, Wang X M, You Y C, Zhu W X, Liao C G. Refined urban canopy parameters and their impacts on simulation of urbanization-induced climate change. Urban Climate. 2021;37:100847. doi: 10.1016/j.uclim.2021.100847. [DOI] [Google Scholar]
  67. Chen, F., H. Kusaka, M. Tewari, J.-W. Bao, and H. Hirakuchi, 2004: Utilizing the Coupled WRF/LSM/Urban Modeling System with Detailed Urban Classification to Simulate the Urban Heat Island Phenomena Over the Greater Houston Area. Available from https://ams.confex.com/ams/pdfpapers/79765.pdf.
  68. Chen F, Miao S G, Tewari M, Bao J-W, Kusaka H. A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res. 2011;116:D12105. doi: 10.1029/2010JD015533. [DOI] [Google Scholar]
  69. Chen F. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. International Journal of Climatology. 2011;31:273–288. doi: 10.1002/joc.2158. [DOI] [Google Scholar]
  70. Chen F. Research priorities in observing and modeling urban weather and climate. Bull. Amer. Meteor. Soc. 2012;93:1725–1728. doi: 10.1175/BAMS-D-11-00217.1. [DOI] [Google Scholar]
  71. Chen F, Yang X C, Zhu W P. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric Research. 2014;138:364–377. doi: 10.1016/j.atmosres.2013.12.005. [DOI] [Google Scholar]
  72. Chen H S, Zhang Y, Yu M, Hua W J, Sun S L, Li X, Gao C J. Large-scale urbanization effects on eastern Asian summer monsoon circulation and climate. Climate Dyn. 2016;47:117–136. doi: 10.1007/s00382-015-2827-3. [DOI] [Google Scholar]
  73. Chen L, Zhang M G, Zhu J, Wang Y W, Skorokhod A. Modeling impacts of urbanization and urban heat island mitigation on boundary layer meteorology and air quality in Beijing under different weather conditions. J. Geophys. Res. 2018;123:4323–4344. doi: 10.1002/2017JD027501. [DOI] [Google Scholar]
  74. Chen S Q, Chen B. Urban energy-water nexus: A network perspective. Applied Energy. 2016;184:905–914. doi: 10.1016/j.apenergy.2016.03.042. [DOI] [Google Scholar]
  75. Chen T-C, Wang S-Y, Yen M-C. Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. J. Appl. Meteorol. Climatol. 2007;46:1324–1340. doi: 10.1175/JAM2526.1. [DOI] [Google Scholar]
  76. Chew L W, Liu X, Li X-X, Norford L K. Interaction between heat wave and urban heat island: A case study in a tropical coastal city, Singapore. Atmospheric Research. 2021;247:105134. doi: 10.1016/j.atmosres.2020.105134. [DOI] [Google Scholar]
  77. Ching J. National urban database and access portal tool. Bull. Amer. Meteor. Soc. 2009;90:1157–1168. doi: 10.1175/2009BAMS2675.1. [DOI] [Google Scholar]
  78. Ching J. WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the anthropocene. Bull. Amer. Meteor. Soc. 2018;99:1907–1924. doi: 10.1175/BAMS-D-16-0236.1. [DOI] [Google Scholar]
  79. Ching J. Pathway using WUDAPT’s Digital Synthetic City tool towards generating urban canopy parameters for multi-scale urban atmospheric modeling. Urban Climate. 2019;28:100459. doi: 10.1016/j.uclim.2019.100459. [DOI] [Google Scholar]
  80. Cho S Y, Chang H J. Recent research approaches to urban flood vulnerability, 2006–2016. Natural Hazards. 2017;88:633–649. doi: 10.1007/s11069-017-2869-4. [DOI] [Google Scholar]
  81. Choi Y-S, Ho C-H, Kim J, Gong D-Y, Park R J. The impact of aerosols on the summer rainfall frequency in China. J. Appl. Meteorol. Climatol. 2008;47:1802–1813. doi: 10.1175/2007JAMC1745.1. [DOI] [Google Scholar]
  82. Chrysanthou A, Van der Schrier G, Van Den Besselaar E J M, Klein Tank A M G, Brandsma T. The effects of urbanization on the rise of the European temperature since 1960. Geophys. Res. Lett. 2014;41:7716–7722. doi: 10.1002/2014GL061154. [DOI] [Google Scholar]
  83. Clarke J F. Nocturnal urban boundary layer over Cincinnati, Ohio. Mon. Wea. Rev. 1969;97:582–589. doi: 10.1175/1520-0493(1969)097<0582:NUBLOC>2.3.CO;2. [DOI] [Google Scholar]
  84. Clinton N, Gong P. MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sensing of Environment. 2013;134:294–304. doi: 10.1016/j.rse.2013.03.008. [DOI] [Google Scholar]
  85. Coirier W J, Fricker D M, Furmanczyk M, Kim S. A computational fluid dynamics approach for urban area transport and dispersion modeling. Environmental Fluid Mechanics. 2005;5:443–479. doi: 10.1007/s10652-005-0299-4. [DOI] [Google Scholar]
  86. Collier C G. The impact of urban areas on weather. Quart. J. Roy. Meteor. Soc. 2006;132:1–25. doi: 10.1256/qj.05.199. [DOI] [Google Scholar]
  87. Cui Y Y, De Foy B. Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J. Appl. Meteorol. Climatol. 2012;51:855–868. doi: 10.1175/JAMC-D-11-0104.1. [DOI] [Google Scholar]
  88. Da Cunha A R. Evaluation of measurement errors of temperature and relative humidity from HOBO data logger under different conditions of exposure to solar radiation. Environmental Monitoring and Assessment. 2015;187:236. doi: 10.1007/s10661-015-4458-x. [DOI] [PubMed] [Google Scholar]
  89. Danabasoglu G. The community earth system model version 2 (CESM2) Journal of Advances in Modeling Earth Systems. 2020;12:e2019MS001916. doi: 10.1029/2019MS001916. [DOI] [Google Scholar]
  90. Dandou A, Tombrou M, Akylas E, Soulakellis N, Bossioli E. Development and evaluation of an urban parameterization scheme in the Penn State/NCAR Mesoscale Model (MM5) J. Geophys. Res. 2005;110:D10102. doi: 10.1029/2004JD005192. [DOI] [Google Scholar]
  91. Daniels E E, Lenderink G, Hutjes R W A, Holtslag A A M. Observed urban effects on precipitation along the Dutch West coast. International Journal of Climatology. 2016;36:2111–2119. doi: 10.1002/joc.4458. [DOI] [Google Scholar]
  92. Dash P, Göttsche F-M, Olesen F-S, Fischer H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002;23:2563–2594. doi: 10.1080/01431160110115041. [DOI] [Google Scholar]
  93. de Munck C. How much can air conditioning increase air temperatures for a city like Paris, France. International Journal of Climatology. 2013;33:210–227. doi: 10.1002/joc.3415. [DOI] [Google Scholar]
  94. De Ridder K, Lauwaet D, Maiheu B. UrbClim-A fast urban boundary layer climate model. Urban Climate. 2015;12:21–48. doi: 10.1016/j.uclim.2015.01.001. [DOI] [Google Scholar]
  95. De Munck C, Lemonsu A, Masson V, Le Bras J, Bonhomme M. Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change. Urban Climate. 2018;23:260–286. doi: 10.1016/j.uclim.2017.01.003. [DOI] [Google Scholar]
  96. DeGaetano A T, Allen R J. Trends in twentieth-century temperature extremes across the United States. J. Climate. 2002;15:3188–3205. doi: 10.1175/1520-0442(2002)015<3188:TITCTE>2.0.CO;2. [DOI] [Google Scholar]
  97. Deilami K, Kamruzzaman M, Liu Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation. 2018;67:30–42. doi: 10.1016/j.jag.2017.12.009. [DOI] [Google Scholar]
  98. Demuzere M, Hankey S, Mills G, Zhang W W, Lu T J, Bechtel B. Combining expert and crowd-sourced training data to map urban form and functions for the continental US. Scientific Data. 2020;7:264. doi: 10.1038/s41597-020-00605-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Dimoudi A, Zoras S, Kantzioura A, Stogiannou X, Kosmopoulos P, Pallas C. Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece. Sustainable Cities and Society. 2014;13:89–96. doi: 10.1016/j.scs.2014.04.003. [DOI] [Google Scholar]
  100. Doan Q-V, Kusaka H, Ho Q-B. Impact of future urbanization on temperature and thermal comfort index in a developing tropical city: Ho Chi Minh City. Urban Climate. 2016;17:20–31. doi: 10.1016/j.uclim.2016.04.003. [DOI] [Google Scholar]
  101. Doick K J, Peace A, Hutchings T R. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Science of the Total Environment. 2014;493:662–671. doi: 10.1016/j.scitotenv.2014.06.048. [DOI] [PubMed] [Google Scholar]
  102. Dou J J, Wang Y C, Bornstein R, Miao S G. Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteorol. Climatol. 2015;54:94–105. doi: 10.1175/JAMC-D-13-0355.1. [DOI] [Google Scholar]
  103. Douglas, I., 1983: The Urban Environment. Edward Arnold.
  104. Du J Z, Wang K C, Jiang S J, Cui B S, Wang J K, Zhao C F, Li J P. Urban dry island effect mitigated urbanization effect on observed warming in China. J. Climate. 2019;32:5705–5723. doi: 10.1175/JCLI-D-18-0712.1. [DOI] [Google Scholar]
  105. Dupont E, Menut L, Carissimo B, Pelon J, Flamant P. Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmos. Environ. 1999;33:979–994. doi: 10.1016/S1352-2310(98)00216-7. [DOI] [Google Scholar]
  106. Dupont S, Otte T L, Ching J K S. Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model. Bound.-Layer Meteorol. 2004;113:111–158. doi: 10.1023/B:BOUN.0000037327.19159.ac. [DOI] [Google Scholar]
  107. Elagib N A. Evolution of urban heat island in Khartoum. International Journal of Climatology. 2011;31:1377–1388. doi: 10.1002/joc.2159. [DOI] [Google Scholar]
  108. Emmanuel R, Fernando H J S. Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research. 2007;34:241–251. doi: 10.3354/cr00694. [DOI] [Google Scholar]
  109. Engel-Cox J A, Hoff R M, Haymet A D J. Recommendations on the use of satellite remote-sensing data for urban air quality. Journal of the Air & Waste Management Association. 2004;54(11):1360–1371. doi: 10.1080/10473289.2004.10471005. [DOI] [PubMed] [Google Scholar]
  110. Esch T. Breaking new ground in mapping human settlements from space-The Global Urban Footprint. ISPRS Journal of Photogrammetry and Remote Sensing. 2017;134:30–42. doi: 10.1016/j.isprsjprs.2017.10.012. [DOI] [Google Scholar]
  111. Escourrou, G., 1991: Le Climat et La Ville. Nathan.
  112. Fan J W, Zhang Y W, Li Z Q, Hu J X, Rosenfeld D. Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitation. Atmospheric Chemistry and Physics. 2020;20:14 163–14 182. doi: 10.5194/acp-20-14163-2020. [DOI] [Google Scholar]
  113. Fan Y F, Li Y G, Bejan A, Wang Y, Yang X Y. Horizontal extent of the urban heat dome flow. Scientific Reports. 2017;7:11681. doi: 10.1038/s41598-017-09917-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Feng J-M, Wang Y-L, Ma Z-G, Liu Y-H. Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China. J. Climate. 2012;25:7187–7203. doi: 10.1175/JCLI-D-11-00333.1. [DOI] [Google Scholar]
  115. Ferguson G, Woodbury A D. Urban heat island in the subsurface. Geophys. Res. Lett. 2007;34:L23713. doi: 10.1029/2007GL032324. [DOI] [Google Scholar]
  116. Fernando H, Lee S M, Anderson J, Princevac M, Pardyjak E, Grossman-Clarke S. Urban fluid mechanics: Air circulation and contaminant dispersion in cities. Environmental Fluid Mechanics. 2001;1:107–164. doi: 10.1023/A:1011504001479. [DOI] [Google Scholar]
  117. Ferrando M, Causone F, Hong T Z, Chen Y X. Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches. Sustainable Cities and Society. 2020;62:102408. doi: 10.1016/j.scs.2020.102408. [DOI] [Google Scholar]
  118. Fischer E M, Oleson K W, Lawrence D M. Contrasting urban and rural heat stress responses to climate change. Geophys. Res. Lett. 2012;39:L03705. doi: 10.1029/2011GL050576. [DOI] [Google Scholar]
  119. Founda D, Santamouris M. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012) Scientific Reports. 2017;7:10973. doi: 10.1038/s41598-017-11407-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Founda D, Pierros F, Petrakis M, Zerefos C. Inter-decadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmospheric Research. 2015;161–162:1–13. doi: 10.1016/j.atmosres.2015.03.016. [DOI] [Google Scholar]
  121. Freitag B M, Nair U S, Niyogi D. Urban modification of convection and rainfall in complex terrain. Geophys. Res. Lett. 2018;45:2507–2515. doi: 10.1002/2017GL076834. [DOI] [Google Scholar]
  122. Fujibe F. Detection of urban warming in recent temperature trends in Japan. International Journal of Climatology. 2009;29:1811–1822. doi: 10.1002/joc.1822. [DOI] [Google Scholar]
  123. Gallo K P, Tarpley J D, McNab A L, Karl T R. Assessment of urban heat islands: A satellite perspective. Atmospheric Research. 1995;37:37–43. doi: 10.1016/0169-8095(94)00066-M. [DOI] [Google Scholar]
  124. Gallo K P, Owen T W, Easterling D R, Jamason P F. Temperature trends of the U. S. historical climatology network based on satellite-designated land use/land cover. J. Climate. 1999;12:1344–1348. doi: 10.1175/1520-0442(1999)012<1344:TTOTUS>2.0.CO;2. [DOI] [Google Scholar]
  125. Ganeshan M, Murtugudde R. Nocturnal propagating thunderstorms may favor urban “hot-spots”: A model-based study over Minneapolis. Urban Climate. 2015;14:606–621. doi: 10.1016/j.uclim.2015.10.005. [DOI] [Google Scholar]
  126. Garratt J R. Observed screen (air) and GCM surface/screen temperatures: Implications for outgoing longwave fluxes at the surface. J. Climate. 1995;8:1360–1368. doi: 10.1175/1520-0442(1995)008<1360:OSAGST>2.0.CO;2. [DOI] [Google Scholar]
  127. Garuma G F. Review of urban surface parameterizations for numerical climate models. Urban Climate. 2018;24:830–851. doi: 10.1016/j.uclim.2017.10.006. [DOI] [Google Scholar]
  128. Georgescu M, Broadbent A M, Wang M, Krayenhoff E S, Moustaoui M. Precipitation response to climate change and urban development over the continental United States. Environmental Research Letters. 2021;16:044001. doi: 10.1088/1748-9326/abd8ac. [DOI] [Google Scholar]
  129. Giannaros T M, Melas D, Daglis I A, Keramitsoglou I, Kourtidis K. Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmos. Environ. 2013;73:103–111. doi: 10.1016/j.atmosenv.2013.02.055. [DOI] [Google Scholar]
  130. Giometto M G, Christen A, Egli P E, Schmid M F, Tooke R T, Coops N C, Parlange M B. Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment. Advances in Water Resources. 2017;106:154–168. doi: 10.1016/j.advwatres.2017.06.018. [DOI] [Google Scholar]
  131. Giovannini L, Zardi D, de Franceschi M, Chen F. Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. International Journal of Climatology. 2014;34:1111–1131. doi: 10.1002/joc.3750. [DOI] [Google Scholar]
  132. Givati A, Rosenfeld D. Quantifying precipitation suppression due to air pollution. J. Appl. Meteorol. Climatol. 2004;43:1038–1056. doi: 10.1175/1520-0450(2004)043<1038:QPSDTA>2.0.CO;2. [DOI] [Google Scholar]
  133. Godowitch J M, Ching J K S, Clarke J F. Evolution of the nocturnal inversion layer at an urban and non-urban location. J. Appl. Meteorol. Climatol. 1985;24:791–804. doi: 10.1175/1520-0450(1985)024<0791:EOTNIL>2.0.CO;2. [DOI] [Google Scholar]
  134. Golroudbary V R, Zeng Y J, Mannaerts C M, Su Z B. Detecting the effect of urban land use on extreme precipitation in the Netherlands. Weather and Climate Extremes. 2017;17:36–46. doi: 10.1016/j.wace.2017.07.003. [DOI] [Google Scholar]
  135. Gong D-Y, H.-Ho C, Chen D L, Qian Y, Choi Y-S, Kim J. Weekly cycle of aerosol-meteorology interaction over China. J. Geophys. Res. 2007;112:D22202. doi: 10.1029/2007JD008888. [DOI] [Google Scholar]
  136. Gough W A. Thermal signatures of peri-urban landscapes. J. Appl. Meteorol. Climatol. 2020;59:1443–1452. doi: 10.1175/JAMC-D-19-0292.1. [DOI] [Google Scholar]
  137. Grimmond C S B, Oke T R. Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS) J. Appl. Meteorol. Climatol. 2002;41:792–810. doi: 10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2. [DOI] [Google Scholar]
  138. Grimmond C S B, Cleugh H A, Oke T R. An objective urban heat storage model and its comparison with other schemes. Atmospheric Environment. Part B. Urban Atmosphere. 1991;25:311–326. doi: 10.1016/0957-1272(91)90003-W. [DOI] [Google Scholar]
  139. Grimmond C S B. Initial results from Phase 2 of the international urban energy balance model comparison. International Journal of Climatology. 2011;31:244–272. doi: 10.1002/joc.2227. [DOI] [Google Scholar]
  140. Güneralp B, Reba M, Hales B U, Wentz E A, Seto K C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environmental Research Letters. 2020;15:044015. doi: 10.1088/1748-9326/ab6669. [DOI] [Google Scholar]
  141. Guo G H, Wu Z F, Xiao R B, Chen Y B, Liu X N, Zhang X S. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning. 2015;135:1–10. doi: 10.1016/j.landurbplan.2014.11.007. [DOI] [Google Scholar]
  142. Guo X L, Fu D H, Wang J. Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmospheric Research. 2006;82:112–126. doi: 10.1016/j.atmosres.2005.12.007. [DOI] [Google Scholar]
  143. Gutiérrez E, Martilli A, Santiago J L, González J E. A mechanical drag coefficient formulation and urban canopy parameter assimilation technique for complex urban environments. Bound.-Layer Meteorol. 2015;157:333–341. doi: 10.1007/s10546-015-0051-7. [DOI] [Google Scholar]
  144. Haberlie A M, Ashley W S, Pingel T J. The effect of urbanisation on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc. 2015;141:663–675. doi: 10.1002/qj.2499. [DOI] [Google Scholar]
  145. Hajmohammadi H, Heydecker B. Multivariate time series modelling for urban air quality. Urban Climate. 2021;37:100834. doi: 10.1016/j.uclim.2021.100834. [DOI] [Google Scholar]
  146. Halfon N, Levin Z, Alpert P. Temporal rainfall fluctuations in Israel and their possible link to urban and air pollution effects. Environmental Research Letters. 2009;4:025001. doi: 10.1088/1748-9326/4/2/025001. [DOI] [Google Scholar]
  147. Hamdi R. Estimating urban heat island effects on the temperature series of Uccle (Brussels, Belgium) using remote sensing data and a land surface scheme. Remote Sensing. 2010;2:2773–2784. doi: 10.3390/rs2122773. [DOI] [Google Scholar]
  148. Han J-Y, Baik J-J. A theoretical and numerical study of urban heat island-induced circulation and convection. J. Atmos. Sci. 2008;65:1859–1877. doi: 10.1175/2007JAS2326.1. [DOI] [Google Scholar]
  149. Han J-Y, Baik J-J, Khain A P. A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci. 2012;69:504–520. doi: 10.1175/JAS-D-11-071.1. [DOI] [Google Scholar]
  150. Han J-Y, Baik J-J, Lee H. Urban impacts on precipitation. Asia-Pacific Journal of Atmospheric Sciences. 2014;50:17–30. doi: 10.1007/s13143-014-0016-7. [DOI] [Google Scholar]
  151. Han W C, Li Z Q, Guo J P, Su T N, Chen T M, Wei J, Cribb M. The urban-rural heterogeneity of air pollution in 35 metropolitan regions across China. Remote Sensing. 2020;12(14):2320. doi: 10.3390/rs12142320. [DOI] [Google Scholar]
  152. Han Z Q, Yan Z W, Li Z, Liu W D, Wang Y C. Impact of urbanization on low-temperature precipitation in Beijing during 1960–2008. Adv. Atmos. Sci. 2014;31:48–56. doi: 10.1007/s00376-013-2211-3. [DOI] [Google Scholar]
  153. Hand L M, Shepherd J M. An investigation of warm-season spatial rainfall variability in Oklahoma City: Possible linkages to urbanization and prevailing wind. J. Appl. Meteorol. Climatol. 2009;48:251–269. doi: 10.1175/2008JAMC2036.1. [DOI] [Google Scholar]
  154. Hansen J, Ruedy R, Sato M, Imhoff M, Lawrence W, Easterling D, Peterson T, Karl T. A closer look at United States and global surface temperature change. J. Geophys. Res. 2001;106:23 947–23 963. doi: 10.1029/2001JD000354. [DOI] [Google Scholar]
  155. Harlan S L, Brazel A J, Prashad L, Stefanov W L, Larsen L. Neighborhood microclimates and vulnerability to heat stress. Social Science & Medicine. 2006;63:2847–2863. doi: 10.1016/j.socscimed.2006.07.030. [DOI] [PubMed] [Google Scholar]
  156. Hass A L, Ellis K N, Reyes Mason L, Hathaway J M, Howe D A. Heat and humidity in the city: Neighborhood heat index variability in a mid-sized city in the southeastern United States. International Journal of Environmental Research and Public Health. 2016;13:117. doi: 10.3390/ijerph13010117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Hausfather Z, Menne M J, Williams C N, Masters T, Broberg R, Jones D. Quantifying the effect of urbanization on U. S. Historical Climatology Network temperature records. J. Geophys. Res. 2013;118:481–494. doi: 10.1029/2012JD018509. [DOI] [Google Scholar]
  158. He C Y, Liu Z F, Wu J G, Pan X H, Fang Z H, Li J W, Bryan B A. Future global urban water scarcity and potential solutions. Nature Communications. 2021;12:4667. doi: 10.1038/s41467-021-25026-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. He X D, Wang J, Feng J M, Yan Z W, Miao S G, Zhang Y Z, Xia J J. Observational and modeling study of interactions between urban heat island and heatwave in Beijing. Journal of Cleaner Production. 2020;247:119169. doi: 10.1016/j.jclepro.2019.119169. [DOI] [Google Scholar]
  160. Hertwig D, Efthimiou G C, Bartzis J G, Leitl B. CFD-RANS model validation of turbulent flow in a semi-idealized urban canopy. Journal of Wind Engineering and Industrial Aerodynamics. 2012;111:61–72. doi: 10.1016/j.jweia.2012.09.003. [DOI] [Google Scholar]
  161. Hildebrand P H, Ackerman B. Urban effects on the convective boundary layer. J. Atmos. Sci. 1984;41:76–91. doi: 10.1175/1520-0469(1984)041<0076:UEOTCB>2.0.CO;2. [DOI] [Google Scholar]
  162. Ho H C, Knudby A, Sirovyak P, Xu Y M, Hodul M, Henderson S B. Mapping maximum urban air temperature on hot summer days. Remote Sensing of Environment. 2014;154:38–45. doi: 10.1016/j.rse.2014.08.012. [DOI] [Google Scholar]
  163. Ho H C, Knudby A, Xu Y M, Hodul M, Aminipouri M. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area. Science of the Total Environment. 2016;544:929–938. doi: 10.1016/j.scitotenv.2015.12.021. [DOI] [PubMed] [Google Scholar]
  164. Hoffman J S, Shandas V, Pendleton N. The effects of historical housing policies on resident exposure to intraurban heat: A study of 108 US urban areas. Climate. 2020;8:12. doi: 10.3390/cli8010012. [DOI] [Google Scholar]
  165. Hoffmann P, Krueger O, Schlünzen K H. A statistical model for the urban heat island and its application to a climate change scenario. International Journal of Climatology. 2012;32:1238–1248. doi: 10.1002/joc.2348. [DOI] [Google Scholar]
  166. Holmer B, Eliasson I. Urban-rural vapour pressure differences and their role in the development of urban heat islands. International Journal of Climatology. 1999;19:989–1009. doi: 10.1002/(SICI)1097-0088(199907)19:9<989::AID-JOC410>3.0.CO;2-1. [DOI] [Google Scholar]
  167. Holt T, Pullen J. Urban canopy modeling of the New York City metropolitan area: A comparison and validation of single- and multilayer parameterizations. Mon. Wea. Rev. 2007;135:1906–1930. doi: 10.1175/MWR3372.1. [DOI] [Google Scholar]
  168. Horton R E. Thunderstorm-breeding spots. Mon. Wea. Rev. 1921;49:193. [Google Scholar]
  169. Hou A Z, Ni G H, Yang H B, Lei Z D. Numerical analysis on the contribution of urbanization to wind stilling: An example over the Greater Beijing Metropolitan Area. J. Appl. Meteorol. Climatol. 2013;52:1105–1115. doi: 10.1175/JAMC-D-12-013.1. [DOI] [Google Scholar]
  170. Howard, L., 1833: The Climate of London: Deduced from Meteorological Observations Made in the Metropolis and at Various Places around It. Cambridge University Press.
  171. Hsu A, Sheriff G, Chakraborty T, Manya D. Disproportionate exposure to urban heat island intensity across major US cities. Nature Communications. 2021;12:2721. doi: 10.1038/s41467-021-22799-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Hu L Q, Brunsell N A. The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sensing of Environment. 2013;134:162–174. doi: 10.1016/j.rse.2013.02.022. [DOI] [Google Scholar]
  173. Hu L Q, Monaghan A J, Brunsell N A. Investigation of urban air temperature and humidity patterns during extreme heat conditions using satellite-derived data. J. Appl. Meteorol. Climatol. 2015;54:2245–2259. doi: 10.1175/JAMC-D-15-0051.1. [DOI] [Google Scholar]
  174. Hu L Q, Monaghan A, Voogt J A, Barlage M. A first satellite-based observational assessment of urban thermal anisotropy. Remote Sensing of Environment. 2016;181:111–121. doi: 10.1016/j.rse.2016.03.043. [DOI] [Google Scholar]
  175. Hu L Q, Sun Y, Collins G, Fu P. Improved estimates of monthly land surface temperature from MODIS using a diurnal temperature cycle (DTC) model. ISPRS Journal of Photogrammetry and Remote Sensing. 2020;168:131–140. doi: 10.1016/j.isprsjprs.2020.08.007. [DOI] [Google Scholar]
  176. Hu Y H, Hou M T, Jia G S, Zhao C L, Zhen X J, Xu Y H. Comparison of surface and canopy urban heat islands within megacities of eastern China. ISPRS Journal of Photogrammetry and Remote Sensing. 2019;156:160–168. doi: 10.1016/j.isprsjprs.2019.08.012. [DOI] [Google Scholar]
  177. Hua L J, Ma Z G, Guo W D. The impact of urbanization on air temperature across China. Theor. Appl. Climatol. 2008;93:179–194. doi: 10.1007/s00704-007-0339-8. [DOI] [Google Scholar]
  178. Huang M, Gao Z Q, Miao S G, Chen F. Sensitivity of urban boundary layer simulation to urban canopy models and PBL schemes in Beijing. Meteorol. Atmos. Phys. 2019;131:1235–1248. doi: 10.1007/s00703-018-0634-1. [DOI] [Google Scholar]
  179. Huff F A. Urban effects on the distribution of heavy convective rainfall. Water Resour. Res. 1975;11:889–896. doi: 10.1029/WR011i006p00889. [DOI] [Google Scholar]
  180. Huff F A, Changnon S A., Jr. Climatological assessment of urban effects on precipitation at St. Louis. J. Appl. Meteorol. Climatol. 1972;11:823–842. doi: 10.1175/1520-0450(1972)011<0823:CAOUEO>2.0.CO;2. [DOI] [Google Scholar]
  181. Huff F A, Changnon S A., Jr. Precipitation modification by major urban areas. Bull. Amer. Meteor. Soc. 1973;54:1220–1233. doi: 10.1175/1520-0477(1973)054<1220:PMBMUA>2.0.CO;2. [DOI] [Google Scholar]
  182. Huszar P. The impact of urban land-surface on extreme air pollution over central Europe. Atmospheric Chemistry and Physics. 2020;20:11 655–11 681. doi: 10.5194/acp-20-11655-2020. [DOI] [Google Scholar]
  183. Ichinose T, Shimodozono K, Hanaki K. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 1999;33:3897–3909. doi: 10.1016/S1352-2310(99)00132-6. [DOI] [Google Scholar]
  184. Imhoff M L, Zhang P, Wolfe R E, Bounoua L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment. 2010;114:504–513. doi: 10.1016/j.rse.2009.10.008. [DOI] [Google Scholar]
  185. Inamdar A K, French A, Hook S, Vaughan G, Lückert W. Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States. J. Geophys. Res. 2008;113:D07107. [Google Scholar]
  186. Inoue E. On the turbulent structure of airflow within. J. Meteor. Soc. Japan. 1963;41:317–326. doi: 10.2151/jmsj1923.41.6_317. [DOI] [Google Scholar]
  187. Inoue T, Kimura F. Urban effects on low-level clouds around the Tokyo metropolitan area on clear summer days. Geophys. Res. Lett. 2004;31:L05103. doi: 10.1029/2003GL018908. [DOI] [Google Scholar]
  188. Ivajnšič D, Kaligarič M, Žiberna I. Geographically weighted regression of the urban heat island of a small city. Applied Geography. 2014;53:341–353. doi: 10.1016/j.apgeog.2014.07.001. [DOI] [Google Scholar]
  189. Jha, A. K., R. Bloch, and J. Lamond, 2012: Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century. World Bank.
  190. Jiang P, Wen Z P, Sha W M, Chen G X. Interaction between turbulent flow and sea breeze front over urban-like coast in large-eddy simulation. J. Geophys. Res. 2017;122:5298–5315. doi: 10.1002/2016JD026247. [DOI] [Google Scholar]
  191. Jiang S J, Wang K C, Mao Y N. Rapid local urbanization around most meteorological stations explains the observed daily asymmetric warming rates across China from 1985 to 2017. J. Climate. 2020;33:9045–9061. doi: 10.1175/JCLI-D-20-0118.1. [DOI] [Google Scholar]
  192. Jin M L, Dickinson R E, Vogelmann A M. A comparison of CCM2-BATS skin temperature and surface-air temperature with satellite and surface observations. J. Climate. 1997;10:1505–1524. doi: 10.1175/1520-0442(1997)010<1505:ACOCBS>2.0.CO;2. [DOI] [Google Scholar]
  193. Jin M L, Shepherd J M, King M D. Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res. 2005;110:D10S20. [Google Scholar]
  194. Jin M L, Shepherd J M, Zheng W Z. Urban surface temperature reduction via the urban aerosol direct effect: A remote sensing and WRF model sensitivity study. Advances in Meteorology. 2010;2010:681587. doi: 10.1155/2010/681587. [DOI] [Google Scholar]
  195. Johnson G T, Oke T R, Lyons T J, Steyn D G, Watson I D, Voogt J A. Simulation of surface urban heat islands under ‘IDEAL’conditions at night part 1: Theory and tests against field data. Boundary-Layer Meteorology. 1991;56(3):275–294. doi: 10.1007/BF00120424. [DOI] [Google Scholar]
  196. Jones P D, Lister D H, Li Q. Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res. 2008;113:D16122. doi: 10.1029/2008JD009916. [DOI] [Google Scholar]
  197. Kalnay E, Cai M. Impact of urbanization and land-use change on climate. Nature. 2003;423:528–531. doi: 10.1038/nature01675. [DOI] [PubMed] [Google Scholar]
  198. Karlický J, Huszár P, Halenka T, Belda M, Žák M, Pišoft P, Mikšovský J. Multi-model comparison of urban heat island modelling approaches. Atmospheric Chemistry and Physics. 2018;18:10 655–10 674. doi: 10.5194/acp-18-10655-2018. [DOI] [Google Scholar]
  199. Karppinen A, Kukkonen J, Elolähde T, Konttinen M, Koskentalo T, Rantakrans E. A modelling system for predicting urban air pollution: Model description and applications in the Helsinki metropolitan area. Atmos. Environ. 2000;34:3723–3733. doi: 10.1016/S1352-2310(00)00074-1. [DOI] [Google Scholar]
  200. Kaufmann R K, Seto K C, Schneider A, Liu Z T, Zhou L M, Wang W L. Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Climate. 2007;20:2299–2306. doi: 10.1175/JCLI4109.1. [DOI] [Google Scholar]
  201. Keeler J M, Kristovich D A R. Observations of urban heat island influence on lake-breeze frontal movement. J. Appl. Meteorol. Climatol. 2012;51:702–710. doi: 10.1175/JAMC-D-11-0166.1. [DOI] [Google Scholar]
  202. Ketterer C, Matzarakis A. Human-biometeorological assessment of the urban heat island in a city with complex topography-The case of Stuttgart, Germany. Urban Climate. 2014;10:573–584. doi: 10.1016/j.uclim.2014.01.003. [DOI] [Google Scholar]
  203. Ketterer C, Matzarakis A. Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany. International Journal of Biometeorology. 2015;59:1299–1309. doi: 10.1007/s00484-014-0940-3. [DOI] [PubMed] [Google Scholar]
  204. Khain A P, BenMoshe N, Pokrovsky A. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci. 2008;65:1721–1748. doi: 10.1175/2007JAS2515.1. [DOI] [Google Scholar]
  205. Kikegawa Y, Genchi Y, Yoshikado H, Kondo H. Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings’ energy-demands. Applied Energy. 2003;76:449–466. doi: 10.1016/S0306-2619(03)00009-6. [DOI] [Google Scholar]
  206. Kim H, Kim Y-K, Song S-K, Lee H W. Impact of future urban growth on regional climate changes in the Seoul Metropolitan Area, Korea. Science of the Total Environment. 2016;571:355–363. doi: 10.1016/j.scitotenv.2016.05.046. [DOI] [PubMed] [Google Scholar]
  207. Kimura F, Takahashi S. The effects of land-use and anthropogenic heating on the surface temperature in the Tokyo metropolitan area: A numerical experiment. Atmospheric Environment. Part B. Urban Atmosphere. 1991;25:155–164. doi: 10.1016/0957-1272(91)90050-O. [DOI] [Google Scholar]
  208. Kishtawal C M, Niyogi D, Tewari M, Pielke Sr R A, Shepherd J M. Urbanization signature in the observed heavy rainfall climatology over India. International Journal of Climatology. 2010;30:1908–1916. doi: 10.1002/joc.2044. [DOI] [Google Scholar]
  209. Kolokotroni M, Gowreesunker B L, Giridharan R. Cool roof technology in London: An experimental and modelling study. Energy and Buildings. 2013;67:658–667. doi: 10.1016/j.enbuild.2011.07.011. [DOI] [Google Scholar]
  210. Kondo H, Genchi Y, Kikegawa Y, Ohashi Y, Yoshikado H, Komiyama H. Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: Structure of the urban canopy model and its basic performance. Bound.-Layer Meteorol. 2005;116:395–421. doi: 10.1007/s10546-005-0905-5. [DOI] [Google Scholar]
  211. Kong D D, Gu X H, Li J F, Ren G Y, Liu J Y. Contributions of global warming and urbanization to the intensification of human-perceived heatwaves over China. J. Geophys. Res. 2020;125:e2019JD032175. doi: 10.1029/2019JD032175. [DOI] [Google Scholar]
  212. Konstantinov P, Varentsov M, Esau I. A high density urban temperature network deployed in several cities of Eurasian Arctic. Environmental Research Letters. 2018;13:075007. doi: 10.1088/1748-9326/aacb84. [DOI] [Google Scholar]
  213. Kotharkar R, Bagade A, Ramesh A. Assessing urban drivers of canopy layer urban heat island: A numerical modeling approach. Landscape and Urban Planning. 2019;190:103586. doi: 10.1016/j.landurbplan.2019.05.017. [DOI] [Google Scholar]
  214. Kratzer, P. A., F. Vieweg, and S. Braunschweig, 1962: The climate of cities, American Meteorological Society.
  215. Krayenhoff E S. A multi-layer urban canopy meteorological model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate. Urban Climate. 2020;32:100590. doi: 10.1016/j.uclim.2020.100590. [DOI] [Google Scholar]
  216. Krayenhoff E S. Cooling hot cities: A systematic and critical review of the numerical modelling literature. Environmental Research Letters. 2021;16:053007. doi: 10.1088/1748-9326/abdcf1. [DOI] [Google Scholar]
  217. Kremer, A., 2020: The effect of urbanization on the intensity of heavy rainfall in the midwestern United States. Bachelor of Science, State University of New York College at Brockport, 39 pp.
  218. Kumar R, Mishra V, Buzan J, Kumar R, Shindell D, Huber M. Dominant control of agriculture and irrigation on urban heat island in India. Scientific Reports. 2017;7:14054. doi: 10.1038/s41598-017-14213-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Kumari P, Garg V, Kumar R, Kumar K. Impact of urban heat island formation on energy consumption in Delhi. Urban Climate. 2021;36:100763. doi: 10.1016/j.uclim.2020.100763. [DOI] [Google Scholar]
  220. Kusaka, H., 2009: Performance of the WRF model as a high resolution regional climate model: Model intercomparison study. Preprints, Proc. 7th Int. Conf. for Urban Climate.
  221. Kusaka H, Kimura F. Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan. 2004;82:67–80. doi: 10.2151/jmsj.82.67. [DOI] [Google Scholar]
  222. Kusaka H, Kimura F, Hirakuchi H, Mizutori M. The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J. Meteor. Soc. Japan. 2000;78:405–420. doi: 10.2151/jmsj1965.78.4_405. [DOI] [Google Scholar]
  223. Kusaka H, Kondo H, Kikegawa Y, Kimura F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteorol. 2001;101:329–358. doi: 10.1023/A:1019207923078. [DOI] [Google Scholar]
  224. Kusaka H, Nawata K, Suzuki-Parker A, Takane Y, Furuhashi N. Mechanism of precipitation increase with urbanization in Tokyo as revealed by ensemble climate simulations. J. Appl. Meteorol. Climatol. 2014;53:824–839. doi: 10.1175/JAMC-D-13-065.1. [DOI] [Google Scholar]
  225. Kuttler W, Weber S, Schonnefeld J, Hesselschwerdt A. Urban/rural atmospheric water vapour pressure differences and urban moisture excess in Krefeld, Germany. International Journal of Climatology. 2007;27:2005–2015. doi: 10.1002/joc.1558. [DOI] [Google Scholar]
  226. Lacke M C, Mote T L, Shepherd J M. Aerosols and associated precipitation patterns in Atlanta. Atmos. Environ. 2009;43:4359–4373. doi: 10.1016/j.atmosenv.2009.04.022. [DOI] [Google Scholar]
  227. Lai D Y, Liu W Y, Gan T T, Liu K X, Chen Q Y. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment. 2019;661:337–353. doi: 10.1016/j.scitotenv.2019.01.062. [DOI] [PubMed] [Google Scholar]
  228. Landsberg H E. Man-made climatic changes: Man’s activities have altered the climate of urbanized areas and may affect global climate in the future. Science. 1970;170:1265–1274. doi: 10.1126/science.170.3964.1265. [DOI] [PubMed] [Google Scholar]
  229. Lawrence D M. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems. 2019;11:4245–4287. doi: 10.1029/2018MS001583. [DOI] [Google Scholar]
  230. Lee S-H, Park S-U. A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteorol. 2008;126:73–102. doi: 10.1007/s10546-007-9221-6. [DOI] [Google Scholar]
  231. Lee S-H, Lee H, Park S-B, Woo J-W, Lee D-I, Baik J-J. Impacts of in-canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: Numerical investigation using a coupled WRF-VUCM model. Quart. J. Roy. Meteor. Soc. 2016;142:2562–2578. doi: 10.1002/qj.2847. [DOI] [Google Scholar]
  232. Lemonsu A, Masson V. Simulation of a summer urban breeze over Paris. Bound.-Layer Meteorol. 2002;104:463–490. doi: 10.1023/A:1016509614936. [DOI] [Google Scholar]
  233. Li D, Bou-Zeid E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Climatol. 2013;52:2051–2064. doi: 10.1175/JAMC-D-13-02.1. [DOI] [Google Scholar]
  234. Li D, Bou-Zeid E, Oppenheimer M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environmental Research Letters. 2014;9:055002. doi: 10.1088/1748-9326/9/5/055002. [DOI] [Google Scholar]
  235. Li D, Malyshev S, Shevliakova E. Exploring historical and future urban climate in the Earth System Modeling framework: 1. Model development and evaluation. Journal of Advances in Modeling Earth Systems. 2016;8:917–935. doi: 10.1002/2015MS000578. [DOI] [Google Scholar]
  236. Li D, Liao W L, Rigden A J, Liu X P, Wang D G, Malyshev S, Shevliakova E. Urban heat island: Aerodynamics or imperviousness. Science Advances. 2019;5:eaau4299. doi: 10.1126/sciadv.aau4299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Li H D, Zhou Y Y, Li X M, Meng L, Wang X, Wu S, Sodoudi S. A new method to quantify surface urban heat island intensity. Science of the Total Environment. 2018;624:262–272. doi: 10.1016/j.scitotenv.2017.11.360. [DOI] [PubMed] [Google Scholar]
  238. Li H D, Meier F, Lee X, Chakraborty T, Liu J F, Schaap M, Sodoudi S. Interaction between urban heat island and urban pollution island during summer in Berlin. Science of the Total Environment. 2018;636:818–828. doi: 10.1016/j.scitotenv.2018.04.254. [DOI] [PubMed] [Google Scholar]
  239. Li J F, Feng Z, Qian Y, Leung L R. A high-resolution unified observational data product of mesoscale convective systems and isolated deep convection in the United States for 2004–2017. Earth System Science Data. 2021;13:827–856. doi: 10.5194/essd-13-827-2021. [DOI] [Google Scholar]
  240. Li Q, Zhang H, Liu X, Huang J. Urban heat island effect on annual mean temperature during the last 50 years in China. Theor. Appl. Climatol. 2004;79:165–174. doi: 10.1007/s00704-004-0065-4. [DOI] [Google Scholar]
  241. Li W B. Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China. Environmental Research Letters. 2011;6:034020. doi: 10.1088/1748-9326/6/3/034020. [DOI] [Google Scholar]
  242. Li X C. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters. 2020;15:094044. doi: 10.1088/1748-9326/ab9be3. [DOI] [Google Scholar]
  243. Li X M, Zhou Y Y, Asrar G R, Imhoff M, Li X C. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment. 2017;605–606:426–435. doi: 10.1016/j.scitotenv.2017.06.229. [DOI] [PubMed] [Google Scholar]
  244. Li X-X, Liu X. Urban Climate 40. 2021. Effect of tree évapotranspiration and hydrological processes on urban microclimate in a tropical city: A WRF/SLUCM study; p. 101009. [Google Scholar]
  245. Li Y F. Strong intensification of hourly rainfall extremes by urbanization. Geophys. Res. Lett. 2020;47:e2020GL088758. doi: 10.1029/2020GL088758. [DOI] [Google Scholar]
  246. Liang P, Ding Y H. The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916–2014. Adv. Atmos. Sci. 2017;34:321–334. doi: 10.1007/s00376-016-6120-0. [DOI] [Google Scholar]
  247. Liang X. SURF: Understanding and predicting urban convection and haze. Bull. Amer. Meteor. Soc. 2018;99:1391–1413. doi: 10.1175/BAMS-D-16-0178.1. [DOI] [Google Scholar]
  248. Liao J B, Wang T J, Wang X M, Xie M, Jiang Z Q, Huang X X, Zhu J L. Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River Delta, China. Atmospheric Research. 2014;145–146:226–243. doi: 10.1016/j.atmosres.2014.04.005. [DOI] [Google Scholar]
  249. Liao W L, Wang D G, Liu X P, Wang G L, Zhang J B. Estimated influence of urbanization on surface warming in Eastern China using time-varying land use data. International Journal of Climatology. 2017;37:3197–3208. doi: 10.1002/joc.4908. [DOI] [Google Scholar]
  250. Liao W L. Stronger contributions of urbanization to heat wave trends in wet climates. Geophys. Res. Lett. 2018;45:11 310–311 317. doi: 10.1029/2018GL079679. [DOI] [Google Scholar]
  251. Lin C-Y, Chen W-C, Liu S C, Liou Y A, Liu G R, Lin T H. Numerical study of the impact of urbanization on the precipitation over Taiwan. Atmos. Environ. 2008;42:2934–2947. doi: 10.1016/j.atmosenv.2007.12.054. [DOI] [Google Scholar]
  252. Lin C-Y, Chen F, Huang J C, Chen W-C, Liou Y-A, Chen W-N, Liu S-C. Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan. Atmos. Environ. 2008;42:5635–5649. doi: 10.1016/j.atmosenv.2008.03.015. [DOI] [Google Scholar]
  253. Lin C-Y, Chen W-C, Chang P-L, Sheng Y-F. Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J. Appl. Meteorol. Climatol. 2011;50:339–353. doi: 10.1175/2010JAMC2504.1. [DOI] [Google Scholar]
  254. Lin L J, Ge E J, Liu X P, Liao W L, Luo M. Urbanization effects on heat waves in Fujian Province, Southeast China. Atmospheric Research. 2018;210:123–132. doi: 10.1016/j.atmosres.2018.04.011. [DOI] [Google Scholar]
  255. Lin J L, Gao T, Luo M, Ge E J, Yang Y J, Liu Z, Zhao Y Q, Ning G C. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China. Science of the Total Environment. 2020;744:140264. doi: 10.1016/j.scitotenv.2020.140264. [DOI] [PubMed] [Google Scholar]
  256. Lin S, Feng J M, Wang J, Hu Y H. Modeling the contribution of long-term urbanization to temperature increase in three extensive urban agglomerations in China. J. Geophys. Res. 2016;121:1683–1697. doi: 10.1002/2015JD024227. [DOI] [Google Scholar]
  257. Lin X-C, Yu S-Q. Interdecadal changes of temperature in the Beijing region and its heat island effect. Chinese Journal of Geophysics. 2005;48:47–54. doi: 10.1002/cjg2.624. [DOI] [Google Scholar]
  258. Lin Y, Fan J W, Jeong J-H, Zhang Y W, Homeyer C R, Wang J Y. Urbanization-induced land and aerosol impacts on storm propagation and hail characteristics. J. Atmos. Sci. 2021;78:925–947. doi: 10.1175/JAS-D-20-0106.1. [DOI] [Google Scholar]
  259. Lipson M J, Thatcher M, Hart M A, Pitman A. A building energy demand and urban land surface model. Quart. J. Roy. Meteor. Soc. 2018;144:1572–1590. doi: 10.1002/qj.3317. [DOI] [Google Scholar]
  260. Liu J, Niyogi D. Meta-analysis of urbanization impact on rainfall modification. Scientific Reports. 2019;9:7301. doi: 10.1038/s41598-019-42494-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Liu X, Li X-X, Harshan S, Roth M, Velasco E. Evaluation of an urban canopy model in a tropical city: The role of tree évapotranspiration. Environmental Research Letters. 2017;12:094008. doi: 10.1088/1748-9326/aa7ee7. [DOI] [Google Scholar]
  262. Liu Y B, Chen F, Warner T, Basara J. Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. J. Appl. Meteorol. Climatol. 2006;45(7):912–929. doi: 10.1175/JAM2383.1. [DOI] [Google Scholar]
  263. Lo C P, Quattrochi D A, Luvall J C. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sens. 1997;18:287–304. doi: 10.1080/014311697219079. [DOI] [Google Scholar]
  264. Lo J C F, Lau A K H, Chen F, Fung J C H, Leung K K M. Urban modification in a mesoscale model and the effects on the local circulation in the Pearl River Delta region. J. Appl. Meteorol. Climatol. 2007;46:457–476. doi: 10.1175/JAM2477.1. [DOI] [Google Scholar]
  265. Lokoshchenko M A. Urban heat island and urban dry island in Moscow and their centennial changes. J. Appl. Meteorol. Climatol. 2017;56:2729–2745. doi: 10.1175/JAMC-D-16-0383.1. [DOI] [Google Scholar]
  266. Louka P, Belcher S E, Harrison R G. Coupling between air flow in streets and the well-developed boundary layer aloft. Atmos. Environ. 2000;34:2613–2621. doi: 10.1016/S1352-2310(99)00477-X. [DOI] [Google Scholar]
  267. Lowry W P. Empirical estimation of urban effects on climate: A problem analysis. J. Appl. Meteorol. Climatol. 1977;16:129–135. doi: 10.1175/1520-0450(1977)016<0129:EEOUEO>2.0.CO;2. [DOI] [Google Scholar]
  268. Lowry W P. Urban effects on precipitation amount. Progress in Physical Geography: Earth and Environment. 1998;22:477–520. doi: 10.1177/030913339802200403. [DOI] [Google Scholar]
  269. Luo M, Lau N-C. Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. J. Climate. 2017;30:703–720. doi: 10.1175/JCLI-D-16-0269.1. [DOI] [Google Scholar]
  270. Luo M, Lau N-C. Increasing heat stress in urban areas of eastern China: Acceleration by urbanization. Geophys. Res. Lett. 2018;45:13 060–13 069. doi: 10.1029/2018GL080306. [DOI] [Google Scholar]
  271. Luo M, Lau N-C. Increasing human-perceived heat stress risks exacerbated by urbanization in China: A comparative study based on multiple metrics. Earth’s Future. 2021;9:e2020EF001848. doi: 10.1029/2020EF001848. [DOI] [Google Scholar]
  272. Lynn B, Khain A, Rosenfeld D, Woodley W L. Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res. 2007;112:D10225. [Google Scholar]
  273. Ma H Y, Shao H Y, Song J. Modeling the relative roles of the foehn wind and urban expansion in the 2002 Beijing heat wave and possible mitigation by high reflective roofs. Meteorol. Atmos. Phys. 2014;123:105–114. doi: 10.1007/s00703-013-0289-x. [DOI] [Google Scholar]
  274. Ma H Y, Jiang Z H, Song J, Dai A G, Yang X Q, Huo F. Effects of urban land-use change in East China on the East Asian summer monsoon based on the CAM5.1 model. Climate Dyn. 2016;46:2977–2989. doi: 10.1007/s00382-015-2745-4. [DOI] [Google Scholar]
  275. Magli S, Lodi C, Lombroso L, Muscio A, Teggi S. Analysis of the urban heat island effects on building energy consumption. International Journal of Energy and Environmental Engineering. 2015;6:91–99. doi: 10.1007/s40095-014-0154-9. [DOI] [Google Scholar]
  276. Manoli G. Magnitude of urban heat islands largely explained by climate and population. Nature. 2019;573:55–60. doi: 10.1038/s41586-019-1512-9. [DOI] [PubMed] [Google Scholar]
  277. Marelle L, Myhre G, Steensen B M, Hodnebrog ø, Alterskjær K, Sillmann J. Urbanization in megacities increases the frequency of extreme precipitation events far more than their intensity. Environmental Research Letters. 2020;15:124072. [Google Scholar]
  278. Maronga B. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geoscientific Model Development. 2015;8:2515–2551. doi: 10.5194/gmd-8-2515-2015. [DOI] [Google Scholar]
  279. Martilli A. Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteorol. Climatol. 2002;41:1247–1266. doi: 10.1175/1520-0450(2002)041<1247:NSOUIO>2.0.CO;2. [DOI] [Google Scholar]
  280. Martilli A. An idealized study of city structure, urban climate, energy consumption, and air quality. Urban Climate. 2014;10:430–446. doi: 10.1016/j.uclim.2014.03.003. [DOI] [Google Scholar]
  281. Martilli, A., O. Brousse, and J. Ching, 2016: Urbanized WRF modeling using WUDAPT. Preprints, Technical Report March, Cientro de Investigaciones Energeticas MedioAmbientales y Tecnologicas (CIEMAT), 8. [Available online at http://www.wudapt.org/wp-content/uploads/2016/05/Urbanized-WRF-modeling-using-WUD APT-web-version-March2016.pdf.]
  282. Martilli A, Krayenhoff E S, Nazarian N. Is the urban heat island intensity relevant for heat mitigation studies. Urban Climate. 2020;31:100541. doi: 10.1016/j.uclim.2019.100541. [DOI] [Google Scholar]
  283. Martin-Vide J, Sarricolea P, Moreno-García M C. On the definition of urban heat island intensity: The “rural” reference. Frontiers in Earth Science. 2015;3:24. doi: 10.3389/feart.2015.00024. [DOI] [Google Scholar]
  284. Masson V. A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteorol. 2000;94:357–397. doi: 10.1023/A:1002463829265. [DOI] [Google Scholar]
  285. Masson V. Urban surface modeling and the meso-scale impact of cities. Theor. Appl. Climatol. 2006;84:35–45. doi: 10.1007/s00704-005-0142-3. [DOI] [Google Scholar]
  286. McLeod J, Shepherd M, Konrad C E., II Spatio-temporal rainfall patterns around Atlanta, Georgia and possible relationships to urban land cover. Urban Climate. 2017;21:27–42. doi: 10.1016/j.uclim.2017.03.004. [DOI] [Google Scholar]
  287. McRae G J, Goodin W R, Seinfeld J H. Development of a second-generation mathematical model for urban air pollution—I. Model formulation. Atmos. Environ. 1982;16:679–696. [Google Scholar]
  288. Meehl G A, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 2004;305:994–997. doi: 10.1126/science.1098704. [DOI] [PubMed] [Google Scholar]
  289. Meier F, Fenner D, Grassmann T, Otto M, Scherer D. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate. 2017;19:170–191. doi: 10.1016/j.uclim.2017.01.006. [DOI] [Google Scholar]
  290. Meili N. An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0) Geoscientific Model Development. 2020;13:335–362. doi: 10.5194/gmd-13-335-2020. [DOI] [Google Scholar]
  291. Melchiorri M, Florczyk A J, Freiré S, Schiavina M, Pesaresi M, Kemper T. Unveiling 25 years of planetary urbanization with remote sensing: Perspectives from the global human settlement layer. Remote Sensing. 2018;10:768. doi: 10.3390/rs10050768. [DOI] [Google Scholar]
  292. Menberg K, Bayer P, Zosseder K, Rumohr S, Blum P. Subsurface urban heat islands in German cities. Science of the Total Environment. 2013;442:123–133. doi: 10.1016/j.scitotenv.2012.10.043. [DOI] [PubMed] [Google Scholar]
  293. Meng L. Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. Proceedings of the National Academy of Sciences of the United States of America. 2020;117:4228–4233. doi: 10.1073/pnas.1911117117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Miao S G, Chen F. Formation of horizontal convective rolls in urban areas. Atmospheric Research. 2008;89:298–304. doi: 10.1016/j.atmosres.2008.02.013. [DOI] [Google Scholar]
  295. Miao S G, Chen F, LeMone M A, Tewari M, Li Q C, Wang Y C. An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteorol. Climatol. 2009;48:484–501. doi: 10.1175/2008JAMC1909.1. [DOI] [Google Scholar]
  296. Miao S G, Chen F, Li Q C, Fan S Y. Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteorol. Climatol. 2011;50:806–825. doi: 10.1175/2010JAMC2513.1. [DOI] [Google Scholar]
  297. Miao Y C, Liu S H, Chen B C, Zhang B H, Wang S, Li S Y. Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model. Adv. Atmos. Sci. 2013;30:1663–1678. doi: 10.1007/s00376-013-2234-9. [DOI] [Google Scholar]
  298. Miao Y C, Liu S H, Zheng Y J, Wang S, Chen B C. Numerical study of the effects of topography and urbanization on the local atmospheric circulations over the Beijing-Tianjin-Hebei, China. Advances in Meteorology. 2015;2015:397070. doi: 10.1155/2015/397070. [DOI] [PubMed] [Google Scholar]
  299. Michioka T, Sato A, Sada K. Large-eddy simulation coupled to mesoscale meteorological model for gas dispersion in an urban district. Atmos. Environ. 2013;75:153–162. doi: 10.1016/j.atmosenv.2013.04.017. [DOI] [Google Scholar]
  300. Middel, A., S. Alkhaled, F. A. Schneider, B. Hagen, and P. Coseo, 2021: 50 Grades of Shade. Bull. Amer. Meteor. Soc., E1805–E1820, 10.1175/BAMS-D-20-0193.1.
  301. Mills G. An urban canopy-layer climate model. Theor. Appl. Climatol. 1997;57:229–244. doi: 10.1007/BF00863615. [DOI] [Google Scholar]
  302. Mitra, C., and J. M. Shepherd, 2015: Urban precipitation: A global perspective. The Routledge Handbook of Urbanization and Global Environmental Change, K. C.-Y. Seto, W. Solecki and C. Griffith, Eds., Routledge, 176–192, 10.4324/9781315849256.
  303. Moriwaki R, Watanabe K, Morimoto K. Urban dry island phenomenon and its impact on cloud base level. Journal of JSCE. 2013;1:521–529. doi: 10.2208/journalofjsce.1.1_521. [DOI] [Google Scholar]
  304. Mote T L, Lacke M C, Shepherd J M. Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett. 2007;34:L20710. doi: 10.1029/2007GL031903. [DOI] [Google Scholar]
  305. Mughal M O, Li X-X, Yin T G, Martilli A, Brousse O, Dissegna M A, Norford L K. High-resolution, multilayer modeling of Singapore’s urban climate incorporating local climate zones. J. Geophys. Res. 2019;124:7764–7785. doi: 10.1029/2018JD029796. [DOI] [Google Scholar]
  306. Mughal M O, Li X-X, Norford L K. Urban heat island mitigation in Singapore: Evaluation using WRF/multilayer urban canopy model and local climate zones. Urban Climate. 2020;34:100714. doi: 10.1016/j.uclim.2020.100714. [DOI] [Google Scholar]
  307. Muller C L, Chapman L, Grimmond C S B, Young D T, Cai X M. Sensors and the city: A review of urban meteorological networks. International Journal of Climatology. 2013;33:1585–1600. doi: 10.1002/joc.3678. [DOI] [Google Scholar]
  308. Muller C L, Chapman L, Johnston S, Kidd C, Illingworth S, Foody G, Overeem A, Leigh R R. Crowd-sourcing for climate and atmospheric sciences: Current status and future potential. International Journal of Climatology. 2015;35:3185–3203. doi: 10.1002/joc.4210. [DOI] [Google Scholar]
  309. Mussetti G. COSMO-BEP-Tree v1.0: A coupled urban climate model with explicit representation of street trees. Geoscientific Model Development. 2020;13:1685–1710. doi: 10.5194/gmd-13-1685-2020. [DOI] [Google Scholar]
  310. Myrup L O. A numerical model of the urban heat island. J. Appl. Meteorol. Climatol. 1969;8:908–918. doi: 10.1175/1520-0450(1969)008<0908:ANMOTU>2.0.CO;2. [DOI] [Google Scholar]
  311. Nadeau D F. Estimation of urban sensible heat flux using a dense wireless network of observations. Environmental Fluid Mechanics. 2009;9:635–653. doi: 10.1007/s10652-009-9150-7. [DOI] [Google Scholar]
  312. Napoly A, Grassmann T, Meier F, Fenner D. Development and application of a statistically-based quality control for crowdsourced air temperature data. Frontiers in Earth Science. 2018;6:118. doi: 10.3389/feart.2018.00118. [DOI] [Google Scholar]
  313. Naughton J, McDonald W. Evaluating the variability of urban land surface temperatures using drone observations. Remote Sensing. 2019;11:1722. doi: 10.3390/rs11141722. [DOI] [Google Scholar]
  314. Nazarian N. Project Coolbit: Can your watch predict heat stress and thermal comfort sensation. Environmental Research Letters. 2021;16:034031. doi: 10.1088/1748-9326/abd130. [DOI] [Google Scholar]
  315. Ngie A, Abutaleb K, Ahmed F, Darwish A, Ahmed M. Assessment of urban heat island using satellite remotely sensed imagery: A review. South African Geographical Journal. 2014;96:198–214. doi: 10.1080/03736245.2014.924864. [DOI] [Google Scholar]
  316. Niyogi D, Pyle P, Lei M, Arya S P, Kishtawal C M, Shepherd M, Chen F, Wolfe B. Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteorol. Climatol. 2011;50:1129–1144. doi: 10.1175/2010JAMC1836.1. [DOI] [Google Scholar]
  317. Niyogi D, Lei M, Kishtawal C, Schmid P, Shepherd M. Urbanization impacts on the summer heavy rainfall climatology over the eastern United States. Earth Interactions. 2017;21:1–17. [Google Scholar]
  318. Nowak, D. J., and D. E. Crane, 2000: The Urban Forest Effects (UFORE) Model: Quantifying urban forest structure and functions. Integrated Tools for Natural Resources Inventories in the Twenty-first Century, M. Hansen and T. Burk, Eds., US Department of Agriculture, Forest Service, North Central Forest Experiment Station, 714–720.
  319. Ntelekos A A, Smith J A, Donner L, Fast J D, Gustafson W I, Jr., Chapman E G, Krajewski W F. The effects of aerosols on intense convective precipitation in the northeastern United States. Quart. J. Roy. Meteor. Soc. 2009;135:1367–1391. doi: 10.1002/qj.476. [DOI] [Google Scholar]
  320. O’Malley C, Piroozfar P, Farr E R P, Pomponi F. Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society. 2015;19:222–235. doi: 10.1016/j.scs.2015.05.009. [DOI] [Google Scholar]
  321. Offerle B, Grimmond C S B, Oke T R. Parameterization of net all-wave radiation for urban areas. J. Appl. Meteorol. Climatol. 2003;42:1157–1173. doi: 10.1175/1520-0450(2003)042<1157:PONARF>2.0.CO;2. [DOI] [Google Scholar]
  322. Ogden T L. The effect of rainfall on a large steelworks. J. Appl. Meteorol. Climatol. 1969;8:585–591. doi: 10.1175/1520-0450(1969)008<0585:TEOROA>2.0.CO;2. [DOI] [Google Scholar]
  323. Oke T. Towards a more rational understanding of the urban heat island. McGill Climatological Bulletin. 1969;3:1–21. [Google Scholar]
  324. Oke T R. The distinction between canopy and boundary-layer urban heat islands. Atmosphere. 1976;14:268–277. doi: 10.1080/00046973.1976.9648422. [DOI] [Google Scholar]
  325. Oke T R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol. 1981;1:237–254. doi: 10.1002/joc.3370010304. [DOI] [Google Scholar]
  326. Oke T R. The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc. 1982;108:1–24. [Google Scholar]
  327. Oke, T. R., 1982b: Bibliography of Urban Climate 1977–1980. World Meteorological Organization.
  328. Oke, T. R., 1995: The heat island of the urban boundary layer: Characteristics, causes and effects. Wind Climate in Cities, J. E. Cermak et al., Eds., Springer, 81–107, 10.1007/978-94-017-3686-2_5.
  329. Oke T R. Towards better scientific communication in urban climate. Theor. Appl. Climatol. 2006;84:179–190. doi: 10.1007/s00704-005-0153-0. [DOI] [Google Scholar]
  330. Oke T R, East C. The urban boundary layer in Montreal. Bound.-Layer Meteorol. 1971;1:411–437. doi: 10.1007/BF00184781. [DOI] [Google Scholar]
  331. Oke T R, Cleugh H A. Urban heat storage derived as energy balance residuals. Bound.-Layer Meteorol. 1987;39:233–245. doi: 10.1007/BF00116120. [DOI] [Google Scholar]
  332. Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 10.1017/9781139016476.
  333. Oleson K. Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J. Climate. 2012;25:1390–1412. doi: 10.1175/JCLI-D-11-00098.1. [DOI] [Google Scholar]
  334. Oleson K, Feddema J. Parameterization and surface data improvements and new capabilities for the Community Land Model Urban (CLMU) Journal of Advances in Modeling Earth Systems. 2020;12:e2018MS001586. doi: 10.1029/2018MS001586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  335. Oleson K W, Bonan G B, Feddema J, Vertenstein M, Grimmond C. An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteorol. Climatol. 2008;47:1038–1060. doi: 10.1175/2007JAMC1597.1. [DOI] [Google Scholar]
  336. Oleson K W, Bonan G B, Feddema J. Effects of white roofs on urban temperature in a global climate model. Geophys. Res. Lett. 2010;37:L03701. doi: 10.1029/2009GL042194. [DOI] [Google Scholar]
  337. Oleson K W, Bonan G B, Feddema J, Jackson T. An examination of urban heat island characteristics in a global climate model. International Journal of Climatology. 2011;31:1848–1865. doi: 10.1002/joc.2201. [DOI] [Google Scholar]
  338. Oliveira A, Lopes A, Correia E, Niza S, Soares A. An urban climate-based empirical model to predict present and future patterns of the Urban Thermal Signal. Science of the Total Environment. 2021;790:147710. doi: 10.1016/j.scitotenv.2021.147710. [DOI] [PubMed] [Google Scholar]
  339. Omidvar H, Bou-Zeid E, Li Q, Mellado J-P, Klein P. Plume or bubble. Mixed-convection flow regimes and city-scale circulations. J. Fluid Mech. 2020;897:A5. doi: 10.1017/jfm.2020.360. [DOI] [Google Scholar]
  340. Otte T L, Lacser A, Dupont S, Ching J K S. Implementation of an urban canopy parameterization in a mesoscale meteorological model. J. Appl. Meteorol. Climatol. 2004;43:1648–1665. doi: 10.1175/JAM2164.1. [DOI] [Google Scholar]
  341. Owen T W. Using DMSP-OLS light frequency data to categorize urban environments associated with US climate observing stations. Int. J. Remote Sens. 1998;19:3451–3456. doi: 10.1080/014311698214127. [DOI] [Google Scholar]
  342. Pandey A K. Spatio-temporal variations of urban heat island over Delhi. Urban Climate. 2014;10:119–133. doi: 10.1016/j.uclim.2014.10.005. [DOI] [Google Scholar]
  343. Pantavou K, Lykoudis S, Nikolopoulou M, Tsiros I X. Thermal sensation and climate: A comparison of UTCI and PET thresholds in different climates. International Journal of Biometeorology. 2018;62:1695–1708. doi: 10.1007/s00484-018-1569-4. [DOI] [PubMed] [Google Scholar]
  344. Pappaccogli G, Giovannini L, Zardi D, Martilli A. Sensitivity analysis of urban microclimatic conditions and building energy consumption on urban parameters by means of idealized numerical simulations. Urban Climate. 2020;34:100677. doi: 10.1016/j.uclim.2020.100677. [DOI] [Google Scholar]
  345. Paschalis A, Chakraborty T C, Fatichi S, Meili N, Manoli G. Urban forests as main regulator of the evaporative cooling effect in cities. AGU Advances. 2021;2:e2020AV000303. doi: 10.1029/2020AV000303. [DOI] [Google Scholar]
  346. Peng S S. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012;46:696–703. doi: 10.1021/es2030438. [DOI] [PubMed] [Google Scholar]
  347. Peron F, De Maria M M, Spinazzè F, Mazzali U. An analysis of the urban heat island of Venice mainland. Sustainable Cities and Society. 2015;19:300–309. doi: 10.1016/j.scs.2015.05.008. [DOI] [Google Scholar]
  348. Peterson T C. Assessment of urban versus rural in situ surface temperatures in the contiguous United States: No difference found. J. Climate. 2003;16:2941–2959. doi: 10.1175/1520-0442(2003)016<2941:AOUVRI>2.0.CO;2. [DOI] [Google Scholar]
  349. Peterson T C, Vose R S. An overview of the global historical climatology network temperature database. Bull. Amer. Meteor. Soc. 1997;78:2837–2850. doi: 10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2. [DOI] [Google Scholar]
  350. Peterson T C, Owen T W. Urban heat island assessment: Metadata are important. J. Climate. 2005;18:2637–2646. doi: 10.1175/JCLI3431.1. [DOI] [Google Scholar]
  351. Peterson T C, Gallo K P, Lawrimore J, Owen T W, Huang A, McKittrick D A. Global rural temperature trends. Geophys. Res. Lett. 1999;26:329–332. doi: 10.1029/1998GL900322. [DOI] [Google Scholar]
  352. Piringer M. Investigating the surface energy balance in urban areas-recent advances and future needs. Water, Air and Soil Pollution: Focus. 2002;2:1–16. doi: 10.1023/A:1021302824331. [DOI] [Google Scholar]
  353. Potere D, Schneider A. A critical look at representations of urban areas in global maps. GeoJournal. 2007;69:55–80. doi: 10.1007/s10708-007-9102-z. [DOI] [Google Scholar]
  354. Priyadarsini R, Hien W N, David C K W. Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island. Solar Energy. 2008;82:727–745. doi: 10.1016/j.solener.2008.02.008. [DOI] [Google Scholar]
  355. Quan J L, Chen Y H, Zhan W F, Wang J F, Voogt J, Wang M J. Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model. Remote Sensing of Environment. 2014;149:33–46. doi: 10.1016/j.rse.2014.03.037. [DOI] [Google Scholar]
  356. Radhi H, Fikry F, Sharples S. Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landscape and Urban Planning. 2013;113:47–61. doi: 10.1016/j.landurbplan.2013.01.013. [DOI] [Google Scholar]
  357. Radhi H, Sharples S, Assem E. Impact of urban heat islands on the thermal comfort and cooling energy demand of artificial islands—A case study of AMWAJ Islands in Bahrain. Sustainable Cities and Society. 2015;19:310–318. doi: 10.1016/j.scs.2015.07.017. [DOI] [Google Scholar]
  358. Rajagopalan P, Lim K C, Jamei E. Urban heat island and wind flow characteristics of a tropical city. Solar Energy. 2014;107:159–170. doi: 10.1016/j.solener.2014.05.042. [DOI] [Google Scholar]
  359. Ramamurthy P, Bou-Zeid E. Heatwaves and urban heat islands: A comparative analysis of multiple cities. J. Geophys. Res. 2017;122:168–178. doi: 10.1002/2016JD025357. [DOI] [Google Scholar]
  360. Rasul A, Balzter H, Smith C. Diurnal and seasonal variation of surface urban cool and heat islands in the semiarid city of Erbil, Iraq. Climate. 2016;4:42. doi: 10.3390/cli4030042. [DOI] [Google Scholar]
  361. Rasul A, Balzter H, Smith C, Remedios J, Adamu B, Sobrino J A, Srivanit M, Weng Q H. A review on remote sensing of urban heat and cool islands. Land. 2017;6:38. doi: 10.3390/land6020038. [DOI] [Google Scholar]
  362. Redon E, Lemonsu A, Masson V. An urban trees parameterization for modeling microclimatic variables and thermal comfort conditions at street level with the Town Energy Balance model (TEB-SURFEX v8.0) Geoscientific Model Development. 2020;13:385–399. doi: 10.5194/gmd-13-385-2020. [DOI] [Google Scholar]
  363. Ren G Y, Zhou Y Q. Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961–2008. J. Climate. 2014;27:2340–2360. doi: 10.1175/JCLI-D-13-00393.1. [DOI] [Google Scholar]
  364. Ren G Y, Chu Z Y, Chen Z H, Ren Y Y. Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys. Res. Lett. 2007;34:L05711. doi: 10.1029/2006GL027927. [DOI] [Google Scholar]
  365. Ren G Y, Zhou Y Q, Chu Z Y, Zhou J X, Zhang A Y, Guo J, Liu X F. Urbanization effects on observed surface air temperature trends in North China. J. Climate. 2008;21:1333–1348. doi: 10.1175/2007JCLI1348.1. [DOI] [Google Scholar]
  366. Resler J. PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model. Geoscientific Model Development. 2017;10:3635–3659. doi: 10.5194/gmd-10-3635-2017. [DOI] [Google Scholar]
  367. Ribeiro F N D, de Oliveira A P, Soares J, de Miranda R M, Barlage M, Chen F. Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil. Atmospheric Research. 2018;214:174–188. doi: 10.1016/j.atmosres.2018.07.015. [DOI] [Google Scholar]
  368. Rizwan A M, Dennis L Y C, Liu C. A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences. 2008;20(1):120–128. doi: 10.1016/S1001-0742(08)60019-4. [DOI] [PubMed] [Google Scholar]
  369. Robaa S M. Some aspects of the urban climates of Greater Cairo Region, Egypt. International Journal of Climatology. 2013;33:3206–3216. doi: 10.1002/joc.3661. [DOI] [Google Scholar]
  370. Rodríguez L R, Ramos J S, J. S. de la Flor F, Domínguez S A. Analyzing the urban heat Island: Comprehensive methodology for data gathering and optimal design of mobile transects. Sustainable Cities and Society. 2020;55:102027. doi: 10.1016/j.scs.2020.102027. [DOI] [Google Scholar]
  371. Rosenfeld D. Suppression of rain and snow by urban and industrial air pollution. Science. 2000;287:1793–1796. doi: 10.1126/science.287.5459.1793. [DOI] [PubMed] [Google Scholar]
  372. Rosenfeld D, Givati A. Evidence of orographic precipitation suppression by air pollution-induced aerosols in the western United States. J. Appl. Meteorol. Climatol. 2006;45:893–911. doi: 10.1175/JAM2380.1. [DOI] [Google Scholar]
  373. Rosenfeld D, Lohmann U, Raga G B, O’Dowd C D, Kulmala M, Fuzzi S, Reissell A, Andreae M O. Flood or drought: How do aerosols affect precipitation. Science. 2008;321:1309–1313. doi: 10.1126/science.1160606. [DOI] [PubMed] [Google Scholar]
  374. Rotach M W. Turbulence close to a rough urban surface Part I: Reynolds stress. Bound.-Layer Meteorol. 1993;65:1–28. doi: 10.1007/BF00708816. [DOI] [Google Scholar]
  375. Rotach M W. Turbulence close to a rough urban surface part II: Variances and gradients. Bound.-Layer Meteorol. 1993;66:75–92. doi: 10.1007/BF00705460. [DOI] [Google Scholar]
  376. Roth M. Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc. 2000;126:941–990. doi: 10.1002/qj.49712656409. [DOI] [Google Scholar]
  377. Roth M. Review of urban climate research in (sub) tropical regions. International Journal of Climatology. 2007;27:1859–1873. doi: 10.1002/joc.1591. [DOI] [Google Scholar]
  378. Rozenfeld H D, Rybski D, Andrade J S, Jr., Batty M, Stanley H E, Makse H A. Laws of population growth. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:18 702–18 707. doi: 10.1073/pnas.0807435105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  379. Rozoff C M, Cotton W R, Adegoke J O. Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteorol. Climatol. 2003;42:716–738. doi: 10.1175/1520-0450(2003)042<0716:SOSLML>2.0.CO;2. [DOI] [Google Scholar]
  380. Ryu Y-H, Bou-Zeid E, Wang Z-H, Smith J A. Realistic representation of trees in an urban canopy model. Bound.-Layer Meteorol. 2016;159:193–220. doi: 10.1007/s10546-015-0120-y. [DOI] [Google Scholar]
  381. Ryu Y-H, Smith J A, Bou-Zeid E, Baeck M L. The influence of land surface heterogeneities on heavy convective rainfall in the Baltimore-Washington metropolitan area. Mon. Wea. Rev. 2016;144:553–573. doi: 10.1175/MWR-D-15-0192.1. [DOI] [Google Scholar]
  382. Sachindra D A, Ng A W M, Muthukumaran S, Perera B J C. Impact of climate change on urban heat island effect and extreme temperatures: A case-study. Quart. J. Roy. Meteor. Soc. 2016;142:172–186. doi: 10.1002/qj.2642. [DOI] [Google Scholar]
  383. Saitoh T S, Shimada T, Hoshi H. Modeling and simulation of the Tokyo urban heat island. Atmos. Environ. 1996;30:3431–3442. doi: 10.1016/1352-2310(95)00489-0. [DOI] [Google Scholar]
  384. Salamanca F, Martilli A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol. 2010;99:345–356. doi: 10.1007/s00704-009-0143-8. [DOI] [Google Scholar]
  385. Salamanca F, Krpo A, Martilli A, Clappier A. 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol. 2010;99:331–344. doi: 10.1007/s00704-009-0142-9. [DOI] [Google Scholar]
  386. Salamanca F, Martilli A, Tewari M, Chen F. A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteorol. Climatol. 2011;50:1107–1128. doi: 10.1175/2010JAMC2538.1. [DOI] [Google Scholar]
  387. Salamanca F, Zhang Y Z, Barlage M, Chen F, Mahalov A, Miao S G. Evaluation of the WRF-urban modeling system coupled to Noah and Noah-MP land surface models over a semiarid urban environment. J. Geophys. Res. 2018;123:2387–2408. doi: 10.1002/2018JD028377. [DOI] [Google Scholar]
  388. Sang J G, Liu H P, Liu H Z, Zhang Z K. Observational and numerical studies of wintertime urban boundary layer. Journal of Wind Engineering and Industrial Aerodynamics. 2000;87:243–258. doi: 10.1016/S0167-6105(00)00040-4. [DOI] [Google Scholar]
  389. Santamouris M. Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy. 2014;103:682–703. doi: 10.1016/j.solener.2012.07.003. [DOI] [Google Scholar]
  390. Santamouris M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment. 2015;512–513:582–598. doi: 10.1016/j.scitotenv.2015.01.060. [DOI] [PubMed] [Google Scholar]
  391. Santiago J L, Martilli A. A dynamic urban canopy parameterization for mesoscale models based on computational fluid dynamics Reynolds-averaged Navier-Stokes microscale simulations. Bound.-Layer Meteorol. 2010;137:417–439. doi: 10.1007/s10546-010-9538-4. [DOI] [Google Scholar]
  392. Sarangi C, Tripathi S N, Qian Y, Kumar S, Ruby Leung L. Aerosol and urban land use effect on rainfall around cities in Indo-Gangetic Basin from observations and cloud resolving model simulations. J. Geophys. Res. 2018;123:3645–3667. doi: 10.1002/2017JD028004. [DOI] [Google Scholar]
  393. Scheffe R D, Morris R E. A review of the development and application of the urban airshed model. Atmospheric Environment. Part B. Urban Atmosphere. 1993;27:23–39. doi: 10.1016/0957-1272(93)90043-6. [DOI] [Google Scholar]
  394. Scherba A, Sailor D J, Rosenstiel T N, Wamser C C. Modeling impacts of roof reflectivity, integrated photovoltaic panels and green roof systems on sensible heat flux into the urban environment. Building and Environment. 2011;46:2542–2551. doi: 10.1016/j.buildenv.2011.06.012. [DOI] [Google Scholar]
  395. Schickedanz P T. Inadvertent rain modification as indicated by surface raincells. J. Appl. Meteorol. Climatol. 1974;13:891–900. doi: 10.1175/1520-0450(1974)013<0891:IRMAIB>2.0.CO;2. [DOI] [Google Scholar]
  396. Schlünzen K, Hoffmann P, Rosenhagen G, Riecke W. Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. International Journal of Climatology. 2010;30:1121–1136. doi: 10.1002/joc.1968. [DOI] [Google Scholar]
  397. Schmid P E, Niyogi D. Modeling urban precipitation modification by spatially heterogeneous aerosols. J. Appl. Meteorol. Climatol. 2017;56:2141–2153. doi: 10.1175/JAMC-D-16-0320.1. [DOI] [Google Scholar]
  398. Schubert S, Grossman-Clarke S, Martilli A. A double-canyon radiation scheme for multi-layer urban canopy models. Bound.-Layer Meteorol. 2012;145:439–468. doi: 10.1007/s10546-012-9728-3. [DOI] [Google Scholar]
  399. Scott A A, Waugh D W, Zaitchik B F. Reduced urban heat island intensity under warmer conditions. Environmental Research Letters. 2018;13:064003. doi: 10.1088/1748-9326/aabd6c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  400. Semonin R G. Metromex: A Review and Summary. 1981. [Google Scholar]
  401. Sen Roy S, Yuan F. Trends in extreme temperatures in relation to urbanization in the Twin Cities Metropolitan Area, Minnesota. J. Appl. Meteorol. Climatol. 2009;48:669–679. doi: 10.1175/2008JAMC1983.1. [DOI] [Google Scholar]
  402. Shao H Y, Song J, Ma H Y. Sensitivity of the East Asian summer monsoon circulation and precipitation to an idealized large-scale urban expansion. J. Meteor. Soc. Japan. 2013;91:163–177. doi: 10.2151/jmsj.2013-205. [DOI] [Google Scholar]
  403. Sharma A, Conry P, Fernando H J S, Hamlet A F, Hellmann J J, Chen F. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environmental Research Letters. 2016;11:064004. doi: 10.1088/1748-9326/11/6/064004. [DOI] [Google Scholar]
  404. Sharma A, Woodruff S, Budhathoki M, Hamlet A F, Chen F, Fernando H J S. Role of green roofs in reducing heat stress in vulnerable urban communities—A multidisciplinary approach. Environmental Research Letters. 2018;13:094011. doi: 10.1088/1748-9326/aad93c. [DOI] [Google Scholar]
  405. Sharma A, Wuebbles D J, Kotamarthi R, Calvin K, Drewniak B, Catlett C E, Jacob R. Urban-scale processes in high-spatial-resolution earth system models. Bull. Amer. Meteor. Soc. 2020;101:E1555–E1561. doi: 10.1175/BAMS-D-20-0114.1. [DOI] [Google Scholar]
  406. Shem W, Shepherd M. On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmospheric Research. 2009;92:172–189. doi: 10.1016/j.atmosres.2008.09.013. [DOI] [Google Scholar]
  407. Shen L D, Sun J N, Yuan R M. Idealized large-eddy simulation study of interaction between urban heat island and sea breeze circulations. Atmospheric Research. 2018;214:338–347. doi: 10.1016/j.atmosres.2018.08.010. [DOI] [Google Scholar]
  408. Shepherd J M. Impacts of urbanization on precipitation and storms: Physical insights and vulnerabilities. Climate Vulnerability. 2013;5:109–125. doi: 10.1016/B978-0-12-384703-4.00503-7. [DOI] [Google Scholar]
  409. Shepherd J M, Pierce H, Negri A J. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteorol. Climatol. 2002;41:689–701. doi: 10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2. [DOI] [Google Scholar]
  410. Shepherd J M, Carter M, Manyin M, Messen D, Burian S. The impact of urbanization on current and future coastal precipitation: A case study for Houston. Environment and Planning B: Planning and Design. 2010;37:284–304. doi: 10.1068/b34102t. [DOI] [Google Scholar]
  411. Simpson M, Raman S, Suresh R, Mohanty U C. Urban effects of Chennai on sea breeze induced convection and precipitation. Journal of Earth System Science. 2008;117:897–909. doi: 10.1007/s12040-008-0075-1. [DOI] [Google Scholar]
  412. Singh J, Karmakar S, PaiMazumder D, Ghosh S, Niyogi D. Urbanization alters rainfall extremes over the contiguous United States. Environmental Research Letters. 2020;15:074033. doi: 10.1088/1748-9326/ab8980. [DOI] [Google Scholar]
  413. Sodoudi S, Shahmohamadi P, Vollack K, Cubasch U, Che-Ani A I. Mitigating the urban heat island effect in megacity Tehran. Advances in Meteorology. 2014;2014:547974. doi: 10.1155/2014/547974. [DOI] [Google Scholar]
  414. Song X M. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. J. Geophys. Res. 2014;119:11 250–11 271. doi: 10.1002/2014JD022084. [DOI] [Google Scholar]
  415. Soriano L R, de Pablo F. Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos. Environ. 2002;36:2809–2816. doi: 10.1016/S1352-2310(02)00204-2. [DOI] [Google Scholar]
  416. Soulhac L, Salizzoni P, Cierco F-X, Perkins R. The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model. Atmos. Environ. 2011;45:7379–7395. doi: 10.1016/j.atmosenv.2011.07.008. [DOI] [Google Scholar]
  417. Spanton A M, Williams M L. A comparison of the structure of the atmospheric boundary layers in central London and a rural/suburban site using acoustic sounding. Atmos. Environ. 1988;22:211–223. doi: 10.1016/0004-6981(88)90029-7. [DOI] [Google Scholar]
  418. Stewart, I. D., 2011a: Redefining the urban heat island, PhD dissertation, University of British Columbia.
  419. Stewart I D. A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology. 2011;31:200–217. doi: 10.1002/joc.2141. [DOI] [Google Scholar]
  420. Stewart I D, Oke T R. Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc. 2012;93:1879–1900. doi: 10.1175/BAMS-D-11-00019.1. [DOI] [Google Scholar]
  421. Stewart I D, Oke T R, Krayenhoff E S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. International Journal of Climatology. 2014;34:1062–1080. doi: 10.1002/joc.3746. [DOI] [Google Scholar]
  422. Stoll M J, Brazel A J. Surface-air temperature relationships in the urban environment of Phoenix, Arizona. Physical Geography. 1992;13(2):160–179. doi: 10.1080/02723646.1992.10642451. [DOI] [Google Scholar]
  423. Stone B, Hess J J, Frumkin H. Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities. Environmental Health Perspectives. 2010;118:1425–1428. doi: 10.1289/ehp.0901879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  424. Su Y-F, Foody G M, Cheng K-S. Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landscape and Urban Planning. 2012;107:172–180. doi: 10.1016/j.landurbplan.2012.05.016. [DOI] [Google Scholar]
  425. Sun Y, Zhang X B, Ren G Y, Zwiers F W, Hu T. Contribution of urbanization to warming in China. Nature Climate Change. 2016;6:706–709. doi: 10.1038/nclimate2956. [DOI] [Google Scholar]
  426. Sun T, Grimmond C S B, Ni G-H. How do green roofs mitigate urban thermal stress under heat waves. J. Geophys. Res. 2016;121:5320–5335. doi: 10.1002/2016JD024873. [DOI] [Google Scholar]
  427. Sun Y, Hu T, Zhang X B, Li C, Lu C H, Ren G Y, Jiang Z H. Contribution of global warming and urbanization to changes in temperature extremes in Eastern China. Geophys. Res. Lett. 2019;46:11 426–11 434. doi: 10.1029/2019GL084281. [DOI] [Google Scholar]
  428. Sun Y, Zhang N, Miao S G, Kong F H, Zhang Y Z, Li N N. Urban morphological parameters of the main cities in China and their application in the WRF model. Journal of Advances in Modeling Earth Systems. 2021;13:e2020MS002382. doi: 10.1029/2020MS002382. [DOI] [Google Scholar]
  429. Sun Y M, Augenbroe G. Urban heat island effect on energy application studies of office buildings. Energy and Buildings. 2014;77:171–179. doi: 10.1016/j.enbuild.2014.03.055. [DOI] [Google Scholar]
  430. Svoma B M, Balling R C., Jr. An anthropogenic signal in Phoenix, Arizona winter precipitation. Theor. Appl. Climatol. 2009;98:315–321. doi: 10.1007/s00704-009-0121-1. [DOI] [Google Scholar]
  431. Taha H. Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. J. Appl. Meteorol. Climatol. 1999;38:466–473. doi: 10.1175/1520-0450(1999)038<0466:MAMMMT>2.0.CO;2. [DOI] [Google Scholar]
  432. Taleb D, Abu-Hijleh B. Urban heat islands: Potential effect of organic and structured urban configurations on temperature variations in Dubai, UAE. Renewable Energy. 2013;50:747–762. doi: 10.1016/j.renene.2012.07.030. [DOI] [Google Scholar]
  433. Taleghani M, Kleerekoper L, Tenpierik M, Van Den Dobbelsteen A. Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment. 2015;83:65–78. doi: 10.1016/j.buildenv.2014.03.014. [DOI] [Google Scholar]
  434. Tao W. Effects of urban land expansion on the regional meteorology and air quality of eastern China. Atmospheric Chemistry and Physics. 2015;15:8597–8614. doi: 10.5194/acp-15-8597-2015. [DOI] [Google Scholar]
  435. Tapper N J. Urban influences on boundary layer temperature and humidity: Results from Christchurch, New Zealand. Atmospheric Environment. Part B. Urban Atmosphere. 1990;24:19–27. doi: 10.1016/0957-1272(90)90005-F. [DOI] [Google Scholar]
  436. Tewari M, Kusaka H, Chen F, Coirier W J, Kim S, Wyszogrodzki A A, Warner T T. Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmospheric Research. 2010;96:656–664. doi: 10.1016/j.atmosres.2010.01.006. [DOI] [Google Scholar]
  437. Theeuwes N E, Barlow J F, Teuling A J, Grimmond C S B, Kotthaus S. Persistent cloud cover over mega-cities linked to surface heat release. npj Climate and Atmospheric Science. 2019;2:15. doi: 10.1038/s41612-019-0072-x. [DOI] [Google Scholar]
  438. Thielen J, Wobrock W, Gadian A, Mestayer P G, Creutin J-D. The possible influence of urban surfaces on rainfall development: A sensitivity study in 2D in the meso-γ-scale. Atmospheric Research. 2000;54:15–39. doi: 10.1016/S0169-8095(00)00041-7. [DOI] [Google Scholar]
  439. Torres-Valcárcel Á R R, Harbor J, Torres-Valcárcel A L, González-Avilés C J. Historical differences in temperature between urban and non-urban areas in Puerto Rico. International Journal of Climatology. 2015;35:1648–1661. doi: 10.1002/joc.4083. [DOI] [Google Scholar]
  440. Trusilova K, Früh B, Brienen S, Walter A, Masson V, Pigeon G, Becker P. Implementation of an urban parameterization scheme into the regional climate model COSMO-CLM. J. Appl. Meteorol. Climatol. 2013;52:2296–2311. doi: 10.1175/JAMC-D-12-0209.1. [DOI] [Google Scholar]
  441. Tsilini V, Papantoniou S, Kolokotsa D-D, Maria E-A. Urban gardens as a solution to energy poverty and urban heat island. Sustainable Cities and Society. 2015;14:323–333. doi: 10.1016/j.scs.2014.08.006. [DOI] [Google Scholar]
  442. Turner D B. A diffusion model for an urban area. J. Appl. Meteorol. Climatol. 1964;3:83–91. doi: 10.1175/1520-0450(1964)003<0083:ADMFAU>2.0.CO;2. [DOI] [Google Scholar]
  443. Ueberham M, Schlink U. Wearable sensors for multifactorial personal exposure measurements—A ranking study. Environment International. 2018;121:130–138. doi: 10.1016/j.envint.2018.08.057. [DOI] [PubMed] [Google Scholar]
  444. Ulpiani G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Science of the Total Environment. 2021;751:141727. doi: 10.1016/j.scitotenv.2020.141727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  445. UN DESA, 2018: World Urbanization Prospects: The 2018 Revision. United Nations Department of Economic and Social Affairs, Population Division.
  446. Unger J, Sümeghy Z, Zoboki J. Temperature cross-section features in an urban area. Atmospheric Research. 2001;58:117–127. doi: 10.1016/S0169-8095(01)00087-4. [DOI] [Google Scholar]
  447. Uno I, Ueda H, Wakamatsu S. Numerical modeling of the nocturnal urban boundary layer. Bound.-Layer Meteorol. 1989;49:77–98. doi: 10.1007/BF00116406. [DOI] [Google Scholar]
  448. Uno I, Wakamatsu S, Ueda H, Nakamura A. An observational study of the structure of the nocturnal urban boundary layer. Bound.-Layer Meteorol. 1988;45:59–82. doi: 10.1007/BF00120815. [DOI] [Google Scholar]
  449. Uno I, Wakamatsu S, Ueda H, Nakamura A. Observed structure of the nocturnal urban boundary layer and its evolution into a convective mixed layer. Atmospheric Environment. Part B. Urban Atmosphere. 1992;26:45–57. doi: 10.1016/0957-1272(92)90036-R. [DOI] [Google Scholar]
  450. Van Den Heever S C, Cotton W R. Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Climatol. 2007;46:828–850. doi: 10.1175/JAM2492.1. [DOI] [Google Scholar]
  451. Van Hove L W A, Jacobs C M J, Heusinkveld B G, Elbers J A, Van Driel B, Holtslag A A M. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment. 2015;83:91–103. doi: 10.1016/j.buildenv.2014.08.029. [DOI] [Google Scholar]
  452. Van Weverberg K, De Ridder K, Van Rompaey A. Modeling the contribution of the Brussels heat island to a long temperature time series. J. Appl. Meteorol. Climatol. 2008;47:976–990. doi: 10.1175/2007JAMC1482.1. [DOI] [Google Scholar]
  453. Venter Z S, Chakraborty T, Lee X. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Science Advances. 2021;7:eabb9569. doi: 10.1126/sciadv.abb9569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  454. Voelkel J, Hellman D, Sakuma R, Shandas V. Assessing vulnerability to urban heat: A study of disproportionate heat exposure and access to refuge by socio-demographic status in Portland, Oregon. International Journal of Environmental Research and Public Health. 2018;15:640. doi: 10.3390/ijerph15040640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  455. Vohra K. Long-term trends in air quality in major cities in the UK and India: A view from space. Atmospheric Chemistry and Physics. 2021;21(8):6275–6296. doi: 10.5194/acp-21-6275-2021. [DOI] [Google Scholar]
  456. Voogt, J., 2007: How researchers measure urban heat islands. Preprints, United States Environmental Protection Agency (EPA), State and Local Climate and Energy Program, Heat Island Effect, Urban Heat Island Webcasts and Conference Calls. [Available online at https://swap.stanford.edu/20120109061918/http://www.epa.gov/heatisland/resources/pdf/EPA_How_to_measure_a_UHI.pdf.]
  457. Voogt J A, Oke T R. Effects of urban surface geometry on remotely-sensed surface temperature. Int. J. Remote Sens. 1998;19:895–920. doi: 10.1080/014311698215784. [DOI] [Google Scholar]
  458. Wang F, Ge Q S. Estimation of urbanization bias in observed surface temperature change in China from 1980 to 2009 using satellite land-use data. Chinese Science Bulletin. 2012;57:1708–1715. doi: 10.1007/s11434-012-4999-0. [DOI] [Google Scholar]
  459. Wang F, Ge Q S, Wang S W, Li Q X, Jones P D. A new estimation of urbanization’s contribution to the warming trend in China. J. Climate. 2015;28:8923–8938. doi: 10.1175/JCLI-D-14-00427.1. [DOI] [Google Scholar]
  460. Wang J, Feng J M, Yan Z W, Hu Y H, Jia G S. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J. Geophys. Res. 2012;117:D21103. [Google Scholar]
  461. Wang J, Yan Z W, Li Z, Liu W D, Wang Y X. Impact of urbanization on changes in temperature extremes in Beijing during 1978–2008. Chinese Science Bulletin. 2013;58:4679–4686. doi: 10.1007/s11434-013-5976-y. [DOI] [Google Scholar]
  462. Wang J, Feng J M, Yan Z W. Potential sensitivity of warm season precipitation to urbanization extents: Modeling study in Beijing-Tianjin-Hebei urban agglomeration in China. J. Geophys. Res. 2015;120:9408–9425. doi: 10.1002/2015JD023572. [DOI] [Google Scholar]
  463. Wang J, Huang B, Fu D J, Atkinson P M, Zhang X Z. Response of urban heat island to future urban expansion over the Beijing-Tianjin-Hebei metropolitan area. Applied Geography. 2016;70:26–36. doi: 10.1016/j.apgeog.2016.02.010. [DOI] [Google Scholar]
  464. Wang J, Yan Z W, Quan X-W, Feng J M. Urban warming in the 2013 summer heat wave in eastern China. Climate Dyn. 2017;48:3015–3033. doi: 10.1007/s00382-016-3248-7. [DOI] [Google Scholar]
  465. Wang J, Feng J M, Yan Z W. Impact of extensive urbanization on summertime rainfall in the Beijing region and the role of local precipitation recycling. J. Geophys. Res. 2018;123:3323–3340. doi: 10.1002/2017JD027725. [DOI] [Google Scholar]
  466. Wang J A, Hutyra L R, Li D, Friedl M A. Gradients of atmospheric temperature and humidity controlled by local urban land-use intensity in Boston. J. Appl. Meteorol. Climatol. 2017;56:817–831. doi: 10.1175/JAMC-D-16-0325.1. [DOI] [Google Scholar]
  467. Wang L, Li D. Modulation of the urban boundary-layer heat budget by a heatwave. Quart. J. Roy. Meteor. Soc. 2019;145:1814–1831. doi: 10.1002/qj.3526. [DOI] [Google Scholar]
  468. Wang L, Li D. Urban heat islands during heat waves: A comparative study between Boston and Phoenix. J. Appl. Meteorol. Climatol. 2021;60:621–641. doi: 10.1175/JAMC-D-20-0132.1. [DOI] [Google Scholar]
  469. Wang P. Urbanization contribution to human perceived temperature changes in major urban agglomerations of China. Urban Climate. 2021;38:100910. doi: 10.1016/j.uclim.2021.100910. [DOI] [Google Scholar]
  470. Wang W-C, Zeng Z M, Karl T R. Urban heat islands in China. Geophys. Res. Lett. 1990;17:2377–2380. doi: 10.1029/GL017i013p02377. [DOI] [Google Scholar]
  471. Wang X M, Wu Z Y, Liang G X. WRF/CHEM modeling of impacts of weather conditions modified by urban expansion on secondary organic aerosol formation over Pearl River Delta. Particuology. 2009;7:384–391. doi: 10.1016/j.partic.2009.04.007. [DOI] [Google Scholar]
  472. Wang X X, Li Y G. Predicting urban heat island circulation using CFD. Building and Environment. 2016;99:82–97. doi: 10.1016/j.buildenv.2016.01.020. [DOI] [Google Scholar]
  473. Wang Y P, Berardi U, Akbari H. The urban heat island effect in the city of Toronto. Procedia Engineering. 2015;118:137–144. doi: 10.1016/j.proeng.2015.08.412. [DOI] [Google Scholar]
  474. Wang Y W, Wu J J, Du Q, Gao Y H. Numerical study of the Chongqing high-density buildings environment by the WRF with the different urban canopy schemes. Acta Meteorologica Sinica. 2013;71:1130–1145. [Google Scholar]
  475. Wang Z-H, Bou-Zeid E, Smith J A. A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Quart. J. Roy. Meteor. Soc. 2013;139:1643–1657. doi: 10.1002/qj.2032. [DOI] [Google Scholar]
  476. Wang Z X, Song J Y, Chan P W, Li Y G. The urban moisture island phenomenon and its mechanisms in a high-rise high-density city. International Journal of Climatology. 2021;41:E150–E170. doi: 10.1002/joc.6672. [DOI] [Google Scholar]
  477. Ward K, Lauf S, Kleinschmit B, Endlicher W. Heat waves and urban heat islands in Europe: A review of relevant drivers. Science of the Total Environment. 2016;569–570:527–539. doi: 10.1016/j.scitotenv.2016.06.119. [DOI] [PubMed] [Google Scholar]
  478. Weng Q H, Fu P. Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery. ISPRS Journal of Photogrammetry and Remote Sensing. 2014;97:78–88. doi: 10.1016/j.isprsjprs.2014.08.009. [DOI] [Google Scholar]
  479. Wienert U, Kuttler W. The dependence of the urban heat island intensity on latitude A statistical approach. Meteorologische Zeitschrift. 2005;14:677–686. doi: 10.1127/0941-2948/2005/0069. [DOI] [Google Scholar]
  480. Wilby R L. Past and projected trends in London’s urban heat island. Weather. 2003;58:251–260. doi: 10.1256/wea.183.02. [DOI] [Google Scholar]
  481. Williams A P. Urbanization causes increased cloud base height and decreased fog in coastal Southern California. Geophys. Res. Lett. 2015;42:1527–1536. doi: 10.1002/2015GL063266. [DOI] [Google Scholar]
  482. Winkler M, Steuri B, Stalder S, Antretter F. Evaluating the practicability of the new urban climate model PALM-4U using a living-lab approach. E3S Web of Conferences. 2020;172:11010. doi: 10.1051/e3sconf/202017211010. [DOI] [Google Scholar]
  483. WMO, 2008: Guide to Meteorological Instruments and Methods of Observation. World Meteorological Organization.
  484. Wouters H, Demuzere M, Blahak U, Fortuniak K, Maiheu B, Camps J, Tielemans D, Van Lipzig N P M. The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer. Geoscientific Model Development. 2016;9:3027–3054. doi: 10.5194/gmd-9-3027-2016. [DOI] [Google Scholar]
  485. Wu K, Yang X Q. Urbanization and heterogeneous surface warming in eastern China. Chinese Science Bulletin. 2013;58:1363–1373. doi: 10.1007/s11434-012-5627-8. [DOI] [Google Scholar]
  486. Wu M W, Luo Y L, Chen F, Wong W K. Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteorol. Climatol. 2019;58:1799–1819. doi: 10.1175/JAMC-D-18-0284.1. [DOI] [Google Scholar]
  487. Wu S J, Wang P, Tong X L, Tian H, Zhao Y Q, Luo M. Urbanization-driven increases in summertime compound heat extremes across China. Science of the Total Environment. 2021;799:149166. doi: 10.1016/j.scitotenv.2021.149166. [DOI] [PubMed] [Google Scholar]
  488. Wu X J, Wang L C, Yao R, Luo M, Wang S Q, Wang L Z. Quantitatively evaluating the effect of urbanization on heat waves in China. Science of the Total Environment. 2020;731:138857. doi: 10.1016/j.scitotenv.2020.138857. [DOI] [PubMed] [Google Scholar]
  489. Wu Z F, Ren Y. A bibliometric review of past trends and future prospects in urban heat island research from 1990 to 2017. Environmental Reviews. 2019;27:241–251. doi: 10.1139/er-2018-0029. [DOI] [Google Scholar]
  490. Wyszogrodzki, A. A., and P. K. Smolarkiewicz, 2009: Building resolving large-eddy simulations (LES) with EULAG. Preprints, Proc. Academy Colloquium on Immersed Boundary Methods: Current Status and Future Research Directions, 15–17.
  491. Xu X Y, Chen F, Shen S H, Miao S G, Barlage M, Guo W L, Mahalov A. Using WRF-urban to assess summertime air conditioning electric loads and their impacts on urban weather in Beijing. J. Geophys. Res. 2018;123:2475–2490. doi: 10.1002/2017JD028168. [DOI] [Google Scholar]
  492. Yaghoobian N, Kleissl J. An indoor-outdoor building energy simulator to study urban modification effects on building energy use-Model description and validation. Energy and Buildings. 2012;54:407–417. doi: 10.1016/j.enbuild.2012.07.019. [DOI] [Google Scholar]
  493. Yan Z-W, Wang J, Xia J-J, Feng J-M. Review of recent studies of the climatic effects of urbanization in China. Advances in Climate Change Research. 2016;7:154–168. doi: 10.1016/j.accre.2016.09.003. [DOI] [Google Scholar]
  494. Yang B, Zhang Y C, Qian Y. Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China. Asia-Pacific Journal of Atmospheric Sciences. 2012;48:227–241. doi: 10.1007/s13143-012-0023-5. [DOI] [Google Scholar]
  495. Yang B. Modeling the impacts of urbanization on summer thermal comfort: The role of urban land use and anthropogenic heat. J. Geophys. Res. 2019;124:6681–6697. doi: 10.1029/2018JD029829. [DOI] [Google Scholar]
  496. Yang J C, Wang Z H, Chen F, Miao S G, Tewari M, Voogt J A, Myint S. Enhancing hydrologic modelling in the coupled weather research and forecasting-urban modelling system. Bound.-Layer Meteorol. 2015;155:87–109. doi: 10.1007/s10546-014-9991-6. [DOI] [Google Scholar]
  497. Yang L, Tian F Q, Smith J A, Hu H P. Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region. J. Geophys. Res. 2014;119:1203–1217. doi: 10.1002/2013JD020762. [DOI] [Google Scholar]
  498. Yang P, Ren G Y, Hou W, Liu W D. Spatial and diurnal characteristics of summer rainfall over Beijing Municipality based on a high-density AWS dataset. International Journal of Climatology. 2013;33:2769–2780. doi: 10.1002/joc.3622. [DOI] [Google Scholar]
  499. Yang Q Q, Huang X, Tang Q H. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Science of the Total Environment. 2019;655:652–662. doi: 10.1016/j.scitotenv.2018.11.171. [DOI] [PubMed] [Google Scholar]
  500. Yang X C, Hou Y L, Chen B D. Observed surface warming induced by urbanization in east China. J. Geophys. Res. 2011;116:D14113. doi: 10.1029/2010JD015452. [DOI] [Google Scholar]
  501. Yang X C, Leung L R, Zhao N Z, Zhao C, Qian Y, Hu K J, Liu X P, Chen B D. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett. 2017;44:6940–6950. doi: 10.1002/2017GL074084. [DOI] [Google Scholar]
  502. Yang Z, Dominguez F, Gupta H, Zeng X B, Norman L. Urban effects on regional climate: A case study in the Phoenix and Tucson “Sun Corridor”. Earth Interactions. 2016;20:1–25. doi: 10.1175/EI-D-15-0027.1. [DOI] [Google Scholar]
  503. Yao R, Wang L C, Huang X, Gong W, Xia X G. Greening in rural areas increases the surface urban heat island intensity. Geophys. Res. Lett. 2019;46:2204–2212. doi: 10.1029/2018GL081816. [DOI] [Google Scholar]
  504. Yao R, Wang L C, Wang S Q, Wang L Z, Wei J, Li J L, Yu D Q. A detailed comparison of MYD11 and MYD21 land surface temperature products in mainland China. International Journal of Digital Earth. 2020;13:1391–1407. doi: 10.1080/17538947.2019.1711211. [DOI] [Google Scholar]
  505. Yin C H, Yuan M, Lu Y P, Huang Y P, Liu Y F. Effects of urban form on the urban heat island effect based on spatial regression model. Science of the Total Environment. 2018;634:696–704. doi: 10.1016/j.scitotenv.2018.03.350. [DOI] [PubMed] [Google Scholar]
  506. Yokoyama H, Ooka R, Kikumoto H. Study of mobile measurements for detailed temperature distribution in a high-density urban area in Tokyo. Urban Climate. 2018;24:517–528. doi: 10.1016/j.uclim.2017.06.006. [DOI] [Google Scholar]
  507. Yoshikado H. Numerical study of the daytime urban effect and its interaction with the sea breeze. J. Appl. Meteorol. Climatol. 1992;31:1146–1164. doi: 10.1175/1520-0450(1992)031<1146:NSOTDU>2.0.CO;2. [DOI] [Google Scholar]
  508. Yu M, Liu Y M. The possible impact of urbanization on a heavy rainfall event in Beijing. J. Geophys. Res. 2015;120:8132–8143. doi: 10.1002/2015JD023336. [DOI] [Google Scholar]
  509. Yu M, Carmichael G R, Zhu T, Cheng Y F. Sensitivity of predicted pollutant levels to urbanization in China. Atmos. Environ. 2012;60:544–554. doi: 10.1016/j.atmosenv.2012.06.075. [DOI] [Google Scholar]
  510. Zarrella A, Prataviera E, Romano P, Carnieletto L, Vivian J. Analysis and application of a lumped-capacitance model for urban building energy modelling. Sustainable Cities and Society. 2020;63:102450. doi: 10.1016/j.scs.2020.102450. [DOI] [Google Scholar]
  511. Zhan W F, Ju W M, Hai S P, Ferguson G, Quan J L, Tang C S, Guo Z, Kong F H. Satellite-derived subsurface urban heat island. Environ. Sci. Technol. 2014;48:12 134–12 140. doi: 10.1021/es5021185. [DOI] [PubMed] [Google Scholar]
  512. Zhang C L, Chen F, Miao S G, Li Q C, Xia X A, Xuan C Y. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res. 2009;114:D02116. [Google Scholar]
  513. Zhang D-L, Shou Y-X, Dickerson R R. Upstream urbanization exacerbates urban heat island effects. Geophys. Res. Lett. 2009;36:L24401. doi: 10.1029/2009GL041082. [DOI] [Google Scholar]
  514. Zhang G J, Cai M, Hu A X. Energy consumption and the unexplained winter warming over northern Asia and North America. Nature Climate Change. 2013;3:466–470. doi: 10.1038/nclimate1803. [DOI] [Google Scholar]
  515. Zhang N, Gao Z Q, Wang X M, Chen Y. Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor. Appl. Climatol. 2010;102:331–342. doi: 10.1007/s00704-010-0263-1. [DOI] [Google Scholar]
  516. Zhang N, Wang X Y, Peng Z. Large-eddy simulation of mesoscale circulations forced by inhomogeneous urban heat island. Bound.-Layer Meteorol. 2014;151:179–194. doi: 10.1007/s10546-013-9879-x. [DOI] [Google Scholar]
  517. Zhang P, Bounoua L, Imhoff M L, Wolfe R E, Thome K. Comparison of MODIS land surface temperature and air temperature over the continental USA meteorological stations. Canadian Journal of Remote Sensing. 2014;40:110–122. [Google Scholar]
  518. Zhang, Q. M., M. Zhang, W. Q. Zhou, W. B. Xu, and J. Zhang, 2019a: The influence of different urban and rural selection methods on the spatial variation of urban heat island intensity. Preprints, IGARSS 2019–2019 IEEE Int. Geoscience and Remote Sensing Symposium, Yokohama, Japan, IEEE, 4403–4406, 10.1109/IGARSS.2019.8898794.
  519. Zhang W, Villarini G, Vecchi G A, Smith J A. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature. 2018;563:384–388. doi: 10.1038/s41586-018-0676-z. [DOI] [PubMed] [Google Scholar]
  520. Zhang Y, Smith J A, Luo L F, Wang Z F, Baeck M L. Urbanization and rainfall variability in the Beijing metropolitan region. Journal of Hydrometeorology. 2014;15:2219–2235. doi: 10.1175/JHM-D-13-0180.1. [DOI] [Google Scholar]
  521. Zhang Y J, Li D, Lin Z K, Santanello J A, Jr., Gao Z Q. Development and evaluation of a long-term data record of planetary boundary layer profiles from aircraft meteorological reports. J. Geophys. Res. 2019;124:2008–2030. doi: 10.1029/2018JD029529. [DOI] [Google Scholar]
  522. Zhang Y J, Sun K, Gao Z Q, Pan Z T, Shook M A, Li D. Diurnal climatology of planetary boundary layer height over the contiguous United States derived from AMDAR and reanalysis data. J. Geophys. Res. 2020;125:e2020JD032803. [Google Scholar]
  523. Zhang Y J, Wang L, Santanello J A, Jr., Pan Z T, Gao Z Q, Li D. Aircraft observed diurnal variations of the planetary boundary layer under heat waves. Atmospheric Research. 2020;235:104801. doi: 10.1016/j.atmosres.2019.104801. [DOI] [Google Scholar]
  524. Zhao L, Lee X, Smith R B, Oleson K. Strong contributions of local background climate to urban heat islands. Nature. 2014;511:216–219. doi: 10.1038/nature13462. [DOI] [PubMed] [Google Scholar]
  525. Zhao L, Lee X, Schultz N M. A wedge strategy for mitigation of urban warming in future climate scenarios. Atmospheric Chemistry and Physics. 2017;17:9067–9080. doi: 10.5194/acp-17-9067-2017. [DOI] [Google Scholar]
  526. Zhao L, Oppenheimer M, Zhu Q, Baldwin J W, Ebi K L, Bou-Zeid E, Guan K Y, Liu X. Interactions between urban heat islands and heat waves. Environmental Research Letters. 2018;13:034003. doi: 10.1088/1748-9326/aa9f73. [DOI] [Google Scholar]
  527. Zheng Z F. Relationship between fine-particle pollution and the urban heat island in Beijing, China: Observational evidence. Bound.-Layer Meteorol. 2018;169:93–113. doi: 10.1007/s10546-018-0362-6. [DOI] [Google Scholar]
  528. Zheng Z H, Zhao L, Oleson K W. Large model structural uncertainty in global projections of urban heat waves. Nature Communications. 2021;12:3736. doi: 10.1038/s41467-021-24113-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  529. Zhong S, Qian Y, Zhao C, Leung R, Yang X-Q. A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: Urban heat island versus aerosol effects. J. Geophys. Res. 2015;120:10 903–10 914. doi: 10.1002/2015JD023753. [DOI] [Google Scholar]
  530. Zhong S. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmospheric Chemistry and Physics. 2017;17:5439–5457. doi: 10.5194/acp-17-5439-2017. [DOI] [Google Scholar]
  531. Zhong S. Urbanization effect on winter haze in the Yangtze River Delta region of China. Geophys. Res. Lett. 2018;45:6710–6718. doi: 10.1029/2018GL077239. [DOI] [Google Scholar]
  532. Zhong T, Zhang N, Lv M Y. A numerical study of the urban green roof and cool roof strategies’ effects on boundary layer meteorology and ozone air quality in a megacity. Atmos. Environ. 2021;264:118702. doi: 10.1016/j.atmosenv.2021.118702. [DOI] [Google Scholar]
  533. Zhou B, Lauwaet D, Hooyberghs H, De Ridder K, Kropp J P, Rybski D. Assessing seasonality in the surface urban heat island of London. J. Appl. Meteorol. Climatol. 2016;55:493–505. doi: 10.1175/JAMC-D-15-0041.1. [DOI] [Google Scholar]
  534. Zhou B, Rybski D, Kropp J P. The role of city size and urban form in the surface urban heat island. Scientific Reports. 2017;7:4791. doi: 10.1038/s41598-017-04242-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  535. Zhou D C, Zhao S Q, Zhang L X, Sun G, Liu Y Q. The footprint of urban heat island effect in China. Scientific Reports. 2015;5:11160. doi: 10.1038/srep11160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  536. Zhou D C. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing. 2019;11:48. doi: 10.3390/rs11010048. [DOI] [Google Scholar]
  537. Zhou L M, Dickinson R E, Tian Y H, Fang J Y, Li Q X, Kaufmann R K, Tucker C J, Myneni R B. Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:9540–9544. doi: 10.1073/pnas.0400357101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  538. Zhou Y Y. A global map of urban extent from nightlights. Environmental Research Letters. 2015;10:054011. doi: 10.1088/1748-9326/10/5/054011. [DOI] [Google Scholar]
  539. Zhu X L, Ni G H, Cong Z T, Sun T, Li D. Impacts of surface heterogeneity on dry planetary boundary layers in an urban-rural setting. J. Geophys. Res. 2016;121:12 164–12 179. doi: 10.1002/2016JD024982. [DOI] [Google Scholar]
  540. Zipper S C, Schatz J, Kucharik C J, Loheide S P., II Urban heat island-induced increases in evapotranspirative demand. Geophys. Res. Lett. 2017;44:873–881. doi: 10.1002/2016GL072190. [DOI] [Google Scholar]
  541. Ziter C D, Pedersen E J, Kucharik C J, Turner M G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences of the United States of America. 2019;116:7575–7580. doi: 10.1073/pnas.1817561116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  542. Zonato A, Martilli A, Di Sabatino S, Zardi D, Giovannini L. Evaluating the performance of a novel WUD-APT averaging technique to define urban morphology with mesoscale models. Urban Climate. 2020;31:100584. doi: 10.1016/j.uclim.2020.100584. [DOI] [Google Scholar]
  543. Zonato, A., A. Martilli, E. Gutierrez, F. Chen, C. L. He, M. Barlage, D. Zardi, and L. Giovannini, 2021: Exploring the role of rooftop urban mitigation strategies in thermal comfort and energy consumption. Earth and Space Science Open Archive, 32, 10.1002/essoar.10506605.

Articles from Advances in Atmospheric Sciences are provided here courtesy of Nature Publishing Group

RESOURCES