Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
2022 Jan 27;9(1):56–70. doi: 10.1007/s42524-021-0186-9

Digital twin-driven smart supply chain

Lu Wang 1, Tianhu Deng 1,, Zuo-Jun Max Shen 2,3, Hao Hu 4, Yongzhi Qi 4
PMCID: PMC8792455

Abstract

Today’s supply chain is becoming complex and fragile. Hence, supply chain managers need to create and unlock the value of the smart supply chain. A smart supply chain requires connectivity, visibility, and agility, and it needs be integrated and intelligent. The digital twin (DT) concept satisfies these requirements. Therefore, we propose creating a DT-driven supply chain (DTSC) as an innovative and integrated solution for the smart supply chain. We provide background information to explain the DT concept and to demonstrate the method for building a DTSC by using the DT concept. We discuss three research opportunities in building a DTSC, including supply chain modeling, real-time supply chain optimization, and data usage in supply chain collaboration. Finally, we highlight a motivating case from JD.COM, China’s largest retailer by revenue, in applying the DTSC platform to address supply chain network reconfiguration challenges during the COVID-19 pandemic.

Keywords: digital twin, supply chain management

Footnotes

The authors are grateful for the financial support from the National Key R&D Program of China (Grant No. 2018YFB1700600).

References

  1. AlMulhim A F. Smart supply chain and firm performance: The role of digital technologies. Business Process Management Journal. 2021;27(5):1353–1372. doi: 10.1108/BPMJ-12-2020-0573. [DOI] [Google Scholar]
  2. Anasoft (2019). Digital twin: Smart industry and intelligent enterprise. Available at: anasoft.COM/emans/en/home/news-blog/blog/Digital-Twin-Smart-Industry-and-Intelligent-Enterprise
  3. Andronie M, Lazaroiu G, Stefanescu R, Uta C, Dijmarescu I. Sustainable, smart, and sensing technologies for cyber-physical manufacturing systems: A systematic literature review. Sustainability. 2021;13(10):5495. doi: 10.3390/su13105495. [DOI] [Google Scholar]
  4. Autiosalo J, Ala-Laurinaho R, Mattila J, Valtonen M, Peltoranta V, Tammi K. Towards integrated digital twins for industrial products: Case study on an overhead crane. Applied Sciences. 2021;11(2):683. doi: 10.3390/app11020683. [DOI] [Google Scholar]
  5. Avventuroso G, Silvestri M, Pedrazzoli P. 20th IFAC World Congress. Toulouse: Elsevier; 2017. A networked production system to implement virtual enterprise and product lifecycle information loops; pp. 7964–7969. [Google Scholar]
  6. Baruffaldi G, Accorsi R, Manzini R. Warehouse management system customization and information availability in 3PL companies: A decision-support tool. Industrial Management & Data Systems. 2019;119(2):251–273. doi: 10.1108/IMDS-01-2018-0033. [DOI] [Google Scholar]
  7. Barykin S Y, Bochkarev A A, Dobronravin E, Sergeev S M (2021). The place and role of digital twin in supply chain management. Academy of Strategic Management Journal, 20(2S)
  8. Barykin S Y, Bochkarev A A, Kalinina O V, Yadykin V K. Concept for a supply chain digital twin. International Journal of Mathematical, Engineering and Management Sciences. 2020;5(6):1498–1515. doi: 10.33889/IJMEMS.2020.5.6.111. [DOI] [Google Scholar]
  9. Beltrami M, Orzes G, Sarkis J, Sartor M. Industry 4.0 and sustainability: Towards conceptualization and theory. Journal of Cleaner Production. 2021;312:127733. doi: 10.1016/j.jclepro.2021.127733. [DOI] [Google Scholar]
  10. Bertsimas D, Thiele A (2006). Robust and data-driven optimization: Modern decision making under uncertainty. In: INFORMS Tutorials in Operations Research: Models, Methods, and Applications for Innovative Decision Making, 95–122
  11. Boschert S, Rosen R. Digital twin—the simulation aspect. In: Hehenberger P, Bradley D, editors. Mechatronic Futures. Cham: Springer; 2016. pp. 59–74. [Google Scholar]
  12. Bottani E, Bertolini M, Rizzi A, Romagnoli G. Monitoring onshelf availability, out-of-stock and product freshness through RFID in the fresh food supply chain. International Journal of RF Technologies: Research and Applications. 2017;8(1–2):33–55. doi: 10.3233/RFT-171780. [DOI] [Google Scholar]
  13. Bueno-Solano A, Cedillo-Campos M G. Dynamic impact on global supply chains performance of disruptions propagation produced by terrorist acts. Transportation Research Part E: Logistics and Transportation Review. 2014;61:1–12. doi: 10.1016/j.tre.2013.09.005. [DOI] [Google Scholar]
  14. Burgos D, Ivanov D. Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions. Transportation Research Part E: Logistics and Transportation Review. 2021;152:102412. doi: 10.1016/j.tre.2021.102412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Busse A, Gerlach B, Lengeling J C, Poschmann P, Werner J, Zarnitz S. Towards digital twins of multimodal supply chains. Logistics. 2021;5(2):25. doi: 10.3390/logistics5020025. [DOI] [Google Scholar]
  16. Butner K. The smarter supply chain of the future. Strategy and Leadership. 2010;38(1):22–31. doi: 10.1108/10878571011009859. [DOI] [Google Scholar]
  17. Cao P, Zhao N G, Wu J. Dynamic pricing with Bayesian demand learning and reference price effect. European Journal of Operational Research. 2019;279(2):540–556. doi: 10.1016/j.ejor.2019.06.033. [DOI] [Google Scholar]
  18. Cavalcante I M, Frazzon E M, Forcellini F A, Ivanov D. A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management. 2019;49:86–97. doi: 10.1016/j.ijinfomgt.2019.03.004. [DOI] [Google Scholar]
  19. Chandra C, Kumar S. Supply chain management in theory and practice: A passing fad or a fundamental change? Industrial Management & Data Systems. 2000;100(3):100–114. doi: 10.1108/02635570010286168. [DOI] [Google Scholar]
  20. Chen J L, Zhao X B, Shen Z J. Risk mitigation benefit from backup suppliers in the presence of the horizontal fairness concern. Decision Sciences. 2015;46(4):663–696. doi: 10.1111/deci.12157. [DOI] [Google Scholar]
  21. Chen X, Hu P, Hu Z Y. Efficient algorithms for the dynamic pricing problem with reference price effect. Management Science. 2017;63(12):4389–4408. doi: 10.1287/mnsc.2016.2554. [DOI] [Google Scholar]
  22. Chen Z, Huang L. Digital twins for information-sharing in remanufacturing supply chain: A review. Energy. 2021;220:119712. doi: 10.1016/j.energy.2020.119712. [DOI] [Google Scholar]
  23. Christopher M. Logistics and Supply Chain Management. 4th ed. London: Pearson; 2011. [Google Scholar]
  24. Clark T, Barn B, Kulkarni V, Barat S. 13th Innovations in Software Engineering Conference (ISEC) Jabalpur: ACM; 2020. Language support for multi agent reinforcement learning; p. 7. [Google Scholar]
  25. Colicchia C, Dallari F, Melacini M. Increasing supply chain resilience in a global sourcing context. Production Planning and Control. 2010;21(7):680–694. doi: 10.1080/09537280903551969. [DOI] [Google Scholar]
  26. Cozmiuc D, Petrisor I. Industrie 4.0 by Siemens: Steps made today. Journal of Cases on Information Technology. 2018;20(2):30–48. doi: 10.4018/JCIT.2018040103. [DOI] [Google Scholar]
  27. D’Angelo A, Chong E K P (2018). A systems engineering approach to incorporating the Internet of Things to reliability-risk modeling for ranking conceptual designs. In: ASME International Mechanical Engineering Congress and Exposition—Design, Reliability, Safety, and Risk. Pittsburgh, PA, V013T05A027
  28. Daugherty P, Carrel-Billiard M, Biltz M (2021). Accenture technology vision 2021. Available at: accenture.COM/gb-en/insights/technology/technology-trends-2021
  29. Defraeye T, Shrivastava C, Berry T, Verboven P, Onwude D, Schudel S, Buehlmann A, Cronje P, Rossi R M. Digital twins are coming: Will we need them in supply chains of fresh horticultural produce? Trends in Food Science & Technology. 2021;109:245–258. doi: 10.1016/j.tifs.2021.01.025. [DOI] [Google Scholar]
  30. Defraeye T, Tagliavini G, Wu W, Prawiranto K, Schudel S, Kerisima M A, Verboven P, Buhlmann A. Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resources, Conservation and Recycling. 2019;149:778–794. doi: 10.1016/j.resconrec.2019.06.002. [DOI] [Google Scholar]
  31. de Kok T, Grob C, Laumanns M, Minner S, Rambau J, Schade K. A typology and literature review on stochastic multi-echelon inventory models. European Journal of Operational Research. 2018;269(3):955–983. doi: 10.1016/j.ejor.2018.02.047. [DOI] [Google Scholar]
  32. Deng T H, Shen Z J M, Shanthikumar J G. Statistical learning of service-dependent demand in a multiperiod newsvendor setting. Operations Research. 2014;62(5):1064–1076. doi: 10.1287/opre.2014.1303. [DOI] [Google Scholar]
  33. Deng T H, Zhang K R, Shen Z J M. A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. Journal of Management Science and Engineering. 2021;6(2):125–134. doi: 10.1016/j.jmse.2021.03.003. [DOI] [Google Scholar]
  34. de Paula Ferreira W, Armellini F, de Santa-Eulalia L A. Simulation in Industry 4.0: A state-of-the-art review. Computers & Industrial Engineering. 2020;149:106868. doi: 10.1016/j.cie.2020.106868. [DOI] [Google Scholar]
  35. Dobler M, Busel P, Hartmann C, Schumacher J (2020). Supporting SMEs in the Lake Constance region in the implementation of cyber-physical-systems: Framework and demonstrator. In: 2020 IEEE International Conference on Engineering, Technology and Innovation. Cardiff, 1–8
  36. Ducree J, Gravitt M, Walshe R, Bartling S, Etzrodt M, Harrington T. Open platform concept for blockchain-enabled crowdsourcing of technology development and supply chains. Frontiers in Blockchain. 2020;3:586525. doi: 10.3389/fbloc.2020.586525. [DOI] [Google Scholar]
  37. Dutta G, Kumar R, Sindhwani R, Singh R K. Adopting shop floor digitalization in Indian manufacturing SMEs: A transformational study. In: Phanden R K, Mathiyazhagan K, Kumar R, Paulo Davim J, editors. Advances in Industrial and Production Engineering. Singapore: Springer; 2021. pp. 599–611. [Google Scholar]
  38. Ehm H, Ramzy N, Moder P, Summerer C, Fetz S, Neau C. Winter Simulation Conference (WSC) National Harbor, MD: IEEE; 2019. Digital reference: A semantic web for semiconductor manufacturing and supply chains containing semiconductors; pp. 2409–2418. [Google Scholar]
  39. European Union (2018). The General Data Protection Regulation (GDPR). Available at: ec.europa.eu/info/law/law-topic/data-protection_en [PubMed]
  40. Feng Q, Shanthikumar J G. Supply and demand functions in inventory models. Operations Research. 2018;66(1):77–91. doi: 10.1287/opre.2017.1648. [DOI] [Google Scholar]
  41. Frazzon E M, Agostino I R S, Broda E, Freitag M. Manufacturing networks in the era of digital production and operations: A socio-cyber-physical perspective. Annual Reviews in Control. 2020;49:288–294. doi: 10.1016/j.arcontrol.2020.04.008. [DOI] [Google Scholar]
  42. Fuller A, Fan Z, Day C, Barlow C. Digital twin: Enabling technologies, challenges and open research. IEEE Access. 2020;8:108952–108971. doi: 10.1109/ACCESS.2020.2998358. [DOI] [Google Scholar]
  43. Garvey M D, Carnovale S, Yeniyurt S. An analytical framework for supply network risk propagation: A Bayesian network approach. European Journal of Operational Research. 2015;243(2):618–627. doi: 10.1016/j.ejor.2014.10.034. [DOI] [Google Scholar]
  44. Ghate A. Optimal minimum bids and inventory scrapping in sequential, single-unit, Vickrey auctions with demand learning. European Journal of Operational Research. 2015;245(2):555–570. doi: 10.1016/j.ejor.2015.03.015. [DOI] [Google Scholar]
  45. Ghobakhloo M. The future of manufacturing industry: A strategic roadmap toward Industry 4.0. Journal of Manufacturing Technology Management. 2018;29(6):910–936. doi: 10.1108/JMTM-02-2018-0057. [DOI] [Google Scholar]
  46. Glaessgen E H, Stargel D S (2012). The digital twin paradigm for future NASA and US Air Force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, HI, 1818
  47. Gligor D, Gligor N, Holcomb M, Bozkurt S. Distinguishing between the concepts of supply chain agility and resilience: A multidisciplinary literature review. International Journal of Logistics Management. 2019;30(2):467–487. [Google Scholar]
  48. Golan M S, Trump B D, Cegan J C, Linkov I. Supply chain resilience for vaccines: Review of modeling approaches in the context of the COVID-19 pandemic. Industrial Management & Data Systems. 2021;121(7):1723–1748. doi: 10.1108/IMDS-01-2021-0022. [DOI] [Google Scholar]
  49. Gorodetsky V I, Kozhevnikov S S, Novichkov D, Skobelev P O. 9th International Conference on Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS) Linz: Springer; 2019. The framework for designing autonomous cyber-physical multiagent systems for adaptive resource management; pp. 52–64. [Google Scholar]
  50. Greif T, Stein N, Flath C M. Peeking into the void: Digital twins for construction site logistics. Computers in Industry. 2020;121:103264. doi: 10.1016/j.compind.2020.103264. [DOI] [Google Scholar]
  51. Grieves M. Product lifecycle management: The new paradigm for enterprises. International Journal of Product Development. 2005;2(1/2):71–84. doi: 10.1504/IJPD.2005.006669. [DOI] [Google Scholar]
  52. Grieves M. Product Lifecycle Management: Driving the Next Generation of Lean Thinking. New York: McGraw Hill; 2006. [Google Scholar]
  53. Grieves M. Virtually Perfect: Driving Innovative and Lean Products through Product Lifecycle Management. Brevard County: Space Coast Press; 2011. [Google Scholar]
  54. Grieves M (2015). Digital twin: Manufacturing excellence through virtual factory replication. Whitepaper
  55. Grieves M, Vickers J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex system. In: Kahlen F J, Flumerfelt S, Alves A, editors. Transdisciplinary Perspectives on Complex Systems. Cham: Springer; 2017. pp. 85–113. [Google Scholar]
  56. Guo X Y, Trimponias G, Wang X X, Chen Z T, Geng Y H, Liu X (2017). Cellular network configuration via online learning and joint optimization. In: IEEE International Conference on Big Data. Boston, MA, 1295–1300
  57. Gupta N, Tiwari A, Bukkapatnam S T S, Karri R. Additive manufacturing cyber-physical system: Supply chain cybersecurity and risks. IEEE Access. 2020;8:47322–47333. doi: 10.1109/ACCESS.2020.2978815. [DOI] [Google Scholar]
  58. Haag S, Simon C (2019). Simulation of horizontal and vertical integration in digital twins. In: 33rd International ECMS Conference on Modelling and Simulation. Caserta, 284–289
  59. Harrison J M, Keskin N B, Zeevi A. Bayesian dynamic pricing policies: Learning and earning under a binary prior distribution. Management Science. 2012;58(3):570–586. doi: 10.1287/mnsc.1110.1426. [DOI] [Google Scholar]
  60. Heemels W P, Johansson K H, Tabuada P (2012). An introduction to event-triggered and self-triggered control. In: 51st IEEE Conference on Decision and Control (CDC). Maui, HI, 3270–3285
  61. Hegedus C, Franko A, Varga P (2019). Asset and production tracking through value chains for Industry 4.0 using the arrowhead framework. In: IEEE International Conference on Industrial Cyber Physical Systems (ICPS). Taipei, 655–660
  62. Heim S, Clemens J, Steck J E, Basic C, Timmons D, Zwiener K (2020). Predictive maintenance on aircraft and applications with digital twin. In: 8th IEEE International Conference on Big Data. Atlanta, GA, 4122–4127
  63. Hippold S (2020). Coronavirus: How to secure your supply chain. Available at: gartner.COM/smarterwithgartner/coronavirus-how-to-secure-your-supply-chain
  64. Ho G T S, Tang Y M, Tsang K Y, Tang V, Chau K Y. A blockchain-based system to enhance aircraft parts traceability and trackability for inventory management. Expert Systems with Applications. 2021;179:115101. doi: 10.1016/j.eswa.2021.115101. [DOI] [Google Scholar]
  65. Hong L J, Jiang G X. Offline simulation online application: A new framework of simulation-based decision making. Asia-Pacific Journal of Operational Research. 2019;36(6):1940015. doi: 10.1142/S0217595919400153. [DOI] [Google Scholar]
  66. Internet of Business (2017). Uncertainty persists around ownership and value of IoT data. Available at: internetofbusiness.COM/uncertainty-ownership-value-iot-data-persists
  67. Ivanov D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transportation Research Part E: Logistics and Transportation Review. 2020;136:101922. doi: 10.1016/j.tre.2020.101922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Ivanov D, Dolgui A. 9th IFAC Conference on Manufacturing Modelling, Management and Control. Berlin: Elsevier; 2019. New disruption risk management perspectives in supply chains: Digital twins, the ripple effect, and resileanness; pp. 337–342. [Google Scholar]
  69. Ivanov D, Dolgui A. A digital supply chain twin for managing the disruption risks and resilience in the era of industry 4.0. Production Planning and Control. 2021;32(9):775–788. doi: 10.1080/09537287.2020.1768450. [DOI] [Google Scholar]
  70. Ivanov D, Dolgui A, Das A, Sokolov B. Digital supply chain twins: Managing the ripple effect, resilience, and disruption risks by data-driven optimization, simulation, and visibility. In: Ivanov D, Dolgui A, Sokolov B, editors. Handbook of Ripple Effects in the Supply Chain. Cham: Springer; 2019. pp. 309–332. [Google Scholar]
  71. Jiang G X, Hong L J, Nelson B L. Online risk monitoring using offline simulation. INFORMS Journal on Computing. 2020;32(2):356–375. [Google Scholar]
  72. Joannou D, Kalawsky R, Martinez-Garcia M, Fowler C, Fowler K. Realizing the role of permissioned blockchains in a systems engineering lifecycle. Systems. 2020;8(4):41. doi: 10.3390/systems8040041. [DOI] [Google Scholar]
  73. Kalaboukas K, Rozanec J, Kosmerlj A, Kiritsis D, Arampatzis G. Implementation of cognitive digital twins in connected and agile supply networks: An operational model. Applied Sciences. 2021;11(9):4103. doi: 10.3390/app11094103. [DOI] [Google Scholar]
  74. Kanak A, Ugur N, Ergun S (2019). A visionary model on blockchain-based accountability for secure and collaborative digital twin environments. In: IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, 3512–3517
  75. Kanak A, Ugur N, Ergun S (2020). Diamond accountability model for blockchain-enabled cyber-physical systems. In: IEEE 1st International Conference on Human-Machine Systems. Rome, 1–5
  76. Kang N, Shen H, Xu Y (2021). JD.Com improves delivery networks by a multi-period facility location model. INFORMS Journal on Applied Analytics, in press, doi:10.1287/inte.2021.1077
  77. Kenett R S, Bortman J (2021). The digital twin in Industry 4.0: A wide-angle perspective. Quality and Reliability Engineering International, in press, doi:10.1002/qre.2948
  78. Klappich D (2019). Hype cycle for supply chain execution technologies. Available at: gartner.COM/en/documents/3947306/hype-cycle-for-supply-chain-execution-technologies-2019
  79. Landolfi G, Menato S, Sorlini M, Valdata A, Rovere D, Fornasiero R, Pedrazzoli P. 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME) Naples: Elsevier; 2017. Intelligent value chain management framework for customized assistive healthcare devices; pp. 583–588. [Google Scholar]
  80. Lee D, Lee S. Digital twin for supply chain coordination in modular construction. Applied Sciences. 2021;11(13):5909. doi: 10.3390/app11135909. [DOI] [Google Scholar]
  81. Leng J, Ruan G, Jiang P, Xu K, Liu Q, Zhou X, Liu C. Blockchain-empowered sustainable manufacturing and product life-cycle management in Industry 4.0: A survey. Renewable & Sustainable Energy Reviews. 2020;132:110112. doi: 10.1016/j.rser.2020.110112. [DOI] [Google Scholar]
  82. Levi R, Perakis G, Uichanco J. The data-driven newsvendor problem: New bounds and insights. Operations Research. 2015;63(6):1294–1306. doi: 10.1287/opre.2015.1422. [DOI] [Google Scholar]
  83. Li X, Cao J, Liu Z, Luo X. Sustainable business model based on digital twin platform network: The inspiration from Haier’s case study in China. Sustainability. 2020;12(3):936. doi: 10.3390/su12030936. [DOI] [Google Scholar]
  84. Liyanage L H, Shanthikumar J G. A practical inventory control policy using operational statistics. Operations Research Letters. 2005;33(4):341–348. doi: 10.1016/j.orl.2004.08.003. [DOI] [Google Scholar]
  85. Lowrey K, Rajeswaran A, Kakade S, Todorov E, Mordatch I (2018). Plan online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint, arXiv:1811.01848
  86. Lucas A (2020). Apple warns on revenue guidance due to production delays, weak demand in China because of Coronavirus. Available at: cnbc.COM/2020/02/17/apple-warns-on-Coronavirus-it-wont-meet-revenue-guidance-because-of-constrained-iphone-supply-and-sup-pressed-demand-in-china.html
  87. Lummus R R, Krumwiede D W, Vokurka R J. The relationship of logistics to supply chain management: Developing a common industry definition. Industrial Management & Data Systems. 2001;101(8):426–432. doi: 10.1108/02635570110406730. [DOI] [Google Scholar]
  88. Ma S, Zhang Y, Liu Y, Yang H, Lv J, Ren S. Data-driven sustainable intelligent manufacturing based on demand response for energy-intensive industries. Journal of Cleaner Production. 2020;274:123155. doi: 10.1016/j.jclepro.2020.123155. [DOI] [Google Scholar]
  89. Makarov V L, Bakhtizin A R, Beklaryan G L, Akopov A S. Digital plant: Methods of discrete-event modeling and optimization of production characteristics. Business Informatics. 2021;15(2):7–20. doi: 10.17323/2587-814X.2021.2.7.20. [DOI] [Google Scholar]
  90. Mandolla C, Petruzzelli A M, Percoco G, Urbinati A. Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry. Computers in Industry. 2019;109:134–152. doi: 10.1016/j.compind.2019.04.011. [DOI] [Google Scholar]
  91. Marmolejo-Saucedo J A. Design and development of digital twins: A case study in supply chains. Mobile Networks and Applications. 2020;25(6):2141–2160. doi: 10.1007/s11036-020-01557-9. [DOI] [Google Scholar]
  92. Marmolejo-Saucedo J A, Hurtado-Hernandez M, Suarez-Valdes R. International Conference on Intelligent Computing & Optimization. Koh Samui: Springer; 2019. Digital twins in supply chain management: A brief literature review; pp. 653–661. [Google Scholar]
  93. Marr B (2017). What is digital twin technology and why is it so important? Available at: forbes.COM/sites/bernardmarr/2017/03/06/what-is-digital-twin-technology-and-why-is-it-so-important
  94. Min S, Mentzer J T. The role of marketing in supply chain management. International Journal of Physical Distribution & Logistics Management. 2000;30(9):765–787. doi: 10.1108/09600030010351462. [DOI] [Google Scholar]
  95. Minerva R, Lee G M, Crespi N. Digital twin in the IoT context: A survey on technical features, scenarios, and architectural models. Proceedings of the IEEE. 2020;108(10):1785–1824. doi: 10.1109/JPROC.2020.2998530. [DOI] [Google Scholar]
  96. Moder P, Ehm H, Jofer E. International Conference on Digital Transformation in Semiconductor Manufacturing. Milan: Springer; 2020. A holistic digital twin based on semantic web technologies to accelerate digitalization; pp. 3–13. [Google Scholar]
  97. Moder P, Ehm H, Ramzy N. International Conference on Digital Transformation in Semiconductor Manufacturing. Milan: Springer; 2020. Digital twin for plan and make using semantic web technologies: Extending the JESSI/SEMATECH MIMAC Standard to the digital reference; pp. 24–32. [Google Scholar]
  98. Moshood T D, Nawanir G, Sorooshian S, Okfalisa O. Digital twins driven supply chain visibility within logistics: A new paradigm for future logistics. Applied System Innovation. 2021;4(2):29. doi: 10.3390/asi4020029. [DOI] [Google Scholar]
  99. Nasir S B, Ahmed T, Karmaker C L, Ali S M, Paul S K, Majumdar A (2021). Supply chain viability in the context of COVID-19 pandemic in small- and medium-sized enterprises: Implications for sustainable development goals. Journal of Enterprise Information Management, in press, doi:10.1108/JEIM-02-2021-0091
  100. Olcott S, Mullen C (2020). Digital twin consortium defines digital twin. Available at: blog.digitaltwinconsortium.org/2020/12/digital-twin-consortium-defines-digital-twin.html
  101. Olsen T L, Tomlin B. Industry 4.0: Opportunities and challenges for operations management. Manufacturing & Service Operations Management. 2020;22(1):113–122. doi: 10.1287/msom.2019.0796. [DOI] [Google Scholar]
  102. Onwude D I, Chen G, Eke-Emezie N, Kabutey A, Khaled A Y, Sturm B. Recent advances in reducing food losses in the supply chain of fresh agricultural produce. Processes. 2020;8(11):1–31. doi: 10.3390/pr8111431. [DOI] [Google Scholar]
  103. Orozco-Romero A, Arias-Portela C Y, Marmolejo-Saucedo J A. International Conference on Intelligent Computing and Optimization. Koh Samui: Springer; 2020. The use of agent-based models boosted by digital twins in the supply chain: A literature review; pp. 642–652. [Google Scholar]
  104. Panetta K (2017). Gartner’s top 10 strategic technology trends for 2017. Available at: gartner.COM/smarterwithgartner/gartners-top-10-technology-trends-2017
  105. Panetta K (2018). Gartner’s top 10 strategic technology trends for 2018. Available at: gartner.COM/smarterwithgartner/gartner-top-10-strate-gic-technology-trends-for-2018
  106. Panetta K (2019). Gartner’s top 10 strategic technology trends for 2019. Available at: gartner.COM/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019
  107. Park K T, Son Y H, Noh S D. The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control. International Journal of Production Research. 2021;59(19):5721–5742. doi: 10.1080/00207543.2020.1788738. [DOI] [Google Scholar]
  108. Pehlken A, Baumann S (2020). Urban mining: Applying digital twins for sustainable product cascade use. In: IEEE International Conference on Engineering, Technology and Innovation. Cardiff, 1–7
  109. Pereira M M, Frazzon E M. A data-driven approach to adaptive synchronization of demand and supply in omni-channel retail supply chains. International Journal of Information Management. 2021;57:102165. doi: 10.1016/j.ijinfomgt.2020.102165. [DOI] [Google Scholar]
  110. Pettey C (2017). Prepare for the impact of digital twins. Available at: gartner.COM/smarterwithgartner/prepare-for-the-impact-of-digital-twins
  111. Pilati F, Tronconi R, Nollo G, Heragu S S, Zerzer F. Digital twin of COVID-19 mass vaccination centers. Sustainability. 2021;13(13):7396. doi: 10.3390/su13137396. [DOI] [Google Scholar]
  112. Power D J. Challenges of real-time decision support. In: Burstein F, Brézillon P, Zaslavsky A, editors. Supporting Real Time Decision-Making. Boston, MA: Springer; 2011. pp. 3–11. [Google Scholar]
  113. Preut A, Kopka J P, Clausen U. Digital twins for the circular economy. Sustainability. 2021;13(18):10467. doi: 10.3390/su131810467. [DOI] [Google Scholar]
  114. Qi Q, Tao F, Hu T, Anwer N, Liu A, Wei Y, Wang L, Nee A Y C. Enabling technologies and tools for digital twin. Journal of Manufacturing Systems. 2021;58:3–21. doi: 10.1016/j.jmsy.2019.10.001. [DOI] [Google Scholar]
  115. Rajagopal V, Venkatesan S P, Goh M. Decision-making models for supply chain risk mitigation: A review. Computers & Industrial Engineering. 2017;113:646–682. doi: 10.1016/j.cie.2017.09.043. [DOI] [Google Scholar]
  116. Reeves K, Maple C (2019). Realising the vision of digital twins: Challenges in trustworthiness. In: Living in the Internet of Things (IoT 2019). London, 33
  117. Rehana S (2018). Making a digital twin supply chain a reality. Available at: asug.COM/news/making-a-digital-twin-supply-chain-a-reality
  118. Santos J A M, Lopes M R, Viegas J L, Vieira S M, Sousa J M C. 21st IFAC World Congress on Automatic Control. Berlin: Elsevier; 2020. Internal supply chain digital twin of a pharmaceutical company; pp. 10797–10802. [Google Scholar]
  119. Sarkar S, Kumar S. A behavioral experiment on inventory management with supply chain disruption. International Journal of Production Economics. 2015;169:169–178. doi: 10.1016/j.ijpe.2015.07.032. [DOI] [Google Scholar]
  120. Schmitt A J, Singh M. A quantitative analysis of disruption risk in a multi-echelon supply chain. International Journal of Production Economics. 2012;139(1):22–32. doi: 10.1016/j.ijpe.2012.01.004. [DOI] [Google Scholar]
  121. Schuh G, Anderl R, Gausemeier J, ten Hompel M, Wahlster W (2017). Industrie 4.0 maturity index: Managing the digital transformation of companies. Available at: en.acatech.de/publication/industrie-4-0-maturity-index-managing-the-digital-transformation-of-companies
  122. Seif A, Toro C, Akhtar H. 23rd KES International Conference on Knowledge-Based and Intelligent Information and Engineering Systems. Budapest: Elsevier; 2019. Implementing Industry 4.0 asset administrative shells in mini factories; pp. 495–504. [Google Scholar]
  123. Semenov Y, Semenova O, Kuvataev I (2020). Solutions for digitalization of the coal industry implemented in UC Kuzbassrazrezugol. In: 5th International Innovative Mining Symposium (IIMS). Kemerovo, 01042
  124. Seyedghorban Z, Tahernejad H, Meriton R, Graham G. Supply chain digitalization: Past, present and future. Production Planning and Control. 2020;31(2–3):96–114. doi: 10.1080/09537287.2019.1631461. [DOI] [Google Scholar]
  125. Shafto M, Conroy M, Doyle R, Glaessgen E, Kemp C, LeMoigne J, Wang L (2012). Modeling, simulation, information technology & processing roadmap. National Aeronautics and Space Administration (NASA)
  126. Sharma M, Singla M K, Nijhawan P, Dhingra A. Sensor-based optimization of energy efficiency in Internet of Things: A review. In: Singh H, Singh Cheema P P, Garg P, editors. Sustainable Development through Engineering Innovations. Singapore: Springer; 2021. pp. 153–161. [Google Scholar]
  127. Shen W, Yang C, Gao L. Address business crisis caused by COVID-19 with collaborative intelligent manufacturing technologies. IET Collaborative Intelligent Manufacturing. 2020;2(2):96–99. doi: 10.1049/iet-cim.2020.0041. [DOI] [Google Scholar]
  128. Shen X, Zhang Y, Tang Y, Qin Y, Liu N, Yi Z (2021). A study on the impact of digital tobacco logistics on tobacco supply chain performance: Taking the tobacco industry in Guangxi as an example. Industrial Management & Data Systems, in press, doi:10.1108/IMDS-05-2021-0270
  129. Shen Z M, Sun Y (2021). Strengthening supply chain resilience during COVID-19: A case study of JD.COM. Journal of Operations Management, in press, doi:10.1002/joom.1161
  130. Shoji K, Schudel S, Onwude D, Shrivastava C, Defraeye T. Mapping the postharvest life of imported fruits from packhouse to retail stores using physics-based digital twins. Resources, Conservation and Recycling. 2022;176:105914. doi: 10.1016/j.resconrec.2021.105914. [DOI] [Google Scholar]
  131. Smetana S, Aganovic K, Heinz V. Food supply chains as cyber—physical systems: A path for more sustainable personalized nutrition. Food Engineering Reviews. 2021;13(1):92–103. doi: 10.1007/s12393-020-09243-y. [DOI] [Google Scholar]
  132. Stanford-Clark A, Frank-Schultz E, Harris M (2019). What are digital twins? Available at: developer.ibm.COM/articles/what-are-digital-twins
  133. Stark R, Damerau T. Digital twin. In: The International Academy for Production Engineering; Chatti S, Tolio T, editors. CIRP Encyclopedia of Production Engineering. Berlin, Heidelberg: Springer; 2019. p. 5. [Google Scholar]
  134. Sung I, Choi B, Nielsen P. On the training of a neural network for online path planning with offline path planning algorithms. International Journal of Information Management. 2021;57:102142. doi: 10.1016/j.ijinfomgt.2020.102142. [DOI] [Google Scholar]
  135. Tohamy N (2019). Hype cycle for supply chain strategy. Available at: gartner.COM/en/documents/3947438/hype-cycle-for-supply-chain-strategy-2019
  136. Tozanli O, Kongar E, Gupta S M. Evaluation of waste electronic product trade-in strategies in predictive twin disassembly systems in the era of blockchain. Sustainability. 2020;12(13):5416. doi: 10.3390/su12135416. [DOI] [Google Scholar]
  137. Ulmer M W. Anticipation versus reactive reoptimization for dynamic vehicle routing with stochastic requests. Networks. 2019;73(3):277–291. doi: 10.1002/net.21861. [DOI] [Google Scholar]
  138. Wang K, Hu Q, Zhou M, Zun Z, Qian X. Multi-aspect applications and development challenges of digital twin-driven management in global smart ports. Case Studies on Transport Policy. 2021;9(3):1298–1312. doi: 10.1016/j.cstp.2021.06.014. [DOI] [Google Scholar]
  139. Wang K, Xie W, Wang B, Pei J, Wu W, Baker M, Zhou Q. Winter Simulation Conference. Orlando, FL: IEEE; 2020. Simulation-based digital twin development for blockchain enabled end-to-end industrial hemp supply chain risk management; pp. 3200–3211. [Google Scholar]
  140. Wang S (2021). Users intend to have the right to choose to close the algorithm recommendation service. Available at: news.cn/legal/2021-08/27/c_1127801496.htm (in Chinese)
  141. Wayland M (2020). Coronavirus impact spreads to European auto plant and could hit GM truck production. Available at: cnbc.COM/2020/02/14/coronavirus-impact-to-potentially-disrupt-gm-truck-production.html
  142. Wilson R, Mercier P H J, Patarachao B, Navarra A. Partial least squares regression of oil sands processing variables within discrete event simulation digital twin. Minerals. 2021;11(7):689. doi: 10.3390/min11070689. [DOI] [Google Scholar]
  143. Wu L, Yue X, Jin A, Yen D C. Smart supply chain management: A review and implications for future research. International Journal of Logistics Management. 2016;27(2):395–417. [Google Scholar]
  144. Wu T, Huang S M, Blackhurst J, Zhang X L, Wang S S. Supply chain risk management: An agent-based simulation to study the impact of retail stockouts. IEEE Transactions on Engineering Management. 2013;60(4):676–686. doi: 10.1109/TEM.2012.2190986. [DOI] [Google Scholar]
  145. Yang J, Lee S, Kang Y S, Noh S D, Choi S S, Jung B R, Lee S H, Kang J T, Lee D Y, Kim H S. IFIP International Conference on Advances in Production Management Systems (APMS) Novi Sad: Springer; 2020. Integrated platform and digital twin application for global automotive part suppliers; pp. 230–237. [Google Scholar]
  146. Zafarzadeh M, Wiktorsson M, Baalsrud Hauge J. A systematic review on technologies for data-driven production logistics: Their role from a holistic and value creation perspective. Logistics. 2021;5(2):24. doi: 10.3390/logistics5020024. [DOI] [Google Scholar]

Articles from Frontiers of Engineering Management are provided here courtesy of Nature Publishing Group

RESOURCES