Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jan 28;15(5):4181–4190. doi: 10.1007/s12274-021-4011-x

Bioengineered pseudovirus nanoparticles displaying the HA1 antigens of influenza viruses for enhanced immunogenicity

Ming Xia 1,#, Md Rejaul Hoq 2,#, Pengwei Huang 1,#, Wen Jiang 2, Xi Jiang 1,3, Ming Tan 1,3,
PMCID: PMC8795936  PMID: 35106126

Abstract

Even with implementation of current influenza vaccines, influenza still claims up to 500,000 lives worldwide annually, indicating a need for a better vaccine strategy. We have developed a technology to generate unique S60-HA1 pseudovirus nanoparticles (PVNPs) that display the receptor-binding HA1 domains of influenza viruses. Each self-assembled S60-HA1 PVNP consists of a T = 1 icosahedral S60 nanoparticle that resembles the inner shell of norovirus capsid and 60 surface-displayed HA1 antigens that are excellent vaccine targets. Soluble S60-HA1 PVNPs presenting HA1 antigens of H7N9 influenza virus subtypes have been produced efficiently in large amount. Their three-dimensional (3D) structures have been solved by cryogenic electron microscopy. The PVNP-displayed HA1 antigens react with HA-specific antibody, and retain authentic sialic acid binding specificity and hemagglutinate human erythrocytes. The PVNPs are highly immunogenic, eliciting high titers of HA1-specific antibodies in mice and the mouse sera strongly inhibited hemagglutinations of homologous and heterologous influenza virus HA proteins. Therefore, the S60-HA1 PVNPs may provide useful reagents to study influenza viruses and offer a potential new vaccine tactic to fight the deadly influenza disease.

graphic file with name 12274_2021_4011_Fig1_HTML.jpg

Keywords: S60 nanoparticle, pseudovirus nanoparticle, influenza virus, influenza vaccine, hemagglutinin, norovirus

Acknowledgment

The research described in this study was supported by the National Institute of Allergy and Infectious Diseases (NIAID, No. R56 AI148426-01A1 to M.T.), Cincinnati Children Hospital Medical Center (CCHMC, Innovation Funds 2018–2020, GAP Fund 2020–2021, and Research Innovation and Pilot Grant 2020–2021 to M.T.), and the Center for Clinical and Translational Science and Training (CCTST) of the University of Cincinnati College of Medicine (Pilot Collaborative Studies Grant 2018–2019 to M.T.) that was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (No. UL1TR001425). We thank the Purdue Cryo-EM Facility (http://cryoem.bio.purdue.edu) for help in the 3D structure reconstruction of the PVNPs.

Footnotes

Ming Xia, Md Rejaul Hoq, and Pengwei Huang contributed equally to this work.

References

  • [1].WHO. Seasonal influenza represents a year-round disease burden [Online]. https://www.who.int/news-room/feature-stories/detail/8-things-to-know-about-pandemic-influenza.
  • [2].Fischer W A, II, Gong M, Bhagwanjee S, Sevransky J. Global burden of influenza as a cause of cardiopulmonary morbidity and mortality. Glob Heart. 2014;9:325–336. doi: 10.1016/j.gheart.2014.08.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Iuliano A D, Roguski K M, Chang H H, Muscatello D J, Palekar R, Tempia S, Cohen C, Gran J M, Schanzer D, Cowling B J, et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet. 2018;391:1285–1300. doi: 10.1016/S0140-6736(17)33293-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Centers for Disease Control and Prevention. Seasonal influenza vaccine effectiveness, 2005–2020 [Online]. https://www.cdc.gov/flu/vaccines-work/effectiveness-studies.htm (accessed 2020).
  • [5].Wu N C, Zost S J, Thompson A J, Oyen D, Nycholat C M, McBride R, Paulson J C, Hensley S E, Wilson I A. A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathog. 2017;13:e1006682. doi: 10.1371/journal.ppat.1006682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Skowronski D M, Janjua N Z, De Serres G, Sabaiduc S, Eshaghi A, Dickinson J A, Fonseca K, Winter A L, Gubbay J B, Krajden M, et al. Low 2012–13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses. PLoS One. 2014;9:e92153. doi: 10.1371/journal.pone.0092153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Paules C I, Sullivan S G, Subbarao K, Fauci A S. Chasing seasonal influenza—the need for a universal influenza vaccine. New Engl. J. Med. 2018;378:7–9. doi: 10.1056/NEJMp1714916. [DOI] [PubMed] [Google Scholar]
  • [8].Gouma S, Zost S J, Parkhouse K, Branche A, Topham D J, Cobey S, Hensley S E. Comparison of human H3N2 antibody responses elicited by egg-based, cell-based, and recombinant protein-based influenza vaccines during the 2017–2018 season. Clin. Infect. Dis. 2020;71:1447–1453. doi: 10.1093/cid/ciz996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Zost S J, Parkhouse K, Gumina M E, Kim K, Perez S D, Wilson P C, Treanor J J, Sant A J, Cobey S, Hensley S E. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc. Natl. Acad. Sci. USA. 2017;114:12578–12583. doi: 10.1073/pnas.1712377114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Levine M Z, Martin E T, Petrie J G, Lauring A S, Holiday C, Jefferson S, Fitzsimmons W J, Johnson E, Ferdinands J M, Monto A S. Antibodies against egg- and cell-grown influenza A(H3N2) viruses in adults hospitalized during the 2017–2018 influenza season. J. Infect. Dis. 2019;219:1904–1912. doi: 10.1093/infdis/jiz049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Rolfes M A, Flannery B, Chung J R, O’Halloran A, Garg S, Belongia E A, Gaglani M, Zimmerman R K, Jackson M L, Monto A S, et al. Effects of influenza vaccination in the united states during the 2017–2018 influenza season. Clin. Infect. Dis. 2019;69:1845–1853. doi: 10.1093/cid/ciz075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Kanekiyo M, Wei C J, Yassine H M, McTamney P M, Boyington J C, Whittle J R R, Rao S S, Kong W P, Wang L S, Nabel G J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499:102–106. doi: 10.1038/nature12202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Yassine H M, Boyington J C, McTamney P M, Wei C J, Kanekiyo M, Kong W P, Gallagher J R, Wang L S, Zhang Y, Joyce M G, et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 2015;21:1065–1070. doi: 10.1038/nm.3927. [DOI] [PubMed] [Google Scholar]
  • [14].Kanekiyo M, Joyce M G, Gillespie R A, Gallagher J R, Andrews S F, Yassine H M, Wheatley A K, Fisher B E, Ambrozak D R, Creanga A, et al. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat. Immunol. 2019;20:362–372. doi: 10.1038/s41590-018-0305-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Boyoglu-Barnum, S.; Ellis, D.; Gillespie, R. A.; Hutchinson, G. B.; Park, Y. J.; Moin, S. M.; Acton, O.; Ravichandran, R.; Murphy, M.; Pettie, D. et al. Elicitation of broadly protective immunity to influenza by multivalent hemagglutinin nanoparticle vaccines. bioRxiv 2020.05.30.125179, 2020. Available at: 10.1101/2020.05.30.125179.
  • [16].Bale J B, Gonen S, Liu Y X, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates T O, Gonen T, King N P, et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science. 2016;353:389–394. doi: 10.1126/science.aaf8818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].D’Aoust M A, Couture M M J, Charland N, Trépanier S, Landry N, Ors F, Vézina L P. The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J. 2010;8:607–619. doi: 10.1111/j.1467-7652.2009.00496.x. [DOI] [PubMed] [Google Scholar]
  • [18].Smith G, Liu Y, Flyer D, Massare M J, Zhou B, Patel N, Ellingsworth L, Lewis M, Cummings J F, Glenn G. Novel hemagglutinin nanoparticle influenza vaccine with Matrix-M™ adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted A(H3N2) subtypes. Vaccine. 2017;35:5366–5372. doi: 10.1016/j.vaccine.2017.08.021. [DOI] [PubMed] [Google Scholar]
  • [19].Portnoff A D, Patel N, Massare M J, Zhou H X, Tian J H, Zhou B, Shinde V, Glenn G M, Smith G. Influenza hemagglutinin nanoparticle vaccine elicits broadly neutralizing antibodies against structurally distinct domains of H3N2 HA. Vaccines. 2020;8:99. doi: 10.3390/vaccines8010099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Xia M, Huang P W, Sun C, Han L, Vago F S, Li K P, Zhong W M, Jiang W, Klassen J S, Jiang X, et al. Bioengineered norovirus S60 nanoparticles as a multifunctional vaccine platform. ACS Nano. 2018;12:10665–10682. doi: 10.1021/acsnano.8b02776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Xia M, Huang P W, Jiang X, Tan M. Immune response and protective efficacy of the S particle presented rotavirus VP8* vaccine in mice. Vaccine. 2019;37:4103–4110. doi: 10.1016/j.vaccine.2019.05.075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Tan M, Cui L B, Huo X, Xia M, Shi F J, Zeng X Y, Huang P W, Zhong W M, Li W W, Xu K, et al. Saliva as a source of reagent to study human susceptibility to avian influenza H7N9 virus infection. Emerg. Microbes Infect. 2018;7:1–10. doi: 10.1038/s41426-018-0160-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Tan M, Jiang X. The P domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J. Virol. 2005;79:14017–14030. doi: 10.1128/JVI.79.22.14017-14030.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Tan M, Hegde R S, Jiang X. The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J. Virol. 2004;78:6233–6242. doi: 10.1128/JVI.78.12.6233-6242.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Xia M, Huang P W, Jiang X, Tan M. A nanoparticle-based trivalent vaccine targeting the glycan binding VP8* domains of rotaviruses. Viruses. 2021;13:72. doi: 10.3390/v13010072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Tan M, Huang P W, Xia M, Fang P A, Zhong W M, McNeal M, Wei C, Jiang W, Jiang X. Norovirus P particle, a novel platform for vaccine development and antibody production. J. Virol. 2011;85:753–764. doi: 10.1128/JVI.01835-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Wang L Y, Huang P W, Fang H, Xia M, Zhong W M, McNeal M M, Jiang X, Tan M. Polyvalent complexes for vaccine development. Biomaterials. 2013;34:4480–4492. doi: 10.1016/j.biomaterials.2013.02.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Xia M, Wei C, Wang L Y, Cao D J, Meng X J, Jiang X, Tan M. Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus. Sci. Rep. 2016;6:25735. doi: 10.1038/srep25735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Xia M, Wei C, Wang L Y, Cao D J, Meng X J, Jiang X, Tan M. A trivalent vaccine candidate against hepatitis E virus, norovirus, and astrovirus. Vaccine. 2016;34:905–913. doi: 10.1016/j.vaccine.2015.12.068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Huang P W, Farkas T, Zhong W M, Tan M, Thornton S, Morrow A L, Jiang X. Norovirus and histo-blood group antigens: Demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J. Virol. 2005;79:6714–6722. doi: 10.1128/JVI.79.11.6714-6722.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Tan M, Fang P A, Xia M, Chachiyo T, Jiang W, Jiang X. Terminal modifications of norovirus P domain resulted in a new type of subviral particles, the small P particles. Virology. 2011;410:345–352. doi: 10.1016/j.virol.2010.11.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Tan M, Fang P A, Chachiyo T, Xia M, Huang P W, Fang Z Y, Jiang W, Jiang X. Noroviral P particle: Structure, function and applications in virus-host interaction. Virology. 2008;382:115–123. doi: 10.1016/j.virol.2008.08.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Punjani A, Rubinstein J L, Fleet D J, Brubaker M A. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. [DOI] [PubMed] [Google Scholar]
  • [34].Burmeister W P, Buisson M, Estrozi L F, Schoehn G, Billet O, Hannas Z, Sigoillot C, Poulet H. Structure determination of feline calicivirus virus-like particles in the context of a pseudooctahedral arrangement. PLoS One. 2015;10:e0119289. doi: 10.1371/journal.pone.0119289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Shi Y, Zhang W, Wang F, Qi J X, Wu Y, Song H, Gao F, Bi Y H, Zhang Y F, Fan Z, et al. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science. 2013;342:243–247. doi: 10.1126/science.1242917. [DOI] [PubMed] [Google Scholar]
  • [36].Yang H, Carney P J, Chang J C, Villanueva J M, Stevens J. Structural analysis of the hemagglutinin from the recent 2013 H7N9 influenza virus. J. Virol. 2013;87:12433–12446. doi: 10.1128/JVI.01854-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Xu R, De Vries R P, Zhu X Y, Nycholat C M, McBride R, Yu W L, Paulson J C, Wilson I A. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. Science. 2013;342:1230–1235. doi: 10.1126/science.1243761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Tharakaraman K, Jayaraman A, Raman R, Viswanathan K, Stebbins N W, Johnson D, Shriver Z, Sasisekharan V, Sasisekharan R. Glycan receptor binding of the influenza A virus H7N9 hemagglutinin. Cell. 2013;153:1486–1493. doi: 10.1016/j.cell.2013.05.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Tan M, Jiang X. Norovirus capsid protein-derived nanoparticles and polymers as versatile platforms for antigen presentation and vaccine development. Pharmaceutics. 2019;11:472. doi: 10.3390/pharmaceutics11090472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Tan M, Jiang X. Recent advancements in combination subunit vaccine development. Hum. Vaccin. Immunother. 2017;13:180–185. doi: 10.1080/21645515.2016.1229719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Khudyakov Y, Pumpens P. Nanoparticles of norovirus. In: Khudyakov Y, Pumpens P, editors. Viral Nanotechnology. Boca Raton: CRC Press; 2015. pp. 363–371. [Google Scholar]
  • [42].Tan M, Jiang X. Subviral particle as vaccine and vaccine platform. Curr. Opin. Virol. 2014;6:24–33. doi: 10.1016/j.coviro.2014.02.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Su S, Gu M, Liu D, Cui J, Gao G F, Zhou J Y, Liu X F. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol. 2017;25:713–728. doi: 10.1016/j.tim.2017.06.008. [DOI] [PubMed] [Google Scholar]
  • [44].Ekiert D C, Kashyap A K, Steel J, Rubrum A, Bhabha G, Khayat R, Lee J H, Dillon M A, O’Neil R E, Faynboym A M, et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature. 2012;489:526–532. doi: 10.1038/nature11414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Whittle J R R, Zhang R J, Khurana S, King L R, Manischewitz J, Golding H, Dormitzer P R, Haynes B F, Walter E B, Moody M A, et al. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA. 2011;108:14216–14221. doi: 10.1073/pnas.1111497108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Lee P S, Ohshima N, Stanfield R L, Yu W L, Iba Y, Okuno Y, Kurosawa Y, Wilson I A. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat. Commun. 2014;5:3614. doi: 10.1038/ncomms4614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47].Thompson C P, Lourenço J, Walters A A, Obolski U, Edmans M, Palmer D S, Kooblall K, Carnell G W, O’Connor D, Bowden T A, et al. A naturally protective epitope of limited variability as an influenza vaccine target. Nat. Commun. 2018;9:3859. doi: 10.1038/s41467-018-06228-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Khurana S, Verma S, Verma N, Crevar C J, Carter D M, Manischewitz J, King L R, Ross T M, Golding H. Bacterial HA1 vaccine against pandemic H5N1 influenza virus: Evidence of oligomerization, hemagglutination, and cross-protective immunity in ferrets. J. Virol. 2011;85:1246–1256. doi: 10.1128/JVI.02107-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49].Jung J, Grant T, Thomas D R, Diehnelt C W, Grigorieff N, Joshua-Tor L. High-resolution cryo-EM structures of outbreak strain human norovirus shells reveal size variations. Proc. Natl. Acad. Sci. USA. 2019;116:12828–12832. doi: 10.1073/pnas.1903562116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].Devant J M, Hansman G S. Structural heterogeneity of a human norovirus vaccine candidate. Virology. 2021;553:23–34. doi: 10.1016/j.virol.2020.10.005. [DOI] [PubMed] [Google Scholar]

Articles from Nano Research are provided here courtesy of Nature Publishing Group

RESOURCES