Abstract
Background
Loss-of-function mutations in CDKN1C cause overgrowth, that is, Beckwith-Wiedemann syndrome (BWS), while gain-of-function variants in the gene’s PCNA binding motif cause a growth-restricted condition called IMAGe syndrome. We report on a boy with a remarkable mixture of both syndromes, with developmental delay and microcephaly as additional features.
Methods
Whole-exome DNA sequencing and ultra-deep RNA sequencing of leucocyte-derived and fibroblast-derived mRNA were performed in the family.
Results
We found a maternally inherited variant in the IMAGe hotspot region: NM_000076.2(CDKN1C) c.822_826delinsGAGCTG. The asymptomatic mother had inherited this variant from her mosaic father with mild BWS features. This delins caused tissue-specific frameshifting resulting in at least three novel mRNA transcripts in the boy. First, a splice product causing CDKN1C truncation was the likely cause of BWS. Second, an alternative splice product in fibroblasts encoded IMAGe-associated amino acid substitutions. Third, we speculate that developmental delay is caused by a change in the alternative CDKN1C-201 (ENST00000380725.1) transcript, encoding a novel isoform we call D (UniProtKB: A6NK88). Isoform D is distinguished from isoforms A and B by alternative splicing within exon 1 that changes the reading frame of the last coding exon. Remarkably, this delins changed the reading frame back to the isoform A/B type, resulting in a hybrid D–A/B isoform.
Conclusion
Three different cell-type-dependent RNA products can explain the co-occurrence of both BWS and IMAGe features in the boy. Possibly, brain expression of hybrid isoform D–A/B is the cause of developmental delay and microcephaly, a phenotypic feature not previously reported in CDKN1C patients.
Keywords: gain of function mutation, INDEL mutation, RNA-seq
Introduction
The imprinted and predominantly maternally expressed cell cycle inhibitor CDKN1C located to 11p15.5 encodes a negative growth regulator also called p57Kip2. This gene is associated with two contrasting phenotypes: the overgrowth disorder Beckwith-Wiedemann syndrome (BWS [MIM:130 650]) and the growth-restricted IMAGe syndrome ([MIM:614 732], an acronym for Intrauterine growth restriction, Metaphyseal dysplasia, Adrenal insufficiency and Genital abnormalities).1 IMAGe and rare cases of Silver-Russel syndrome (SRS) are caused by gain-of-function (GoF) mutations in the PCNA-binding motif of CDKN1C, while loss-of-function (LoF) mutations are found in 8% of BWS cases.2–4
CDKN1C is a cyclin-dependent kinase inhibitor (CDI) belonging to the CIP/Kip family and encoded by a small gene with three to four exons of which two to three are protein coding. Other members are p21Cip1 (CDKN1A) and p27Kip1 (CDKN1B), which inhibit cell growth in G1 and can cause cell-cycle arrest. The ENSEMBL database (ensembl.org) contains several CDKN1C transcripts encoding different isoforms; CDKN1C-202 encodes the 316aa isoform A, CDKN1C-203 encodes an alternative isoform A with different UTRs, CDKN1C-204 encodes the 305aa isoform B with an alternative start site and CDKN1C-201 encodes the 131aa A6NK88 isoform that we call isoform D (see figure 1). CDKN1C has an N-terminal CDI (cyclin-dependent kinase inhibitor) domain, a central PAPA (proline-alanine) repeat and C-terminally the PCNA (proliferating cell nuclear antigen)–binding motif and an overlapping putative KRKR-containing nuclear localisation signal.
BWS is most often caused by sporadic loss-of-methylation (LoM) of imprinting centre 2 (IC2) on the maternal chromosome 11 that results in diminished CDKN1C expression, found in about 50%–60% of BWS, followed by paternal segmental uniparental disomy (UPD) 11p also involving the paternally methylated imprinting centre 1 (IC1) of the IGF2-H19 domain in about 20%.5 IC1 gain-of-methylation (GoM) has been reported in 5%–10% of the patients, whereas microdeletions of IC1 and CDKN1C variants are important causes of familial BWS. Other chromosomal CNVs, balanced rearrangements, multilocus imprinting disturbances and mosaic genome-wide paternal UPD are rare causes of BWS. Typical features are omphalocele/umbilical hernia, macroglossia, neonatal hyperinsulinism, Wilms tumour, lateralised overgrowth, macrosomia, ear creases and pits, large internal organs, adrenal fetal cortex cytomegaly and renal abnormalities.5 6 Genotype–phenotype correlations are reported as CDKN1C mutations have higher rates of preterm birth, cleft palate, abdominal wall defect, capillary malformations and ear signs, while intrauterine overgrowth and tumours are less common.7 8 CDKN1C-restricted BWS features are also reported, including maternal pre-eclampsia, genital abnormalities, polydactyly, polythelia and posterior fossa abnormalities.7 9–12
Maternally inherited GoF variants can cause IMAGe syndrome, an SRS-like phenotype,13 and short stature with diabetes,14 but such variants are rare causes of growth restriction.15–17 IMAGe was first described in 199918 and linked to CDKN1C in 2012.4 Besides, SRS phenotype with salt-wasting due to adrenal insufficiency mimicking IMAGe was described in two patients with 11p15 maternal duplications.19 So far, only 12 molecularly confirmed IMAGe/SRS-like families are reported, and all variants but one which we consider to be of unknown significance (VUS),17 are located in the PCNA-binding site.4 13 14 20–25 Most studies suggest that IMAGe/SRS variants increase protein stability,13 20 26 although not confirmed by Kerns et al.14 The mechanism is not fully elucidated but might include impaired proteasome-mediated degradation.20 Clinical findings include short stature, neonatal adrenal hypoplasia, hypercalciuria, metaphyseal dysplasia with delayed bone age, low-set and posteriorly rotated ears, frontal bossing and relative macrocephaly, and less frequently hearing loss and craniosynostosis.27 A Drosophila melanogaster IMAGe model showed impaired eye and wing growth,4 demonstrating that cdkn1c plays a role in cell proliferation in multicellular organisms. There are no consensus criteria for IMAGe syndrome, and metaphyseal dysplasia and adrenal hypoplasia are not present in all. So far CDKN1C has not been associated with a neurological phenotype in humans, but developmental delay is reported in a few patients with BWS with structural brain abnormalities.7 11 27 Furthermore, a mixture of IMAGe and BWS has not been published before.
Here, we report on a boy heterozygous for a delins variant in CDKN1C, replacing five nucleotides with six others in the junction between exons 1 and 2 of the main isoform. This delins caused a mixture of IMAGe and BWS-like features, and possibly also developmental delay as no alternative causes for this were found. We aimed to determine how this complex variant could have both GoF and LoF effects and to find a potential explanation for the affected brain function. Our work revealed that a novel CDKN1C transcript with a non-canonical C-terminal reading frame encoding isoform A6NK88 (named isoform D by us) was also affected by the delins, and as isoform D is also expressed in the brain, this could be the cause of his developmental delay.
Methods
The boy and his family were clinically examined, given genetic counselling and consented to RNA analysis to investigate the molecular consequences of the CDKN1C variant.
Sanger sequencing
We used CDKN1C reference sequence NM_000076.2 encoding a 316 aa protein (isoform A). Sequence pilot (JSI Medical Systems, Ettenheim, Germany) software was used for interpretation. DNA was isolated from peripheral blood obtained from the boy, his parents, his mother’s siblings, maternal grandparents and maternal grandfather’s parents, and sequenced. To explore the mosaic pattern in the maternal grandfather, we analysed additional DNA obtained from buccal swab, urine and fibroblasts from four distinct skin biopsies.
RNA isolation, sequencing of cDNA and qPCR
Total RNA was isolated from fibroblasts from biopsies of healthy skin (two biopsies from the boy, one from his mother and four from his grandfather), one epidermal nevus in the boy and also from blood samples (from the boy, both parents and the grandfather) by using the RNeasy Mini Kit (QIAGEN, Hilden, Germany) for fibroblasts and PAXgene Blood RNA Kit (QIAGEN) for blood samples. cDNA was synthesised following the manufacturer’s protocol. The variant was amplified by quantitative qRT-PCR using different primer sets taking alternative acceptor site usage into account and also spanning the variant affecting transcript ENST00000380725.1 CDKN1C-201 (for a full list of transcripts, see figure 1). The primer sequences are given in online supplemental file. We examined expression levels of wt (wild type) and mutant (delins) CDKN1C, and wt CDKN1C-201 by qRT-PCR on RNA isolated from both blood and cultured fibroblasts from the boy (all biopsies), his mother and grandfather (where we picked the biopsy with highest mutation load), and blood from his father. Primers and probes were from Applied Biosystems, Life Technologies, and assessment of B2M (beta-2-microglobulin) RNA (Applied Biosystems) served as endogenous controls. At least two runs per experiment were performed, and two different probes for both CDKN1C-201 and mutant CDKN1C were analysed.
jmedgenet-2020-107401supp001.pdf (4MB, pdf)
Total RNA deep sequencing
We used blood-derived RNA from the boy, his mother and grandfather, and an unrelated healthy adult female, and fibroblast RNA from the boy’s skin biopsy #2. Whole transcriptome sequencing libraries were generated using the Illumina TruSeq Stranded Total RNA kit with Ribo-Zero Gold depletion for fibroblasts and Ribo-Zero Globin depletion for blood, according to the manufacturer’s protocols. Libraries were quality checked on the Agilent Bioanalyzer system and accurately quantified using the KAPA qPCR quantification kit. Libraries were paired-end sequenced on the Illumina HiSeq4000 system with a read length of 2×75 nt. Sequencing was performed ultra-deep for all libraries (~250 million reads per sample). RNA-sequencing reads were aligned to the human genome reference (GRCh38) using HISAT2 (V.2.0.5).28 29 Reads aligned within the coding part of the genome (adequate Gencode gtf annotation file) were counted using featureCounts.30 To resolve alternative CDKN1C transcripts, we created supplementary reference files in FASTA format and realigned reads. Data were visualised in IGV (Integrative Genomics Viewer V.2.3.74) (online supplemental file). We only considered splice junction tracks (SJTs) when counting reads and manually checked all reads in a region of interest. All samples were run in the same flow cell.
Whole-exome sequencing
Whole-exome sequencing (WES) was performed on genomic DNA isolated from blood from the patient and parents. DNA samples were prepared using SeqCap EZ MedExome Target Enrichment Kit (Roche NimbleGen, Madison, WI) and followed by paired-end 150 nt sequencing on an Illumina NextSeq500. The paired-end reads were aligned using the Burrows-Wheeler Alignment tool and variant calling was performed using the Genome Analysis Toolkit (GATK; Broad Institute, Cambridge, MA) according to GATK’s Best Practices guidelines. Mean #reads per base pair in the exome was 83X with 97.7% of the base pairs covered at least 10 times. Data annotation and interpretation were performed using the NGS module of Cartagenia Bench Lab software (Agilent, Santa Clara, CA).
CNV and methylation analysis
The boy’s DNA isolated from peripheral blood and fibroblasts (two from normal skin and one benign nevus) was analysed for 11p15 CNVs and methylation aberrations by SALSA MS-MLPA Probemix ME030-C3 BWS/RSS (MRC-Holland, Amsterdam, NL). Also, DNA from blood was tested for other imprinted diseases using the SALSA MS-MLPA Probemix ME032-A1 UPD7-UPD14, and for genomic CNVs by CytoScanHD Array (Thermo Fisher Scientific, Waltham, MA).
Microsatellite analysis
To determine CDKN1C haplotypes and allele segregation, and to explore on which parental allele the grandfather’s de novo variant arose, an informative haplotype was set up by simple tandem repeat markers amplified by PCR and size determined. There were two informative markers upstream and four downstream of CDKN1C (online supplemental file). The haplotype analysis was performed on DNA from peripheral blood from the patient, his parents, his mother’s siblings, maternal grandparents and the grandfather’s parents.
Results
Clinical history and findings in the boy
Clinical findings in the patient are summarised in table 1 and illustrated in figure 2. Omphalocele was discovered by routine ultrasound in week 19 of gestation, amniocentesis was performed, and the pregnancy was complicated by maternal hyperemesis, pre-eclampsia, diabetes from week 29 and later polyhydramnios. He was born after caesarean section in gestation week 34+2 with birth weight 2160 g (−1.1 SDS), birth length 42 cm (−2.5 SDS) and head circumference 32 cm (0 SDS) (all measurements adjusted for prematurity). Placental weight was on the 90th percentile. Apgar score was 3/5/7 after 1, 5 and 10 min, respectively. He had mild hypoglycaemia (1.5 mmol/L) and compromised respiration. The giant omphalocele also contained liver tissue, and he underwent several surgeries before the abdominal wall finally was closed at 3 months of age. He suffered from apnoeic spells and needed CPAP until he was discharged from the hospital 5 months of age. He was exclusively fed by nasogastric tube for the first 5 months, and the tube was removed after 12 months. At the age of 3 years, he had been through more than 20 surgeries, including for patent ductus arteriosus, inguinal hernia and cryptorchidism. He had dysmorphic features as illustrated in figure 2, small intra-abdominal testes, multiple benign epidermal nevi and mild hypotonia. At follow-up at 25 months of age, his length was 0.8 SDS, weight −2.0 SDS and he was now microcephalic (−2.7 SDS). Motor milestones were delayed; he could sit at 15 months and walk without support at 2 years and 10 months of age. At age 3 years, he could speak a few simple words, and at age 5 years he had 3–4 words sentences with articulation problems. He had a normal neurological examination, hearing, vision and social development, but marked global delayed yet without formal assessment. He received speech, education and physical therapy. Cerebral MRI was normal, repeated abdominal ultrasounds from the age of 4 months showed small kidneys bilaterally and no organomegaly. At 2.5 years, an ACTH-stimulation test did not reveal adrenal insufficiency, and skeletal X-ray showed long and slender diaphyses, broad metaphyses, a fusion of left fourth and fifth ribs, and a 1.5-year delay in bone maturation. At age 5 years, his length was −1.5 SDS, head circumference centiles unchanged, confirming a postnatal/secondary microcephaly (−2.5 SDS), and he still had a low BMI of 12.9 (−2.8 SDS). He was scheduled to cancer surveillance every sixth month until 7–8 years of age.
Table 1.
Clinical features | BWS (score) | IMAGe (NH-CSS) |
New |
Polyhydramnios | X (1) | ||
Pre-eclampsia in mother | X | ||
Omphalocele | X (2) | ||
Large tongue | X (2) | ||
Neonatal hypoglycaemia | X (1) | ||
Neonatal apnoea | X | ||
Infraorbital crease | X | ||
Midface retrusion | X | ||
Long and grooved philtrum | X | ||
Nevus flammeus | X (1) | ||
Ear creases | X (1) | ||
Patent ductus arteriosus | X | X | |
Inguinal hernia | X | X | |
Cryptorchidism, bilateral | X | X | |
Small testes | X | ||
Small for gestational age | X (1) | ||
Long gracile diaphysis | X | ||
Broad metaphysis | X | ||
Delayed bone age | X | ||
Bifrontal bossing | X | ||
Low set, posteriorly rotated ears | X | ||
Feeding difficulties | X (1) | ||
Broad nasal bridge and tip | X | ||
Hypotonia | X | ||
Small kidneys | ? | X | |
Thin upper lip | X | ||
Strabismus | ? | X | |
Rib synostosis | X | ||
Developmental delay | X | ||
Microcephaly (postnatal) | X | ||
Relative macrocephaly at birth | X (1) |
The number in parentheses are criteria score according to Beckwith-Wiedemann syndrome (BWS) clinical consensus score and Netchine-Harbison Clinical Silver-Russel Syndrome score (NH-CSS).6 33
Family history
The boy’s phenotypically normal parents are non-consanguineous, the mother was 28 and the father 42 years at his birth. Clinical examination and birth history in the mother were negative for BWS features. Head circumferences were at 99th percentile (mother) and 60th percentile (father). The maternal grandfather was >5 kg at birth, and a large tongue was commented on neonatally, suggesting macroglossia. At examination at age 58 years, he was 181 cm tall with a wide mouth, slightly short halluces, no asymmetry, a normal skeletal X-ray survey and normal cognition.
Diagnostic workup
During pregnancy, a normal male karyotype 46, XY was found in amniotic fluid cells. After birth, clinical suspicion of BWS in the boy warranted MS-MLPA of the BWS region, which was normal in DNA from blood, skin and epidermal nevus. However, sequencing of CDKN1C verified BWS (see next section). Due to borderline short stature, developmental delay and postnatal microcephaly, further analyses were performed with normal results: high-resolution CNV analysis, UPD screening and trio-based WES.
Interpretation of the CDKN1C variant
Sanger sequencing of CDKN1C (NM_000076.2/ENST00000414822.7) revealed a heterozygous delins variant in the sequence encoding the PCNA binding motif affecting the 5′-end of exon 2: c.822_826delinsGAGCTG. The delins caused frameshifting and a premature termination codon (PTC) about 100 nucleotides upstream of the exon 2–3 junction. This change should either lead to nonsense-mediated mRNA decay (NMD) or synthesis of a truncated protein Asp274GlufsTer12, that is, an LoF change that fits with BWS phenotype. However, the delins also introduced two new putative splice junction AG acceptor sites, in addition to the consensus AG site (figure 3, upper panel). Use of alternative acceptor site I will also lead to a frameshift and a new stop codon, but in the very last protein-coding exon, that is, Asp274GlufsTer47, which should escape NMD (figure 3, lower panel). The corresponding protein product contains a modified C terminus including substitutions of four IMAGe-associated amino acids and introduce the known GoF variant Phe276Ser.4 Use of alternative acceptor site II would be in line with the canonical reading frame of the protein’s C-terminal part, but also include deletion of three and insertion of two new amino acids in the PCNA-binding motif: 274_276delinsAlaVal. This would modify one IMAGe residue (Asp274Ala), but also introduce a previously reported IMAGe-associated substitution: Phe276Val (figure 3).4 This alternative transcript can be compared with known IMAGe-mutated transcripts, resulting in increased protein stability or affected PCNA binding.
The predicted out-of-frame C-terminal product from alternative acceptor site I, p.(Asp274GlufsTer47) (figures 3 and 4), was analysed by BLAST and found to be almost identical to CDKN1C-201, encoding a 131 amino acid isoform we call isoform D (UniProtKB accession A6NK88). Isoform D consists of the common CDI domain with a unique C-terminal D-tail, marked in red in figure 4, and its alternative splicing bypasses the PAPA-repeat region (figure 1). In addition to the PCNA-related amino acid substitution, the delins could also affect isoform D by introducing a frameshift that changed the reading frame back to the canonical reading frame (marked in yellow in figure 4). The predicted hybrid protein had elements from two distinct isoforms, D and A/B, where the D-type splicing causes direct connection of the CDI domain to an altered PCNA-binding motif, and where delins-induced frameshifting causes the C terminus to be of A/B type and not D type.
Diagnostic analysis of the family
The boy’s asymptomatic mother was also heterozygous for the delins, compatible with a paternally imprinted allele in her, and further family studies including haplotype segregation analysis confirmed that the variant arose de novo on the grandfather’s maternal allele. The mild BWS features in the grandfather indicated mosaicism, which was confirmed by DNA analyses of multiple tissues; only wt was present in fibroblasts from three out of four skin biopsies and a buccal swab, while the delins was found in blood, urine sediment and skin biopsy from the left leg. cDNA Sanger sequencing and qPCR cDNA sequencing confirmed the presence of both wt and (at a lower level) the delins allele in the boy, his mother and grandfather. Gene expression levels appeared generally low. Only in fibroblasts from the boy, the delins seemed to be more abundant than the wild-type transcript. Primers were also designed to cover the use of the two alternative splice acceptor sites illustrated in figure 3, but corresponding isoform-A/B-derived transcripts were not detected. However, sequencing demonstrated that wild-type isoform D (CDKN1C-201) transcript was present in blood from all family members and controls, and the delins-CDKN1C-201 transcript was present in blood from the boy.
Semi-quantitative real time-PCR (qPCR) verified the presence of both CDKN1C (isoform A/B) and CDKN1C-201 (isoform D) transcripts in blood samples from the patient, parents and grandfather. Also, isoform A/B was found in fibroblasts from all family members. Transcript levels were low compared with the B2M control and considerably lower in fibroblasts than in blood. Expression of delins-CDKN1C was seen in blood from the boy and grandfather, but not the mother, while expression in fibroblast was very low in the boy and undetectable in others. Results from cDNA sequencing and qPCR are not shown.
NGS-based cDNA sequencing
Ultra-deep RNA-seq was done for a more quantitative non-biased analysis of all transcripts, including the delins variant. The results are illustrated in figure 5. In summary, the analysis confirmed that the level of delins was 40%–50% in the boy (higher in fibroblast than in blood), 25% in the mosaic grandfather and 6% in the mother; that activation of alternative acceptor site I occurred in the boy’s fibroblasts; and that CDKN1C-201 represented 16%–42% of the total CDKN1C mRNA reads but accounted for the majority of the delins reads. Neither standard nor ultra-deep RNA sequencing could verify the presence of a predicted fifth transcript CDKN1C-206 (ENST00000647251.1) that encodes a putative 175 aa protein product labelled isoform C (CCDS86169.1).
All RNA-seq samples had in total >340 million reads after filtering, and the numbers of CDKN1C tracks spanning splice junctions (SJTs) were between 35 and 204 (figure 5A). Visualisation of the alignment to NCBI Build 38 is presented with the counting of SJTs (online supplemental file). No delins reads were mapped against Build 38, and we suspected mapping problems. We then created three new FASTA reference files with the delins for accurate mapping (online supplemental file), one based on the consensus splice site and two with alternative acceptor sites I and II. Alignment to one of these putative delins splice sites unmasked the delins-specific tracks, while the other two alignments did not add more data and were therefore not further analysed. Figure 5A shows the result from the mapping of transcripts CDKN1C-202, CDKN1C-203, CDKN1C-204 (combined) and CDKN1C-201 against the reference sequence (green columns), and the distribution was compared with the sum of other CDKN1C transcripts. Likewise, the pink columns show the distribution of delins-mapped reads. The total distribution of delins and CDKN1C-201 is also presented. SJTs presented as arcs in IGV (online supplemental file) showed that the vast majority of expressed transcripts have splicing from 5′-UTRs of different lengths, including CDKN1C-201 and CDKN1C-204, and both use the alternative Met11 amino acid downstream and have four exons. In contrast, CDKN1C-202 and CDKN1C-203 always start at Met1 and have three exons. CDKN1C-203 uses an alternative acceptor splice site five nucleotides downstream in the last exon and can be distinguished from other transcripts. The coding part of CDKN1C-201 continues into exon 4, while this exon is making a 3′-UTR in other transcripts.
Discussion
This family, where the index case has a mixture of diametrically opposed growth-related syndromes due to the same delins variant in CDKN1C, illustrates that the biological complexity of this small gene goes far beyond imprinting. Due to intricate gene splicing with frameshifting, this delins has an LoF effect on some isoforms and GoF effect on another. The latter is unexpected for a five against six nucleotides exchange and is due to the creation of a new splice acceptor site two nucleotides downstream of the canonical AG. Furthermore, we demonstrate that an alternative isoform with a different C-terminal reading frame (that we call isoform D, corresponding to transcript CDKN1C-201) is also affected, which turns the C terminus of isoform D back to the isoform A/B reading frame. If the hybrid D–A/B isoform transcript is expressed in the brain, this could be the cause of his developmental delay.
The asymptomatic carrier mother expressed the delins at a low level, as expected for a leaky paternally imprinted allele. The maternal grandfather was mosaic for the delins on his maternal allele, in agreement with an intermediate expression level. As a cautious note, the relative levels of the transcripts are not indicative of the degree of imprinting due to variable and poor expression, also affected by presumably inconsistent and non-uniform NMD. Variation in NMD efficiency within mRNA with the same PTC and subpopulations of mRNA escaping decay are reported, and this can contribute to explaining variation between individuals and between different tissues.31 32
Ultra-deep RNA sequencing proved to be superior to conventional RNA analysis, particularly on fibroblast RNA. Such unbiased sequencing verified the use of alternative acceptor site I and enabled us to quantify the expression of different transcripts, which again suggested which isoforms were most abundant. RNA sequencing as a first choice in a diagnostic pipeline would have been unsuccessful in this family as the delins could not be mapped with a single track against the reference sequence, but we solved this by mapping against dedicated reference files.
In summary, the boy fulfilled the clinical criteria of BWS—an overgrowth condition—despite being rather small and microcephalic, with a total score of 8, with two cardinal features (omphalocele and macroglossia) and four suggestive features (see table 1).6 Macrosomia or neonatal overgrowth is common in BWS but is considered a suggestive and not a cardinal feature. There is no clinical consensus for IMAGe, but many of his non-BWS features overlap with this diagnosis. Adrenal insufficiency was never confirmed, but a mild and transient neonatal insufficiency could have been masked by continuous intravenous treatment of a leaking omphalocele. Genital abnormalities are described in both IMAGe and BWS, but small testes in IMAGe only.22 Even though the renal size is not discussed in IMAGe (only fetal renal cortex size), his renal hypoplasia could very well be an IMAGe mirror of renal hyperplasia in BWS. Skeletal abnormalities are important findings in IMAGe, but besides asymmetry less important in SRS and are not features of BWS. Clinically, he did not pass the Netchine-Harbinson SRS score, having 3/6 criteria which is below the 4/6 limit.33 His being small for gestational age, feeding difficulties, mild skeletal abnormalities and small testis are compatible with IMAGe, but this diagnosis is not definite as adrenal hypoplasia and metaphyseal dysplasia were not documented. The clinical findings point to dual molecular effects with both LoF (BWS) and GoF (IMAGe) in CDKN1C. The latter can be explained by p.Asp274_276delinsAlaVal encoding transcript from alternative acceptor site II, but we could not confirm expression of this transcript in the two tissues tested. Another hypothetical GoF candidate is the p.Asp274GlufsTer47 encoding transcript from alternative acceptor site I with a verified GoF substitution Phe276Ser.4 This transcript encodes an alternative C-terminal abolishing the PCNA-binding site, but the product might also be non-functional or degraded. Probably NMD is inefficient as a protective mechanism in CDKN1C as the truncated transcript from the consensus splice site, that is, encoding p.Asp274GlufsTer12 which is well within theoretical criteria for NMD, was present in both blood and fibroblasts.34 This mutant product also substitutes IMAGe-related amino acids (figure 3) and might also have GoF effects.
A combination of opposing phenotypes due to a single mutation in the same gene is not reported earlier for CDKN1C, but for GNAS, another imprinted gene, this is not new.35 Other genes where a variant is reported to cause both GoF and LoF effects are RET, FLNA, GDF5 and SMCHD1.36–39 In general, multinucleotide variants are potentially more damaging than single-nucleotide variants, illustrated by our family.40
The most intriguing finding was that the delins also affected a hitherto not confirmed transcript using a non-canonical reading frame—CDKN1C-201—which represented ~40% of all CDKN1C transcripts in the family (figure 5A). In contrast to wt CDKN1C-201, delins-mutated CDKN1C-201 used the canonical reading frame, resulting in a hybrid D–A/B product that may be the cause of the unusual features in the boy. Alternative non-canonical reading frames are common in prokaryote and mitochondrial genes, but less so in eukaryotic and human genes, and another cell-cycle inhibitor gene, CDKN2A, is perhaps the most known example. This gene encodes at least two different proteins from different reading frames, p16(INK4) and p14(ARF). Both of these have splice variants, p16-gamma and p12, respectively, with tissue-specific expression.41 42 Maybe this kind of regulatory complexity is a peculiarity of cyclin-dependent kinase inhibitors.
Our study identifies CDKN1C-204 (isoform B) as the most abundant transcript, followed by CDKN1C-201 (isoform D). The GTEx portal (gtexporal.org) suggests CDKN1C-201 to be the most abundant isoform, particularly in the brain, followed by the isoforms encoded from CDKN1C-204 and CDKN1C-202, but this could be explained by poor coverage of the PAPA-repeat region not included in the CDKN1C-201, that is, be artefactual. CDKN1C-201 is only reported in humans and some higher primates.
Despite high CDKN1C expression in the embryonic brain, developmental delay and microcephaly are not considered features of either BWS or IMAGe, although brain abnormalities are reported in some patients.7 11 43 However, behavioural and emotional difficulties and autistic spectrum disorders were found to be more frequent in BWS than controls, especially among patients with IC2 defects.44 Moreover, in a cancer predisposition syndrome clinic, half of the patients with BWS or isolated hemihypertrophy needed special therapy.45 Protein studies in embryonic brains of mice and rats suggested that Cdkn1c regulated newly formed migrating neurons,46 and played a CDI-independent role in the maturation of midbrain dopaminergic neurons.47 Differential spatial and temporal Cdkn1c expression in embryonic brain could be important for neurogenesis and gliogenesis, differentiation and generation of adult neural stem cells.48–50 During cortical development, the differentiation of projection neurons was regulated via Cdkn1c.51 According to a recent study, increased neuronal Cdkn1 expression resulted in abnormal social behaviour, implying that tightly regulated monoallelic expression is beneficial for neurological function.52 Unexpectedly, brain-specific conditional deletion of the imprinted paternal cdk1c allele in mice resulted in microcephaly and thinning of the neocortex, despite low paternal expression (1%–2% of maternal levels) in control brains.53
The delins-mutated hybrid D–A/B transcript is our best explanation for the child’s developmental delay. Brain damage due to neonatal hypoglycaemia or an untreated adrenal crisis was highly unlikely, and his brain MRI was normal, but prematurity and long hospitalisation might be contributing factors. Comparison with other IMAGe patients is difficult as many are not molecularly confirmed and could include phenocopies like MIRAGE syndrome.54 Neither a high-resolution CNV analysis nor a trio-WES revealed alternative explanations for his developmental delay, but this cannot be excluded before further similar cases confirm a neurological association to CDKN1C-201. We searched the literature for other variants that may affect CDKN1C-201 and came across a BWS family with a variant c.821–9C>A with an unknown function.7 Unfortunately, no RNA was available to check the molecular consequence (Brioude, personal communication).
In summary, our findings demonstrate that a single delins variant can give rise to three distinct phenotypes through different molecular pathomechanisms. A hitherto not reported transcript CDKN1C-201, encoding an isoform D (A6NK88) with abundant brain expression, is also affected by the variant. Further functional studies or additional patients are needed to address the role of isoform D in brain development and to verify if changes to this isoform may cause a third face of the CDKN1C spectrum: developmental delay.
Acknowledgments
We are most grateful to the family whose enthusiastic collaboration was essential to do such a complex genetic study. We also want to thank our coworkers Rita Holdhus, Hilde Rusaas, Guri Matre, Sigrid Erdal, Lene F Sandvik and Tomasz Stokowy. We also acknowledge the service from the Genomic Core Facility (GCF) at the University of Bergen, which is supported by Trond Mohn Foundation, for promoting the RNA sequencing.
Footnotes
Contributors: SB has written and planned the article, and investigated the patients. BIH has planned and performed the molecular investigations. PBJ has contributed to the evaluation of the patient. GH has contributed to the planning and reviewing of the work.
Funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.
Competing interests: None declared.
Provenance and peer review: Not commissioned; externally peer reviewed.
Supplemental material: This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.
Data availability statement
All data relevant to the study are included in the article or uploaded as online supplemental information.
Ethics statements
Patient consent for publication
Parental/guardian consent obtained.
References
- 1. Eggermann T, Binder G, Brioude F, Maher ER, Lapunzina P, Cubellis MV, Bergadá I, Prawitt D, Begemann M. CDKN1C mutations: two sides of the same coin. Trends Mol Med 2014;20:614–22. 10.1016/j.molmed.2014.09.001 [DOI] [PubMed] [Google Scholar]
- 2. Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M, Komoto Y, Okada A, Ohishi S, Nabetani A, Morisaki H, Nakayama M, Niikawa N, Mukai T. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet 1996;14:171–3. 10.1038/ng1096-171 [DOI] [PubMed] [Google Scholar]
- 3. Brioude F, Lacoste A, Netchine I, Vazquez M-P, Auber F, Audry G, Gauthier-Villars M, Brugieres L, Gicquel C, Le Bouc Y, Rossignol S. Beckwith-Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm Res Paediatr 2013;80:457–65. 10.1159/000355544 [DOI] [PubMed] [Google Scholar]
- 4. Arboleda VA, Lee H, Parnaik R, Fleming A, Banerjee A, Ferraz-de-Souza B, Délot EC, Rodriguez-Fernandez IA, Braslavsky D, Bergadá I, Dell'Angelica EC, Nelson SF, Martinez-Agosto JA, Achermann JC, Vilain E. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet 2012;44:788–92. 10.1038/ng.2275 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010;18:8–14. 10.1038/ejhg.2009.106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, Boonen SE, Cole T, Baker R, Bertoletti M, Cocchi G, Coze C, De Pellegrin M, Hussain K, Ibrahim A, Kilby MD, Krajewska-Walasek M, Kratz CP, Ladusans EJ, Lapunzina P, Le Bouc Y, Maas SM, Macdonald F, Õunap K, Peruzzi L, Rossignol S, Russo S, Shipster C, Skórka A, Tatton-Brown K, Tenorio J, Tortora C, Grønskov K, Netchine I, Hennekam RC, Prawitt D, Tümer Z, Eggermann T, Mackay DJG, Riccio A, Maher ER. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol 2018;14:229–49. 10.1038/nrendo.2017.166 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Brioude F, Netchine I, Praz F, Le Jule M, Calmel C, Lacombe D, Edery P, Catala M, Odent S, Isidor B, Lyonnet S, Sigaudy S, Leheup B, Audebert-Bellanger S, Burglen L, Giuliano F, Alessandri J-L, Cormier-Daire V, Laffargue F, Blesson S, Coupier I, Lespinasse J, Blanchet P, Boute O, Baumann C, Polak M, Doray B, Verloes A, Viot G, Le Bouc Y, Rossignol S. Mutations of the imprinted CDKN1C gene as a cause of the overgrowth Beckwith-Wiedemann syndrome: clinical spectrum and functional characterization. Hum Mutat 2015;36:894–902. 10.1002/humu.22824 [DOI] [PubMed] [Google Scholar]
- 8. Mussa A, Russo S, De Crescenzo A, Freschi A, Calzari L, Maitz S, Macchiaiolo M, Molinatto C, Baldassarre G, Mariani M, Tarani L, Bedeschi MF, Milani D, Melis D, Bartuli A, Cubellis MV, Selicorni A, Cirillo Silengo M, Larizza L, Riccio A, Ferrero GB. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2016;24:183–90. 10.1038/ejhg.2015.88 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Welsh HI, Stockley TL, Parkinson N, Ardinger HH. CDKN1C mutations and genital anomalies. Am J Med Genet A 2012;158A:265. 10.1002/ajmg.a.34388 [DOI] [PubMed] [Google Scholar]
- 10. Romanelli V, Belinchón A, Benito-Sanz S, Martínez-Glez V, Gracia-Bouthelier R, Heath KE, Campos-Barros A, García-Miñaur S, Fernandez L, Meneses H, López-Siguero JP, Guillén-Navarro E, Gómez-Puertas P, Wesselink J-J, Mercado G, Esteban-Marfil V, Palomo R, Mena R, Sánchez A, Del Campo M, Lapunzina P. CDKN1C (p57(Kip2)) analysis in Beckwith-Wiedemann syndrome (BWS) patients: genotype–phenotype correlations, novel mutations, and polymorphisms. Am J Med Genet A 2010;152A:1390–7. 10.1002/ajmg.a.33453 [DOI] [PubMed] [Google Scholar]
- 11. Gardiner K, Chitayat D, Choufani S, Shuman C, Blaser S, Terespolsky D, Farrell S, Reiss R, Wodak S, Pu S, Ray PN, Baskin B, Weksberg R. Brain abnormalities in patients with Beckwith-Wiedemann syndrome. Am J Med Genet A 2012;158A:1388–94. 10.1002/ajmg.a.35358 [DOI] [PubMed] [Google Scholar]
- 12. Jurkiewicz D, Skórka A, Ciara E, Kugaudo M, Pelc M, Chrzanowska K, Krajewska-Walasek M. Rare clinical findings in three sporadic cases of Beckwith-Wiedemann syndrome due to novel mutations in the CDKN1C gene. Clin Dysmorphol 2020;29:28–34. 10.1097/MCD.0000000000000307 [DOI] [PubMed] [Google Scholar]
- 13. Brioude F, Oliver-Petit I, Blaise A, Praz F, Rossignol S, Le Jule M, Thibaud N, Faussat A-M, Tauber M, Le Bouc Y, Netchine I. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J Med Genet 2013;50:823–30. 10.1136/jmedgenet-2013-101691 [DOI] [PubMed] [Google Scholar]
- 14. Kerns SL, Guevara-Aguirre J, Andrew S, Geng J, Guevara C, Guevara-Aguirre M, Guo M, Oddoux C, Shen Y, Zurita A, Rosenfeld RG, Ostrer H, Hwa V, Dauber A. A novel variant in CDKN1C is associated with intrauterine growth restriction, short stature, and early-adulthood-onset diabetes. J Clin Endocrinol Metab 2014;99:E2117–22. 10.1210/jc.2014-1949 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Obermann C, Meyer E, Prager S, Tomiuk J, Wollmann HA, Eggermann T. Searching for genomic variants in IGF2 and CDKN1C in Silver-Russell syndrome patients. Mol Genet Metab 2004;82:246–50. 10.1016/j.ymgme.2004.04.008 [DOI] [PubMed] [Google Scholar]
- 16. Suntharalingham JP, Ishida M, Buonocore F, Del Valle I, Solanky N, Demetriou C, Regan L, Moore GE, Achermann JC. Analysis of CDKN1C in fetal growth restriction and pregnancy loss. F1000Res 2019;8. 10.12688/f1000research.15016.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Inoue T, Nakamura A, Iwahashi-Odano M, Tanase-Nakao K, Matsubara K, Nishioka J, Maruo Y, Hasegawa Y, Suzumura H, Sato S, Kobayashi Y, Murakami N, Nakabayashi K, Yamazawa K, Fuke T, Narumi S, Oka A, Ogata T, Fukami M, Kagami M. Contribution of gene mutations to Silver-Russell syndrome phenotype: multigene sequencing analysis in 92 etiology-unknown patients. Clin Epigenetics 2020;12:86. 10.1186/s13148-020-00865-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Vilain E, Le Merrer M, Lecointre C, Desangles F, Kay MA, Maroteaux P, McCabe ER. IMAGe, a new clinical association of intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies. J Clin Endocrinol Metab 1999;84:4335–40. 10.1210/jcem.84.12.6186 [DOI] [PubMed] [Google Scholar]
- 19. Heide S, Chantot-Bastaraud S, Keren B, Harbison MD, Azzi S, Rossignol S, Michot C, Lackmy-Port Lys M, Demeer B, Heinrichs C, Newfield RS, Sarda P, Van Maldergem L, Trifard V, Giabicani E, Siffroi J-P, Le Bouc Y, Netchine I, Brioude F. Chromosomal rearrangements in the 11p15 imprinted region: 17 new 11p15.5 duplications with associated phenotypes and putative functional consequences. J Med Genet 2018;55:205–13. 10.1136/jmedgenet-2017-104919 [DOI] [PubMed] [Google Scholar]
- 20. Hamajima N, Johmura Y, Suzuki S, Nakanishi M, Saitoh S. Increased protein stability of CDKN1C causes a gain-of-function phenotype in patients with IMAGe syndrome. PLoS One 2013;8:e75137. 10.1371/journal.pone.0075137 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Bodian DL, Solomon BD, Khromykh A, Thach DC, Iyer RK, Link K, Baker RL, Baveja R, Vockley JG, Niederhuber JE. Diagnosis of an imprinted-gene syndrome by a novel bioinformatics analysis of whole-genome sequences from a family trio. Mol Genet Genomic Med 2014;2:530–8. 10.1002/mgg3.107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Kato F, Hamajima T, Hasegawa T, Amano N, Horikawa R, Nishimura G, Nakashima S, Fuke T, Sano S, Fukami M, Ogata T. IMAGe syndrome: clinical and genetic implications based on investigations in three Japanese patients. Clin Endocrinol 2014;80:706–13. 10.1111/cen.12379 [DOI] [PubMed] [Google Scholar]
- 23. Homma TK, Freire BL, Honjo Kawahira RS, Dauber A, Funari MFdeA, Lerario AM, Nishi MY, Albuquerque EVde, Vasques GdeA, Collett-Solberg PF, Miura Sugayama SM, Bertola DR, Kim CA, Arnhold IJP, Malaquias AC, Jorge AAdeL. Genetic disorders in prenatal onset syndromic short stature identified by exome sequencing. J Pediatr 2019;215:192–8. 10.1016/j.jpeds.2019.08.024 [DOI] [PubMed] [Google Scholar]
- 24. Sabir AH, Ryan G, Mohammed Z, Kirk J, Kiely N, Thyagarajan M, Cole T. Familial Russell-Silver syndrome like phenotype in the PCNA domain of the CDKN1C gene, a further case. Case Rep Genet 2019;2019:1–8. 10.1155/2019/1398250 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Binder G, Ziegler J, Schweizer R, Habhab W, Haack TB, Heinrich T, Eggermann T. Novel mutation points to a hot spot in CDKN1C causing Silver-Russell syndrome. Clin Epigenetics 2020;12:152. 10.1186/s13148-020-00945-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Borges KS, Arboleda VA, Vilain E. Mutations in the PCNA-binding site of CDKN1C inhibit cell proliferation by impairing the entry into S phase. Cell Div 2015;10:2. 10.1186/s13008-015-0008-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Balasubramanian M, Sprigg A, Johnson DS. IMAGe syndrome: case report with a previously unreported feature and review of published literature. Am J Med Genet A 2010;152A:3138–42. 10.1002/ajmg.a.33716 [DOI] [PubMed] [Google Scholar]
- 28. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015;12:357–60. 10.1038/nmeth.3317 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 2016;11:1650–67. 10.1038/nprot.2016.095 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923–30. 10.1093/bioinformatics/btt656 [DOI] [PubMed] [Google Scholar]
- 31. Hoek TA, Khuperkar D, Lindeboom RGH, Sonneveld S, Verhagen BMP, Boersma S, Vermeulen M, Tanenbaum ME. Single-molecule imaging uncovers rules governing nonsense-mediated mRNA decay. Mol Cell 2019;75:e11:324–39. 10.1016/j.molcel.2019.05.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Nguyen LS, Wilkinson MF, Gecz J. Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 2014;46 Pt 2:175–86. 10.1016/j.neubiorev.2013.10.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Wakeling EL, Brioude F, Lokulo-Sodipe O, O'Connell SM, Salem J, Bliek J, Canton APM, Chrzanowska KH, Davies JH, Dias RP, Dubern B, Elbracht M, Giabicani E, Grimberg A, Grønskov K, Hokken-Koelega ACS, Jorge AA, Kagami M, Linglart A, Maghnie M, Mohnike K, Monk D, Moore GE, Murray PG, Ogata T, Petit IO, Russo S, Said E, Toumba M, Tümer Z, Binder G, Eggermann T, Harbison MD, Temple IK, Mackay DJG, Netchine I. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol 2017;13:105–24. 10.1038/nrendo.2016.138 [DOI] [PubMed] [Google Scholar]
- 34. Fatscher T, Boehm V, Gehring NH, Mechanism GNH. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci 2015;72:4523–44. 10.1007/s00018-015-2017-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Iiri T, Herzmark P, Nakamoto JM, van Dop C, Bourne HR. Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature 1994;371:164–8. 10.1038/371164a0 [DOI] [PubMed] [Google Scholar]
- 36. Decker RA, Peacock ML. Occurrence of MEN 2a in familial Hirschsprung’s disease: a new indication for genetic testing of the RET proto-oncogene. J Pediatr Surg 1998;33:207–14. 10.1016/S0022-3468(98)90433-X [DOI] [PubMed] [Google Scholar]
- 37. Zenker M, Rauch A, Winterpacht A, Tagariello A, Kraus C, Rupprecht T, Sticht H, Reis A. A dual phenotype of periventricular nodular heterotopia and frontometaphyseal dysplasia in one patient caused by a single FLNA mutation leading to two functionally different aberrant transcripts. Am J Hum Genet 2004;74:731–7. 10.1086/383094 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Degenkolbe E, König J, Zimmer J, Walther M, Reißner C, Nickel J, Plöger F, Raspopovic J, Sharpe J, Dathe K, Hecht JT, Mundlos S, Doelken SC, Seemann P. A GDF5 point mutation strikes twice—causing BDA1 and SYNS2. PLoS Genet 2013;9:e1003846. 10.1371/journal.pgen.1003846 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Shaw ND, Brand H, Kupchinsky ZA, Bengani H, Plummer L, Jones TI, Erdin S, Williamson KA, Rainger J, Stortchevoi A, Samocha K, Currall BB, Dunican DS, Collins RL, Willer JR, Lek A, Lek M, Nassan M, Pereira S, Kammin T, Lucente D, Silva A, Seabra CM, Chiang C, An Y, Ansari M, Rainger JK, Joss S, Smith JC, Lippincott MF, Singh SS, Patel N, Jing JW, Law JR, Ferraro N, Verloes A, Rauch A, Steindl K, Zweier M, Scheer I, Sato D, Okamoto N, Jacobsen C, Tryggestad J, Chernausek S, Schimmenti LA, Brasseur B, Cesaretti C, García-Ortiz JE, Buitrago TP, Silva OP, Hoffman JD, Mühlbauer W, Ruprecht KW, Loeys BL, Shino M, Kaindl AM, Cho C-H, Morton CC, Meehan RR, van Heyningen V, Liao EC, Balasubramanian R, Hall JE, Seminara SB, Macarthur D, Moore SA, Yoshiura K-I, Gusella JF, Marsh JA, Graham JM, Lin AE, Katsanis N, Jones PL, Crowley WF, Davis EE, FitzPatrick DR, Talkowski ME. Smchd1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nat Genet 2017;49:238–48. 10.1038/ng.3743 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Kaplanis J, Akawi N, Gallone G, McRae JF, Prigmore E, Wright CF, Fitzpatrick DR, Firth HV, Barrett JC, Hurles ME, Deciphering Developmental Disorders study . Exome-wide assessment of the functional impact and pathogenicity of multinucleotide mutations. Genome Res 2019;29:1047–56. 10.1101/gr.239756.118 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Robertson KD, Jones PA. Tissue-specific alternative splicing in the human INK4a/ARF cell cycle regulatory locus. Oncogene 1999;18:3810–20. 10.1038/sj.onc.1202737 [DOI] [PubMed] [Google Scholar]
- 42. Lin Y-C, Diccianni MB, Kim Y, Lin H-H, Lee C-H, Lin R-J, Joo SH, Li J, Chuang T-J, Yang A-S, Kuo H-H, Tsai M-D, Yu AL. Human p16gamma, a novel transcriptional variant of p16(INK4A), coexpresses with p16(INK4A) in cancer cells and inhibits cell-cycle progression. Oncogene 2007;26:7017–27. 10.1038/sj.onc.1210507 [DOI] [PubMed] [Google Scholar]
- 43. Udayakumaran S, Onyia CU. Beckwith-Wiedemann syndrome and Chiari I malformation—a case-based review of central nervous system involvement in hemihypertrophy syndromes. Childs Nerv Syst 2015;31:637–41. 10.1007/s00381-015-2642-5 [DOI] [PubMed] [Google Scholar]
- 44. Kent L, Bowdin S, Kirby GA, Cooper WN, Maher ER. Beckwith Weidemann syndrome: a behavioral phenotype–genotype study. Am J Med Genet B Neuropsychiatr Genet 2008;147B:1295–7. 10.1002/ajmg.b.30729 [DOI] [PubMed] [Google Scholar]
- 45. Groves AP, Gettinger K, Druley TE, Kozel BA, Shinawi M, Mohrmann C, Henry J, Jacobi C, Trinkaus K, Hayashi RJ. Special therapy and psychosocial needs identified in a multidisciplinary cancer predisposition syndrome clinic. J Pediatr Hematol Oncol 2019;41:133–6. 10.1097/MPH.0000000000001251 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Itoh Y, Masuyama N, Nakayama K, Nakayama KI, Gotoh Y. The cyclin-dependent kinase inhibitors p57 and p27 regulate neuronal migration in the developing mouse neocortex. J Biol Chem 2007;282:390–6. 10.1074/jbc.M609944200 [DOI] [PubMed] [Google Scholar]
- 47. Joseph B, Wallén-Mackenzie A, Benoit G, Murata T, Joodmardi E, Okret S, Perlmann T. p57(Kip2) cooperates with Nurr1 in developing dopamine cells. Proc Natl Acad Sci U S A 2003;100:15619–24. 10.1073/pnas.2635658100 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Ye W, Mairet-Coello G, Pasoreck E, Dicicco-Bloom E. Patterns of p57Kip2 expression in embryonic rat brain suggest roles in progenitor cell cycle exit and neuronal differentiation. Dev Neurobiol 2009;69:1–21. 10.1002/dneu.20680 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Tury A, Mairet-Coello G, DiCicco-Bloom E. The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors. Cereb Cortex 2011;21:1840–56. 10.1093/cercor/bhq254 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Furutachi S, Miya H, Watanabe T, Kawai H, Yamasaki N, Harada Y, Imayoshi I, Nelson M, Nakayama KI, Hirabayashi Y, Gotoh Y. Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 2015;18:657–65. 10.1038/nn.3989 [DOI] [PubMed] [Google Scholar]
- 51. Pfurr S, Chu Y-H, Bohrer C, Greulich F, Beattie R, Mammadzada K, Hils M, Arnold SJ, Taylor V, Schachtrup K, Uhlenhaut NH, Schachtrup C. The E2A splice variant E47 regulates the differentiation of projection neurons via p57(KIP2) during cortical development. Development 2017;144:3917–31. 10.1242/dev.145698 [DOI] [PubMed] [Google Scholar]
- 52. McNamara GI, John RM, Isles AR. Territorial behavior and social stability in the mouse require correct expression of imprinted Cdkn1c. Front Behav Neurosci 2018;12:28. 10.3389/fnbeh.2018.00028 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Imaizumi Y, Furutachi S, Watanabe T, Miya H, Kawaguchi D, Gotoh Y. Role of the imprinted allele of the CDKN1C gene in mouse neocortical development. Sci Rep 2020;10:1884. 10.1038/s41598-020-58629-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Kim Y-M, Seo GH, Kim G-H, Ko JM, Choi J-H, Yoo H-W. A case of an infant suspected as IMAGE syndrome who were finally diagnosed with MIRAGE syndrome by targeted Mendelian exome sequencing. BMC Med Genet 2018;19:35. 10.1186/s12881-018-0546-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
jmedgenet-2020-107401supp001.pdf (4MB, pdf)
Data Availability Statement
All data relevant to the study are included in the article or uploaded as online supplemental information.