Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2022 Jan 29;129:275–379. doi: 10.1016/bs.apcsb.2021.11.007

Understanding the activating mechanism of the immune system against COVID-19 by Traditional Indian Medicine: Network pharmacology approach

D Thirumal Kumar a, MS Shree Devi b, S Udhaya Kumar c, Annie Sherlin c, Aishwarya Mathew c, M Lakshmipriya c, P Sathiyarajeswaran b, R Gnanasambandan c, R Siva c, R Magesh d, C George Priya Doss c,*
PMCID: PMC8798878  PMID: 35305722

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmissions are occurring rapidly; it is raising the alarm around the globe. Though vaccines are currently available, the evolution and mutations in the SARS-CoV-2 threaten available vaccines' significance. The drugs are still undergoing clinical trials, and certain medications are approved for “emergency use” or as an “off-label” drug during the pandemic. These drugs have been effective yet accommodating side effects, which also can be lethal. Complementary and alternative medicine is highly demanded since it embraces a holistic approach. Since ancient times, natural products have been used as drugs to treat various diseases in the medical field and are still widely practiced. Medicinal plants contain many active compounds that serve as the key to an effective drug design. The Kabasura kudineer and Nilavembu kudineer are the two most widely approved formulations to treat COVID-19. However, the mechanism of these formulations is not well known. The proposed study used a network pharmacology approach to understand the immune-boosting mechanism by the Kabasura kudineer, Nilavembu kudineer, and JACOM in treating COVID-19. The plants and phytochemical chemical compounds in the Kabasura kudineer, Nilavembu kudineer, and JACOM were obtained from the literature. The Swiss target prediction algorithm was used to predict the targets for these phytochemical compounds. The common genes for the COVID-19 infection and the drug targets were identified. The gene–gene interaction network was constructed to understand the interactions between these common genes and enrichment analyses to determine the biological process, molecular functions, cellular functions, pathways involved, etc. Finally, virtual screening and molecular docking studies were performed to identify the most potential targets and significant phytochemical compounds to treat the COVID-19. The present study identified potential targets as ACE, Cathepsin L, Cathepsin B, Cathepsin K, DPP4, EGFR, HDAC2, IL6, RIPK1, and VEGFA. Similarly, betulinic acid, 5″-(2⁗-Hydroxybenzyl) uvarinol, antofine, (S)-1′-methyloctyl caffeate, (Z)-3-phenyl-2-propenal, 7-oxo-10α-cucurbitadienol, and PLX-4720 collectively to be potential treatment agents for COVID-19.

Keywords: COVID-19, SARS-CoV-2, Network pharmacology, Nilavembu kudineer, Kabasura kudineer, JACOM, Traditional Indian Medicine

Abbreviations

ACE

angiotensin-converting enzyme

COVID-19

coronavirus disease 2019

CTSB

Cathepsin B

CTSL

Cathepsin L

DPP4

dipeptidyl peptidase-4

EGFR

epidermal growth factor receptor

HDAC2

histone deacetylase 2

IL-6

interleukin 6

PABPC1

poly(A)-binding protein C1

POLA

polymerase I

RIPK1

receptor-interacting serine/threonine-protein kinase 1

SARS-CoV-2

Severe Acute Respiratory Syndrome Coronavirus 2

SIGMAR1

Sigma non-opioid intracellular receptor 1

TCM

Traditional Chinese Medicine

TIM

Traditional Indian Medicine

VEGFA

vascular endothelial growth factor A

WHO

World Health Organization

1. Introduction

SARS-CoV-2 is a genetic variant of coronavirus known to cause respiratory illness and was reported as a global pandemic on March 11th, 2020 (Cucinotta & Vanelli, 2020). RT-PCR performed detects the infection and predicts the presence of Coronavirus. The virus has a close genetic resemblance with bat coronavirus, implying that it might have arisen from a bat-borne virus. This protocol has been published by World Health Organization (WHO) and used as a guideline for detecting the disease (Corman et al., 2020). Rapidly the viral infection begun to spread, increasing the number of cases in China and various parts of the world resulting from human-to-human transmission through close contact and primarily via respiratory droplets produced via coughs and sneezes (Dhand & Li, 2020). Currently, India stands behind the USA in the second position in the total number of people infected by COVID-19 (Kumar, Kumar, Christopher, & Doss, 2020; Kumar, Kumar, Siva, & Doss, 2020). As of September 6th, 2021, the reported cases are more than 220,563,227, and at least 4,565,483 people have died. The infection begins with the SARS-CoV-2 attaching to the enzyme called ACE2, which again is expressed in cells of various tissues and organs but is particularly abundant in type 2 lung pneumocytes. The people involved are frequently asymptomatic throughout the early stages of incubation, as well as the type I interferon response slows viral replication. With active replication and dissemination of SARS-CoV-2, the disease advances from mild to moderate symptoms such as sore throat, tear, fiber, and muscle pains, leading by both virus-associated respiratory tissue damage and antiviral activity (Cain & Cidlowski, 2020).

Several variants of concern (VOC) have appeared worldwide and seem to pose a significant threat to public health due to enhanced transmissibility or infectivity (Kumar, Shaikh, Kumar, Doss, & Zayed, 2021). Despite efficient vaccines, the coronavirus pandemic elicits widespread concern about discovering critical new variants from California, South Africa, UK, and Brazil (Plante et al., 2021). SARS-CoV-2 variants raise concerns about higher transmission and escaping on both vaccine and natural infection protection, especially in light of concerns about a specific mink strain, which triggered a person's illnesses and the possibility for future alterations. While most mutations are insignificant, the virus occasionally obtains a mutation that offers it an edge over other strains. The virus uses the spike protein to penetrate living cells through the ACE2 receptor. The spike protein's receptor-binding domain (RBD) is the most changeable component of the coronavirus genome (Tai et al., 2020). Mutations in viruses may lead to immune suppression in the host that the host antibodies initiate, necessitating their identification and monitoring for antibody therapy efficacy. The N439K, N440K, Q493K, and E484K spike mutations were prone to immunological escape, and this recent discovery is drawing attention (Srivastava, Banu, Singh, Sowpati, & Mishra, 2021). These mutations have given rise to several lineages. In the absence of direct drugs for the treatment, many efforts have been directed towards developing vaccines against COVID-19. Live attenuated or inactivated viruses, virus-like particles (VLP), protein subunits, viral vector (non-replicating and replicating), DNA, RNA, and nanoparticles, among additional vaccinations, are used in the conduit, each with its own set of advantages and disadvantages. According to the WHO report, these vaccines could only be 50% effective (What Is COVID-19 Vaccine Efficacy? | WHO | Regional Office for Africa, 2021a).

Complementary and alternative medicine is in high demand since it embraces a holistic approach. Since ancient times, natural products have been used as drugs in medical treatment and are still widely practiced. Medicinal plants contain many active compounds, which serve as the key to an effective drug design. Herbal medicine is achieving attention because of its extensive therapeutics like potent antiviral, immunomodulatory, anti-inflammatory, and anti-oxidant properties (Ross, 2009). Traditional Indian Medicine (TIM)—AYUSH and Traditional Chinese medicine (TCM) are ancient yet living traditions. These two traditional medicines are very philosophical and based on experiments, and they seem to be very effective in combatting viral diseases. Using these drugs from their natural origin is the main root of therapy (Patwardhan, Warude, Pushpangadan, & Bhatt, 2005). Pharmaceutical companies have re-established their policies in favor of natural product drug development and discovery. China has effectively endorsed its therapies over the world with a scientific approach. The emerging popularity of TCM can be verified by the rapid upsurge in licensed Chinese medicine providers in the United States. Constant efforts in advancing these therapies in China have set TCM creditable (Youns, Hoheisel, & Efferth, 2010). Worldwide, Siddha is recognized and emerging, and there has been an increase in demand for medicinal plants in India. The growing use of traditional therapies requires more scientific evidence for the principles behind treatments and the effectiveness of medicines. Latest developments in the biological sciences, genomics, and proteomics can justify these therapies (Rathinam et al., 2020).

Several medicines mentioned by Ministry AYUSH, India have been in practice for viral diseases like Chikungunya and Dengue for the past two decades. Herbal formulations such as Kabasura kudineer and Nilavembu kudineer are widely used to treat phlegmatic and hemorrhagic fevers and are approved by the Siddha medicine (Jain et al., 2020; Natarajan et al., 2020). Decoding using in silico studies in Nilavembu kudineer against SARS-CoV-2 spike protein showcases that these medicines can be recognized as a valuable drug to combat COVID-19. Nilavembu kudineer interacts with ACE2 receptor, which serves as the pathogen entrance, and in the outcome, the pathogen cannot enter into the host body. Kabasura kudineer or choornam possesses antiviral solid, anti-bacterial, and immunomodulatory properties. Numerous studies have unveiled the anti-inflammatory properties of Kabasura kudineer. This herbal formulation became reasonably recognized during times of flu due to its therapeutic qualities. In silico docking was performed using Kabasura kudineer against SARS-CoV-2 spike protein. Its rich active Phyto-constituents revealed a favorable outcome that prevented the merging of viral replication binding with viral proteins and inhibited host receptors' binding. This verifies that Kabasura kudineer could be a potential herbal formulation to combat COVID-19 if proven with further preclinical and clinical confirmatory studies (Natarajan et al., 2020).

In our study, medicinal plants used in herbal formulations of Nilavembu kudineer were our primary focus to understand their drug inhibitory potential against SARS-CoV-2. In comparison to modern medicine, Siddha medicine's approach is more holistic. Hence, investigating and ameliorating the effectiveness of Siddha medicine to obtain the solution with the most negligible side effects on immune-compromised patients and the patients with co-morbid conditions (Kiran et al., 2020).

2. Materials and methods

2.1. Genes responsible for COVID-19

The human genes responsible for the COVID-19 disease were collected from the GeneCards database (Rebhan, Chalifa-Caspi, Prilusky, & Lancet, 1997). This database summarizes the current accessible biomedical information, including the human genes, proteins, and relevant diseases. The term “COVID-19” was used as the search term.

2.2. Siddha formulation as the supplement

The standard Siddha formulations such as Kabasura kudineer, Nilavembu kudineer, and JACOM that showed promising treatment results were chosen for this study (Jain et al., 2020; Kiran et al., 2020; Natarajan et al., 2020). The plant sources for these formulations were taken from the previous literature. The list of phytochemical compounds in these plant sources was obtained from the Chemical Entities of Biological Interest (ChEBI) database. This database provides an ontology of molecular entities focused on ‘small’ chemical compounds (Hastings et al., 2013).

2.3. Druglikeness of phytochemical compounds

The drug-likeness of the phytochemical compounds was evaluated using the SwissADME server (Daina, Michielin, & Zoete, 2017). The canonical SMILES format of phytochemical compounds was given as the input in SwissADME. We have considered the number of Lipinski violations given for each compound. The compounds with one or less than one Lipinski violations were selected for further analysis.

2.4. Target prediction for the phytochemical compounds

The various human protein targets for each phytochemical compound were identified using the SwissTargetPrediction (Gfeller et al., 2014). This server predicts bioactive molecules (query molecule) targets based on a blend of 2D and 3D resemblance procedures with known ligands. The top-ranking targets obtained for each phytochemical compound, with a probability of more than 0 was chosen for further analysis. The canonical SMILES format of phytochemical compounds was given as the input in SwissTargetPrediction.

2.5. Common target identification

A Venn diagram was created to find the expected targets for the identified phytochemical compounds and COVID-19 (genes affected by COVID-19). This was achieved using an online tool named Bioinformatics & Evolutionary Genomics. Using the Venn diagram, we identified the targets of phytochemical compounds with the same target as COVID-19 infection. Thus, the typical targets were used for further studies.

2.6. Enrichment analysis

The enrichment analysis was executed using the FunRich (Pathan et al., 2015). FunRich is a standalone package primarily utilized for the enrichment and interaction network analysis of proteins and genes. Enrichment analysis can be performed for biological process (BP), cellular process (CC), biological pathways, and molecular function (MF).

2.7. Pathway analysis

The pathway analysis was performed using the Reactome. Reactome is a comprehensive and well-annotated library of human molecular pathways and reactions (Fabregat et al., 2016).

2.8. Gene–gene interaction analysis

The standard targets obtained from the Venn diagram were subjected to a network analysis study. This was performed using the STRING database with default parameters (Szklarczyk et al., 2019). The STRING database aims to gather, score, and integrate all openly accessible protein–protein interaction information sources and complement these with computational predictions. Thus, this network analysis explains how these genes are biologically linked or overlapped through different pathways and functions.

2.9. Virtual screening and molecular interaction analysis

Several identified targets mapped in the gene–gene interaction have been targeted for more than one phytochemical compound. The virtual screening was performed using the AutoDock Vina plugin of the PyRx with the default parameter (Dallakyan & Olson, 2015; Trott & Olson, 2010). The protein structures with PDB IDs 6H5W, 2XU1, 6AY2, 2QT9, 4WKQ, 6WBW, 1ALU, 4ITJ, and 3QTK were taken for the proteins ACE, Cathepsin L, Cathepsin B, Cathepsin K, DPP4, EGFR, HDAC2, IL6, RIPK1, and VEGFA respectively. The compound showing the best affinity was taken for docking using the AutoDock standalone package (Morris et al., 2009). Blind docking protocol was performed using the Lamarckian Genetic Algorithm (Morris et al., 1998). The amino acid interaction with the compounds was visualized using the Discovery Studio.

3. Results and discussions

3.1. Genes responsible for COVID-19

Human genes that are involved in response to any disease are numerous and highly diverse within the genome. A total of 339 genes were obtained. A set of genes were retrieved from the GeneCards database with the keyword COVID. The detailed table with external identifiers is provided in Table 1 .

Table 1.

The list of genes responsible for the COVID-19 with the identifiers obtained from GeneCards database.

Input term Symbol Ensembl HGNC NCBI Entrez gene OMIM UniProtKB/Swiss-Prot
AKAP8 AKAP8 ENSG00000105127 378 10270 604692 O43823
AKAP8L AKAP8L ENSG00000011243 29857 26993 609475 Q9ULX6
AKAP9 AKAP9 ENSG00000127914 379 10142 604001 Q99996
GGCX GGCX ENSG00000115486 4247 2677 137167 P38435
MDN1 MDN1 ENSG00000112159 18302 23195 618200 Q9NU22
MAT2B MAT2B ENSG00000038274 6905 27430 605527 Q9NZL9
GDF15 GDF15 ENSG00000130513 30142 9518 605312 Q99988
GCC1 GCC1 ENSG00000179562 19095 79571 607418 Q96CN9
GCC2 GCC2 ENSG00000135968 23218 9648 612711 Q8IWJ2
MIPOL1 MIPOL1 ENSG00000151338 21460 145282 606850 Q8TD10
MIB1 MIB1 ENSG00000101752 21086 57534 608677 Q86YT6
GOLGA2 GOLGA2 ENSG00000167110 4425 2801 602580 Q08379
GOLGA3 GOLGA3 ENSG00000090615 4426 2802 602581 Q08378
GNB1 GNB1 ENSG00000078369 4396 2782 139380 P62873
GNG5 GNG5 ENSG00000174021 4408 2787 600874 P63218
GOLGB1 GOLGB1 ENSG00000173230 4429 2804 602500 Q14789
GORASP1 GORASP1 ENSG00000114745 16769 64689 606867 Q9BQQ3
CD14 CD14 ENSG00000170458 1628 929 158120 P08571
CCDC86 CCDC86 ENSG00000110104 28359 79080 611293 Q9H6F5
MAP7D1 MAP7D1 ENSG00000116871 25514 55700 NA Q3KQU3
FBXL12 FBXL12 ENSG00000127452 13611 54850 609079 Q9NXK8
ATE1 ATE1 ENSG00000107669 782 11101 607103 O95260
FAM162A FAM162A ENSG00000114023 17865 26355 608017 Q96A26
EXOSC2 EXOSC2 ENSG00000130713 17097 23404 602238 Q13868
EXOSC3 EXOSC3 ENSG00000107371 17944 51010 606489 Q9NQT5
EXOSC5 EXOSC5 ENSG00000077348 24662 56915 606492 Q9NQT4
EXOSC8 EXOSC8 ENSG00000120699 17035 11340 606019 Q96B26
EZH2 EZH2 ENSG00000106462 3527 2146 601573 Q15910
AP2A2 AP2A2 ENSG00000183020 562 161 607242 O94973
AP2M1 AP2M1 ENSG00000161203 564 1173 601024 Q96CW1
AP3B1 AP3B1 ENSG00000132842 566 8546 603401 O00203
ARL6IP6 ARL6IP6 ENSG00000177917 24048 151188 616495 Q8N6S5
ARF6 ARF6 ENSG00000165527 659 382 600464 P62330
ATP13A3 ATP13A3 ENSG00000133657 24113 79572 610232 Q9H7F0
ATP1B1 ATP1B1 ENSG00000143153 804 481 182330 P05026
ATP6AP1 ATP6AP1 ENSG00000071553 868 537 300197 Q15904
ATP6V1A ATP6V1A ENSG00000114573 851 523 607027 P38606
FBLN5 FBLN5 ENSG00000140092 3602 10516 604580 Q9UBX5
FBN1 FBN1 ENSG00000166147 3603 2200 134797 P35555
FBN2 FBN2 ENSG00000138829 3604 2201 612570 P35556
FAM8A1 FAM8A1 ENSG00000137414 16372 51439 618409 Q9UBU6
FAM98A FAM98A ENSG00000119812 24520 25940 NA Q8NCA5
ERC1 ERC1 ENSG00000082805 17072 23085 607127 Q8IUD2
ALG11 ALG11 ENSG00000253710 32456 440138 613666 Q2TAA5
ALG5 ALG5 ENSG00000120697 20266 29880 604565 Q9Y673
AGTR2 AGTR2 ENSG00000180772 338 186 300034 P50052
ERGIC1 ERGIC1 ENSG00000113719 29205 57222 617946 Q969X5
LOC117134593 LOC117134593 NA NA 117134593 NA NA
LOC117134604 LOC117134604 NA NA 117134604 NA NA
LOC117134605 LOC117134605 NA NA 117134605 NA NA
LOC117134606 LOC117134606 NA NA 117134606 NA NA
LOC117134607 LOC117134607 NA NA 117134607 NA NA
LOC117134608 LOC117134608 NA NA 117134608 NA NA
LOC117134611 LOC117134611 NA NA 117134611 NA NA
LOC117135104 LOC117135104 NA NA 117135104 NA NA
LOC117135105 LOC117135105 NA NA 117135105 NA NA
LOC117135106 LOC117135106 NA NA 117135106 NA NA
ERLEC1 ERLEC1 ENSG00000068912 25222 27248 611229 Q96DZ1
LOC117152610 LOC117152610 NA NA 117152610 NA NA
LOC117152611 LOC117152611 NA NA 117152611 NA NA
LOC117204000 LOC117204000 NA NA 117204000 NA NA
LOC117204001 LOC117204001 NA NA 117204001 NA NA
LOC117600004 LOC117600004 NA NA 117600004 NA NA
LOC117693187 LOC117693187 NA NA 117693187 NA NA
ERO1B ERO1B ENSG00000086619 14355 56605 615437 Q86YB8
ERP44 ERP44 ENSG00000023318 18311 23071 609170 Q9BS26
AGPS AGPS ENSG00000018510 327 8540 603051 O00116
FKBP10 FKBP10 ENSG00000141756 18169 60681 607063 Q96AY3
FKBP15 FKBP15 ENSG00000119321 23397 23307 617398 Q5T1M5
MEPCE MEPCE ENSG00000146834 20247 56257 611478 Q7L2J0
FKBP7 FKBP7 ENSG00000079150 3723 51661 607062 Q9Y680
BCKDK BCKDK ENSG00000103507 16902 10295 614901 O14874
ACE ACE ENSG00000159640 2707 1636 106180 P12821
ACE2 ACE2 ENSG00000130234 13557 59272 300335 Q9BYF1
ADAM9 ADAM9 ENSG00000168615 216 8754 602713 Q13443
ADAMTS1 ADAMTS1 ENSG00000154734 217 9510 605174 Q9UHI8
AAR2 AAR2 ENSG00000131043 15886 25980 617365 Q9Y312
AASS AASS ENSG00000008311 17366 10157 605113 Q9UDR5
AATF AATF ENSG00000275700 19235 26574 608463 Q9NY61
ACSL3 ACSL3 ENSG00000123983 3570 2181 602371 O95573
ACADM ACADM ENSG00000117054 89 34 607008 P11310
BSG BSG ENSG00000172270 1116 682 109480 P35613
FYCO1 FYCO1 ENSG00000163820 14673 79443 607182 Q9BQS8
G3BP1 G3BP1 ENSG00000145907 30292 10146 608431 Q13283
G3BP2 G3BP2 ENSG00000138757 30291 9908 NA Q9UN86
BRD2 BRD2 ENSG00000204256 1103 6046 601540 P25440
BRD4 BRD4 ENSG00000141867 13575 23476 608749 O60885
MFGE8 MFGE8 ENSG00000140545 7036 4240 602281 Q08431
BZW2 BZW2 ENSG00000136261 18808 28969 NA Q9Y6E2
FOXRED2 FOXRED2 ENSG00000100350 26264 80020 613777 Q8IWF2
FURIN FURIN ENSG00000140564 8568 5045 136950 P09958
C1ORF50 C1orf50 ENSG00000164008 28795 79078 NA Q9BV19
LOX LOX ENSG00000113083 6664 4015 153455 P28300
FASTKD5 FASTKD5 ENSG00000215251 25790 60493 614272 Q7L8L6
ATP5MG ATP5MG ENSG00000167283 14247 10632 617473 O75964
CWC27 CWC27 ENSG00000153015 10664 10283 617170 Q6UX04
CYB5B CYB5B ENSG00000103018 24374 80777 611964 O43169
CYB5R3 CYB5R3 ENSG00000100243 2873 1727 613213 P00387
HS2ST1 HS2ST1 ENSG00000153936 5193 9653 604844 Q7LGA3
HS6ST2 HS6ST2 ENSG00000171004 19133 90161 300545 Q96MM7
CTSB CTSB ENSG00000164733 2527 1508 116810 P07858
CTSL CTSL ENSG00000135047 2537 1514 116880 P07711
CRP CRP ENSG00000132693 2367 1401 123260 P02741
HOOK1 HOOK1 ENSG00000134709 19884 51361 607820 Q9UJC3
HEATR3 HEATR3 ENSG00000155393 26087 55027 614951 Q7Z4Q2
HECTD1 HECTD1 ENSG00000092148 20157 25831 618649 Q9ULT8
GLA GLA ENSG00000102393 4296 2717 300644 P06280
GIGYF2 GIGYF2 ENSG00000204120 11960 26058 612003 Q6Y7W6
GFER GFER ENSG00000127554 4236 2671 600924 P55789
ETFA ETFA ENSG00000140374 3481 2108 608053 P13804
ANO6 ANO6 ENSG00000177119 25240 196527 608663 Q4KMQ2
GRPEL1 GRPEL1 ENSG00000109519 19696 80273 606173 Q9HAV7
CDK5RAP2 CDK5RAP2 ENSG00000136861 18672 55755 608201 Q96SN8
GTF2F2 GTF2F2 ENSG00000188342 4653 2963 189969 P13984
CEP112 CEP112 ENSG00000154240 28514 201134 NA Q8N8E3
CEP135 CEP135 ENSG00000174799 29086 9662 611423 Q66GS9
CEP250 CEP250 ENSG00000126001 1859 11190 609689 Q9BV73
CEP350 CEP350 ENSG00000135837 24238 9857 617870 Q5VT06
CEP43 CEP43 ENSG00000213066 17012 11116 605392 O95684
CEP68 CEP68 ENSG00000011523 29076 23177 616889 Q76N32
CENPF CENPF ENSG00000117724 1857 1063 600236 P49454
GOLGA7 GOLGA7 ENSG00000147533 24876 51125 609453 Q7Z5G4
HLA-A HLA-A ENSG00000206503 4931 3105 142800 P04439
RHOA RHOA ENSG00000067560 667 387 165390 P61586
HMOX1 HMOX1 ENSG00000100292 5013 3162 141250 P09601
COQ8B COQ8B ENSG00000123815 19041 79934 615567 Q96D53
CLIP4 CLIP4 ENSG00000115295 26108 79745 NA Q8N3C7
HLA-DRB1 HLA-DRB1 ENSG00000196126 4948 3123 142857 P01911
CISD3 CISD3 ENSG00000277972 27578 284106 611933 P0C7P0
CIT CIT ENSG00000122966 1985 11113 605629 O14578
CLCC1 CLCC1 ENSG00000121940 29675 23155 617539 Q96S66
RIPK1 RIPK1 ENSG00000137275 10019 8737 603453 Q13546
COLGALT1 COLGALT1 ENSG00000130309 26182 79709 617531 Q8NBJ5
COMT COMT ENSG00000093010 2228 1312 116790 P21964
HDAC2 HDAC2 ENSG00000196591 4853 3066 605164 Q92769
CHPF CHPF ENSG00000123989 24291 79586 610405 Q8IZ52
CHPF2 CHPF2 ENSG00000033100 29270 54480 608037 Q9P2E5
DNAJC11 DNAJC11 ENSG00000007923 25570 55735 614827 Q9NVH1
DNAJC19 DNAJC19 ENSG00000205981 30528 131118 608977 Q96DA6
DNMT1 DNMT1 ENSG00000130816 2976 1786 126375 P26358
MRPS2 MRPS2 ENSG00000122140 14495 51116 611971 Q9Y399
MRPS25 MRPS25 ENSG00000131368 14511 64432 611987 P82663
MRPS27 MRPS27 ENSG00000113048 14512 23107 611989 Q92552
MRPS5 MRPS5 ENSG00000144029 14498 64969 611972 P82675
DPP4 DPP4 ENSG00000197635 3009 1803 102720 P27487
MTCH1 MTCH1 ENSG00000137409 17586 23787 610449 Q9NZJ7
MTARC1 MTARC1 ENSG00000186205 26189 64757 614126 Q5VT66
EDEM3 EDEM3 ENSG00000116406 16787 80267 610214 Q9BZQ6
CD8A CD8A ENSG00000153563 1706 925 186910 P01732
GPT GPT ENSG00000167701 4552 2875 138200 P24298
GPX1 GPX1 ENSG00000233276 4553 2876 138320 P07203
CD209 CD209 ENSG00000090659 1641 30835 604672 Q9NNX6
GRIPAP1 GRIPAP1 ENSG00000068400 18706 56850 300408 Q4V328
GGH GGH ENSG00000137563 4248 8836 601509 Q92820
MOV10 MOV10 ENSG00000155363 7200 4343 610742 Q9HCE1
MPHOSPH10 MPHOSPH10 ENSG00000124383 7213 10199 605503 O00566
DDX10 DDX10 ENSG00000178105 2735 1662 601235 Q13206
DDX21 DDX21 ENSG00000165732 2744 9188 606357 Q9NR30
RNF41 RNF41 ENSG00000181852 18,401 10193 NA Q9H4P4
COL6A1 COL6A1 ENSG00000142156 2211 1291 120220 P12109
DCAF7 DCAF7 ENSG00000136485 30915 10238 605973 P61962
DCAKD DCAKD ENSG00000172992 26238 79877 NA Q8WVC6
NDUFAF2 NDUFAF2 ENSG00000164182 28086 91942 609653 Q8N183
EIF4E2 EIF4E2 ENSG00000135930 3293 9470 605895 O60573
EIF4H EIF4H ENSG00000106682 12741 7458 603431 Q15056
ELOB ELOB ENSG00000103363 11619 6923 600787 Q15370
ELOC ELOC ENSG00000154582 11617 6921 600788 Q15369
EMC1 EMC1 ENSG00000127463 28957 23065 616846 Q8N766
NEU1 NEU1 ENSG00000204386 7758 4758 608272 Q99519
NEK9 NEK9 ENSG00000119638 18591 91754 609798 Q8TD19
CSNK2A2 CSNK2A2 ENSG00000070770 2459 1459 115442 P19784
CSNK2B CSNK2B ENSG00000204435 2460 1460 115441 P67870
CRTC3 CRTC3 ENSG00000140577 26148 64784 608986 Q6UUV7
PCSK6 PCSK6 ENSG00000140479 8569 5046 167405 P29122
IL17A IL17A ENSG00000112115 5981 3605 603149 Q16552
IL17RA IL17RA ENSG00000177663 5985 23765 605461 Q96F46
IL10 IL10 ENSG00000136634 5962 3586 124092 P22301
IL2RA IL2RA ENSG00000134460 6008 3559 147730 P01589
SPART SPART ENSG00000133104 18514 23111 607111 Q8N0X7
PDZD11 PDZD11 ENSG00000120509 28034 51248 300632 Q5EBL8
PRRC2B PRRC2B ENSG00000130723 28121 84726 NA Q5JSZ5
NPTX1 NPTX1 ENSG00000171246 7952 4884 602367 Q15818
SELENOS SELENOS ENSG00000131871 30396 55829 607918 Q9BQE4
NPC2 NPC2 ENSG00000119655 14537 10577 601015 P61916
PABPC1 PABPC1 ENSG00000070756 8554 26986 604679 P11940
PABPC4 PABPC4 ENSG00000090621 8557 8761 603407 Q13310
IDE IDE ENSG00000119912 5381 3416 146680 P14735
PRKACA PRKACA ENSG00000072062 9380 5566 601639 P17612
PCNT PCNT ENSG00000160299 16068 5116 605925 O95613
PRKAR2A PRKAR2A ENSG00000114302 9391 5576 176910 P13861
PDE4DIP PDE4DIP ENSG00000178104 15580 9659 608117 Q5VU43
SAAL1 SAAL1 ENSG00000166788 25158 113174 NA Q96ER3
SCARB1 SCARB1 ENSG00000073060 1664 949 601040 Q8WTV0
SCCPDH SCCPDH ENSG00000143653 24275 51097 NA Q8NBX0
SDF2 SDF2 ENSG00000132581 10675 6388 602934 Q99470
RRP9 RRP9 ENSG00000114767 16829 9136 NA O43818
SBNO1 SBNO1 ENSG00000139697 22973 55206 614274 A3KN83
RTN4 RTN4 ENSG00000115310 14085 57142 604475 Q9NQC3
EGFR EGFR ENSG00000146648 3236 1956 131550 P00533
RPL36 RPL36 ENSG00000130255 13631 25873 617893 Q9Y3U8
ENPEP ENPEP ENSG00000138792 3355 2028 138297 Q07075
NGDN NGDN ENSG00000129460 20271 25983 610777 Q8NEJ9
NGLY1 NGLY1 ENSG00000151092 17646 55768 610661 Q96IV0
NIN NIN ENSG00000100503 14906 51199 608684 Q8N4C6
NINL NINL ENSG00000101004 29163 22981 609580 Q9Y2I6
SLC44A2 SLC44A2 ENSG00000129353 17292 57153 606106 Q8IWA5
NUP210 NUP210 ENSG00000132182 30052 23225 607703 Q8TEM1
NUP214 NUP214 ENSG00000126883 8064 8021 114350 P35658
SLC6A19 SLC6A19 ENSG00000174358 27960 340024 608893 Q695T7
SMOC1 SMOC1 ENSG00000198732 20318 64093 608488 Q9H4F8
PKP2 PKP2 ENSG00000057294 9024 5318 602861 Q99959
SLU7 SLU7 ENSG00000164609 16939 10569 605974 O95391
PITRM1 PITRM1 ENSG00000107959 17663 10531 618211 Q5JRX3
HSBP1 HSBP1 ENSG00000230989 5203 3281 604553 O75506
OS9 OS9 ENSG00000135506 16994 10956 609677 Q13438
POFUT1 POFUT1 ENSG00000101346 14988 23509 607491 Q9H488
POGLUT2 POGLUT2 ENSG00000134901 19350 79070 611613 Q6UW63
POGLUT3 POGLUT3 ENSG00000178202 28496 143888 618503 Q7Z4H8
POLA1 POLA1 ENSG00000101868 9173 5422 312040 P09884
POLA2 POLA2 ENSG00000014138 30073 23649 NA Q14181
PLOD2 PLOD2 ENSG00000152952 9082 5352 601865 O00469
SNIP1 SNIP1 ENSG00000163877 30587 79753 608241 Q8TAD8
PLD3 PLD3 ENSG00000105223 17158 23646 615698 Q8IV08
PLEKHA5 PLEKHA5 ENSG00000052126 30036 54477 607770 Q9HAU0
PLEKHF2 PLEKHF2 ENSG00000175895 20757 79666 615208 Q9H8W4
SIRT5 SIRT5 ENSG00000124523 14933 23408 604483 Q9NXA8
SLC27A2 SLC27A2 ENSG00000140284 10996 11001 603247 O14975
SLC30A7 SLC30A7 ENSG00000162695 19306 148867 611149 Q8NEW0
SLC30A9 SLC30A9 ENSG00000014824 1329 10463 604604 Q6PML9
NUP54 NUP54 ENSG00000138750 17359 53371 607607 Q7Z3B4
NUP58 NUP58 ENSG00000139496 20261 9818 607615 Q9BVL2
NUP62 NUP62 ENSG00000213024 8066 23636 605815 P37198
NUP88 NUP88 ENSG00000108559 8067 4927 602552 Q99567
NUP98 NUP98 ENSG00000110713 8068 4928 601021 P52948
NUTF2 NUTF2 ENSG00000102898 13722 10204 605813 P61970
SLC25A21 SLC25A21 ENSG00000183032 14411 89874 607571 Q9BQT8
NSD2 NSD2 ENSG00000109685 12766 7468 602952 O96028
SEPSECS SEPSECS ENSG00000109618 30605 51091 613009 Q9HD40
SIGMAR1 SIGMAR1 ENSG00000147955 8157 10280 601978 Q99720
SIL1 SIL1 ENSG00000120725 24624 64374 608005 Q9H173
SRP19 SRP19 ENSG00000153037 11300 6728 182175 P09132
SRP54 SRP54 ENSG00000100883 11301 6729 604857 P61011
INS INS ENSG00000254647 6081 3630 176730 P01308
SRP72 SRP72 ENSG00000174780 11303 6731 602122 O76094
IMPDH2 IMPDH2 ENSG00000178035 6053 3615 146691 P12268
PTGES2 PTGES2 ENSG00000148334 17822 80142 608152 Q9H7Z7
INHBE INHBE ENSG00000139269 24029 83729 612031 P58166
PSMD8 PSMD8 ENSG00000099341 9566 5714 617844 P48556
INTS4 INTS4 ENSG00000149262 25048 92105 611348 Q96HW7
TOR1A TOR1A ENSG00000136827 3098 1861 605204 O14656
TOR1AIP1 TOR1AIP1 ENSG00000143337 29456 26092 614512 Q5JTV8
LARP1 LARP1 ENSG00000155506 29531 23367 612059 Q6PKG0
LARP4B LARP4B ENSG00000107929 28987 23185 616513 Q92615
LARP7 LARP7 ENSG00000174720 24912 51574 612026 Q4G0J3
TUBGCP2 TUBGCP2 ENSG00000130640 18599 10844 617817 Q9BSJ2
TUBGCP3 TUBGCP3 ENSG00000126216 18598 10426 617818 Q96CW5
UGGT2 UGGT2 ENSG00000102595 15664 55757 605898 Q9NYU1
TRIM59 TRIM59 ENSG00000213186 30834 286827 616148 Q8IWR1
UBAP2 UBAP2 ENSG00000137073 14185 55833 NA Q5T6F2
TYSND1 TYSND1 ENSG00000156521 28531 219743 611017 Q2T9J0
UBAP2L UBAP2L ENSG00000143569 29877 9898 616472 Q14157
UPF1 UPF1 ENSG00000005007 9962 5976 601430 Q92900
ITGB1 ITGB1 ENSG00000150093 6153 3688 135630 P05556
PUSL1 PUSL1 ENSG00000169972 26914 126789 NA Q8N0Z8
PVR PVR ENSG00000073008 9705 5817 173850 P15151
RAB2A RAB2A ENSG00000104388 9763 5862 179509 P61019
RAP1GDS1 RAP1GDS1 ENSG00000138698 9859 5910 179502 P52306
KNG1 KNG1 ENSG00000113889 6383 3827 612358 P01042
TCF12 TCF12 ENSG00000140262 11623 6938 600480 Q99081
TARS2 TARS2 ENSG00000143374 30740 80222 612805 Q9BW92
REEP5 REEP5 ENSG00000129625 30077 7905 125265 Q00765
REEP6 REEP6 ENSG00000115255 30078 92840 609346 Q96HR9
TBK1 TBK1 ENSG00000183735 11584 29110 604834 Q9UHD2
TBKBP1 TBKBP1 ENSG00000198933 30140 9755 608476 A7MCY6
RBX1 RBX1 ENSG00000100387 9928 9978 603814 P62877
RBM41 RBM41 ENSG00000089682 25617 55285 NA Q96IZ5
RDX RDX ENSG00000137710 9944 5962 179410 P35241
RAB10 RAB10 ENSG00000084733 9759 10890 612672 P61026
JAKMIP1 JAKMIP1 ENSG00000152969 26460 152789 611195 Q96N16
STOM STOM ENSG00000148175 3383 2040 133090 P27105
RAB14 RAB14 ENSG00000119396 16524 51552 612673 P61106
RAB18 RAB18 ENSG00000099246 14244 22931 602207 Q9NP72
RAB1A RAB1A ENSG00000138069 9758 5861 179508 P62820
STC2 STC2 ENSG00000113739 11374 8614 603665 O76061
RALA RALA ENSG00000006451 9839 5898 179550 P11233
RAB5C RAB5C ENSG00000108774 9785 5878 604037 P51148
RAB7A RAB7A ENSG00000075785 9788 7879 602298 P51149
RAB8A RAB8A ENSG00000167461 7007 4218 165040 P61006
QSOX2 QSOX2 ENSG00000165661 30249 169714 612860 Q6ZRP7
RAE1 RAE1 ENSG00000101146 9828 8480 603343 P78406
SUN2 SUN2 ENSG00000100242 14210 25777 613569 Q9UH99
TLE1 TLE1 ENSG00000196781 11837 7088 600189 Q04724
TLE3 TLE3 ENSG00000140332 11839 7090 600190 Q04726
TLE5 TLE5 ENSG00000104964 307 166 600188 Q08117
TM2D3 TM2D3 ENSG00000184277 24128 80213 610014 Q9BRN9
TMPRSS2 TMPRSS2 ENSG00000184012 11876 7113 602060 O15393
TMPRSS4 TMPRSS4 ENSG00000137648 11878 56649 606565 Q9NRS4
IL6R IL6R ENSG00000160712 6019 3570 147880 P08887
PRKAR2B PRKAR2B ENSG00000005249 9392 5577 176912 P31323
PRIM1 PRIM1 ENSG00000198056 9369 5557 176635 P49642
PRIM2 PRIM2 ENSG00000146143 9370 5558 176636 P49643
PPT1 PPT1 ENSG00000131238 9325 5538 600722 P50897
PPIL3 PPIL3 ENSG00000240344 9262 53938 615811 Q9H2H8
TRMT1 TRMT1 ENSG00000104907 25980 55621 611669 Q9NXH9
MYCBP2 MYCBP2 ENSG00000005810 23386 23077 610392 O75592
NARS2 NARS2 ENSG00000137513 26274 79731 612803 Q96I59
CNTRL CNTRL ENSG00000119397 1858 11064 605496 Q7Z7A1
NAT14 NAT14 ENSG00000090971 28918 57106 NA Q8WUY8
NOL10 NOL10 ENSG00000115761 25862 79954 616197 Q9BSC4
CUL2 CUL2 ENSG00000108094 2552 8453 603135 Q13617
MOGS MOGS ENSG00000115275 24862 7841 601336 Q13724
PLAT PLAT ENSG00000104368 9051 5327 173370 P00750
PLAUR PLAUR ENSG00000011422 9053 5329 173391 Q03405
POR POR ENSG00000127948 9208 5447 124015 P16435
HYOU1 HYOU1 ENSG00000149428 16931 10525 601746 Q9Y4L1
PMPCA PMPCA ENSG00000165688 18667 23203 613036 Q10713
PMPCB PMPCB ENSG00000105819 9119 9512 603131 O75439
IL6 IL6 ENSG00000136244 6018 3569 147620 P05231
RBM28 RBM28 ENSG00000106344 21863 55131 612074 Q9NW13
THTPA THTPA ENSG00000259431 18987 79178 611612 Q9BU02
TIMM10 TIMM10 ENSG00000134809 11814 26519 602251 P62072
TIMM10B TIMM10B ENSG00000132286 4022 26515 607388 Q9Y5J6
TIMM29 TIMM29 ENSG00000142444 25152 90580 617380 Q9BSF4
TIMM8B TIMM8B ENSG00000150779 11818 26521 606659 Q9Y5J9
TIMM9 TIMM9 ENSG00000100575 11819 26520 607384 Q9Y5J7
USP54 USP54 ENSG00000166348 23513 159195 NA Q70EL1
ZC3H7A ZC3H7A ENSG00000122299 30959 29066 NA Q8IWR0
ZDHHC5 ZDHHC5 ENSG00000156599 18472 25921 614586 Q9C0B5
ZC3H18 ZC3H18 ENSG00000158545 25091 124245 NA Q86VM9
ZNF503 ZNF503 ENSG00000165655 23589 84858 613902 Q96F45
ZNF318 ZNF318 ENSG00000171467 13578 24149 617512 Q5VUA4
ZYG11B ZYG11B ENSG00000162378 25820 79699 618673 Q9C0D3
VPS11 VPS11 ENSG00000160695 14583 55823 608549 Q9H270
VPS39 VPS39 ENSG00000166887 20593 23339 612188 Q96JC1
WASHC4 WASHC4 ENSG00000136051 29174 23325 615748 Q2M389
USP13 USP13 ENSG00000058056 12611 8975 603591 Q92995
VEGFA VEGFA ENSG00000112715 12680 7422 192240 P15692
YIF1A YIF1A ENSG00000174851 16688 10897 611484 O95070
LMAN2 LMAN2 ENSG00000169223 16986 10960 609551 Q12907

3.2. Siddha formulation as the supplement

The list of plants involved in the formulation of Kabasura kudineer, Nilavembu kudineer, and JACOM were identified from the literature source. A total of 25 plants were identified in the formulation (Table 2 ). Further, a list of phytochemical compounds from the identified 25 plants was obtained from the ChEBI database. Three hundred and fourteen phytochemical compounds were identified in these 25 plants overall (Table 3 ).

Table 2.

The list of plant involved in the formulation of Nilavembu kudineer, Kabasura kudineer, and JACOM.

S.·no Plants name
1 Zingiber officinale
2 Piper longum
3 Syzygium aromaticum
4 Tragia involucrata
5 Anacyclus pyrethrum
6 Andrographis paniculata
7 Hygrophila auriculata
8 Terminalia chebula
9 Justicia adhatoda
10 Plectranthus amboinicus
11 Saussurea lappa
12 Tinospora cordifolia
13 Rotheca serrata
14 Cypreus rotundus
15 Sida acuta Burm.f.L
16 Adeloda serrata raf
17 Carica Papaya
18 A. paniculata
19 Ocimum tenuiflorum
20 Vetiveria zizanioides
21 Santalum album
22 Piper nigrum
23 Hedyotis corymbosa
24 Plectranthus vettiveroides
25 Trichosanthes cucumerina

Table 3.

The list of phytochemical compounds found in the plant involved in the formulation of Nilavembu kudineer, Kabasura kudineer, and JACOM with ChEBI ID.

S.·no Name of the plant ChEBI ID Name of the compound
1 Zingiber officinale CHEBI:142262 Gingerenone B
2 CHEBI:64361 Beta-sesquiphellandrene
3 CHEBI:69294 3-(3,4-Dimethoxyphenyl)-4-[(Z)-3,4-dimethoxystyryl]cyclohex-1-ene
4 CHEBI:69295 3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene
5 CHEBI:26137 Pinocarveol
6 CHEBI:66502 Zerumboneoxide
7 CHEBI:68065 Ramonanin A, (rel)-
8 CHEBI:68066 Ramonanin B, (rel)-
9 CHEBI:68067 Ramonanin C, (rel)-
10 CHEBI:68068 Ramonanin D, (rel)-
11 CHEBI:63892 Zerumbone
12 CHEBI:66050 5-Hydroxyzerumbone
13 CHEBI:138043 (2E,6E)-hedycaryol
14 CHEBI:28817 Dodecane
15 CHEBI:146145 7,4′-Dimethylkaempferol
16 CHEBI:10115 Zingiberene
17 CHEBI:5414 Glucoputranjivin(1-)
18 CHEBI:79331 Glucoputranjivin
19 CHEBI:32389 All-cis-octadeca-6,9,12,15-tetraenoic acid
20 Piper longum CHEBI:132658 Pipataline
21 CHEBI:66757 Pipercyclobutanamide A(rel)
22 CHEBI:69686 Pellitorine
23 CHEBI:67582 Gaudichaudianic acid, (− rac)
24 CHEBI:69675 Sarmentosumin A
25 CHEBI:69676 Sarmentosumin B
26 CHEBI:69677 Sarmentosumin C
27 CHEBI:69678 Sarmentosumin D
28 CHEBI:69679 Isochamanetin
29 CHEBI:69680 7-Methoxychamanetin
30 CHEBI:69681 Dichamanetin
31 CHEBI:69682 7-Methoxydichamanetin
32 CHEBI:69683 5″-(2⁗-Hydroxybenzyl)uvarinol
33 CHEBI:69687 2,4-Dodecadienamide
34 CHEBI:69689 7-Methoxyisochamanetin
35 CHEBI:70083 (2E,4E)-N-[2-(methylsulfinyl)ethyl]-2,4-decadienamide
36 CHEBI:70084 (2E,4E)-N-[(4-hydroxy-3-methoxyphenyl)ethyl]-2,4-decadienamide
37 CHEBI:70085 3-(4-Hydroxy-3,5-dimethoxyphenyl)propanoylpyrrole
38 CHEBI:70086 3-(3,4,5-Timethoxyphenyl)propanoylpyrrole
39 CHEBI:70087 1-[(2E,4E,6E)-2,4,6-dodecatrienoyl]pyrrolidine
40 CHEBI:70088 1-[(2E,4Z,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine
41 CHEBI:70089 1-[(2E,4E,10E)-10-(3,4-methylenedioxyphenyl)-2,4,10-undecatrienoyl]pyrrolidine
42 CHEBI:70090 1-[(4E,10E)-11-(3,4-methylenedioxyphenyl)-4,10-undecadienoyl]pyrrolidine
43 CHEBI:70091 1-[(9E)-10-(3,4-methylenedioxyphenyl)-9-decenoyl]pyrrolidine
44 CHEBI:70092 1-[(2E,4E)-2,4-decadienoyl]pyrrolidine
45 CHEBI:70093 1-[(2E,4E)-2,4-dodecadienoyl]pyrrolidine
46 CHEBI:70094 1-[(2E)-7-(3,4-methylenedioxyphenyl)-2-heptenoyl]pyrrolidine
47 CHEBI:70095 1-[(2E,4E)-7-(3,4-methylenedioxyphenyl)-2,4-heptadienoyl]pyrrolidine
48 CHEBI:70096 1-[(2E,8E)-9-(3,4-methylenedioxyphenyl)-2,8-nonadienoyl]pyrrolidine
49 CHEBI:70097 1-[(8E)-9-(3,4-methylenedioxyphenyl)-8-nonenoyl]pyrrolidine
50 CHEBI:70098 1-[(2E,4E,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine
51 CHEBI:70099 1-[(2E,4E)-11-(3,4-methylenedioxyphenyl)-2,4-undecadienoyl]pyrrolidine
52 CHEBI:70100 1-[(2E,10E)-11-(3,4-methylenedioxyphenyl)-2,10-undecadienoyl]pyrrolidine
53 CHEBI:70101 (2E,4E)-N-isobutyl-2,4-dodecadienamide
54 CHEBI:70102 (2E,4E)-N-isobutyl-7-(3,4-methylenedioxyphenyl)-hepta-2,4-dienamide
55 CHEBI:70103 (8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide
56 CHEBI:70104 (2E,4E,8E)-N-isobutyl-11-(3,4-methylenedioxyphenyl)undeca-2,4,8-trienamide
57 CHEBI:70105 N-trans-sinapoyltyramine
58 CHEBI:70490 Dihydrocubebin, rel-
59 CHEBI:70491 Justiflorinol
60 CHEBI:70485 (−)-Sanguinolignan A
61 CHEBI:70486 (−)-Sanguinolignan B
62 CHEBI:70487 (−)-Sanguinolignan C
63 CHEBI:70488 (−)-Sanguinolignan D
64 CHEBI:70489 (7′S)-parabenzlactone
65 CHEBI:65899 Flavokawain B
66 CHEBI:66709 Methyl 3,4-dihydroxy-5-(3′-methyl-2′-butenyl)benzoate
67 CHEBI:69688 Pipercallosidine
68 CHEBI:132651 Kadsurenin C
69 CHEBI:132652 Kadsurenin K
70 CHEBI:132653 Kadsurenin L
71 CHEBI:69685 Pipercallosine
72 CHEBI:70483 (S)-1′-methylhexyl caffeate
73 CHEBI:132647 Futoenone
74 CHEBI:65684 (−)-Cubebin
75 CHEBI:65685 (−)-3,4-Dimethoxy-3,4-desmethylenedioxycubebin
76 CHEBI:70482 (S)-1′-methylbutyl caffeate
77 CHEBI:70484 (S)-1′-methyloctyl caffeate
78 CHEBI:65937 Futokadsurin B
79 CHEBI:65938 Futokadsurin C
80 CHEBI:28821 Piperine
81 CHEBI:65936 Futokadsurin A
82 CHEBI:132650 Burchellin
83 CHEBI:35697 Trans-cinnamic acid
84 CHEBI:80484 Pinocembrin chalcone
85 CHEBI:132657 Piperlactam S
86 CHEBI:2871 Asebogenin
87 CHEBI:66470 (+)-Sesamin
88 CHEBI:30746 Benzoic acid
89 CHEBI:17818 N-feruloyltyramine
90 CHEBI:132654 Kadsurenin M
91 CHEBI:156227 (−)-Epicubenol
92 CHEBI:70626 Acacetin-8-C-neohesperidoside
93 CHEBI:70148 Monocerin
94 CHEBI:70149 (2S,3aR,9bR)-6,7-dihydroxy-8-methoxy-2-propyl-3,3a-dihydro-2H-furo[3,2-c]isochromen-5(9bH)-one
95 CHEBI:70150 Fusarentin 6,7-dimethyl ether
96 CHEBI:70151 Fusarentin 6-methyl ether
97 CHEBI:70152 (3R,4R)-4,8-dihydroxy-3-((R)-2-hydroxypentyl)-6,7-dimethoxyisochroman-1-one
98 CHEBI:70153 Colletotrialide, (+)-
99 CHEBI:132648 Galgravin
100 CHEBI:8240 Piperonal
101 CHEBI:28157 Pinocembrin
102 CHEBI:80788 1,4-Cineole
103 CHEBI:113455 Sodium benzoate
104 CHEBI:156224 (−)-Cubenol
105 CHEBI:37316 (E,E)-piperic acid
106 CHEBI:6116 Kavapyrone
107 CHEBI:10224 Alpha-cubebene
108 CHEBI:132649 Acuminatin
109 Syzygium aromaticum CHEBI:65486 Betulin di(3-carboxybutanoate)
110 CHEBI:65485 Dihydrobetulinic acid
111 CHEBI:65484 Bevirimat
112 CHEBI:65487 Platanic acid
113 CHEBI:132345 Canophyllal
114 CHEBI:27386 Cinnamic acid
115 CHEBI:69305 Cinnamtannin D-1
116 CHEBI:69307 Cassiatannin A
117 CHEBI:69304 Cinnamtannin B-1
118 CHEBI:69306 Parameritannin A-1
119 CHEBI:133634 Methyl linolenate
120 CHEBI:63892 Zerumbone
121 CHEBI:89729 (Z)-3-phenyl-2-propenal
122 CHEBI:136676 (E)-2-methoxycinnamic acid
123 CHEBI:3087 Betulinic acid
124 Tragia involucrata CHEBI:133981 Heptacosan-1-ol
125 Anacyclus pyrethrum CHEBI:27815 Pyrethrin I
126 CHEBI:27474 Pyrethrin II
127 Andrographis paniculata CHEBI:69808 14-Deoxy-11,12-didehydroandrographolide
128 CHEBI:65408 Andrographolide
129 CHEBI:86612 Dihydroferulic acid
130 CHEBI:132373 Mesembryanthemoidigenic acid
131 CHEBI:142267 Methyl N-methylanthranilate
132 CHEBI:132830 Delta-elemene
133 CHEBI:65732 Decussatin
134 Hygrophila auriculata CHEBI:3367 Capensinidin
135 Terminalia chebula CHEBI:66202 Termilignan B
136 CHEBI:69692 (Z)-9-hydroxybenzo[c]oxepin-3(1H)-one
137 CHEBI:69693 Cyclosordariolone, (rac)-
138 CHEBI:69694 (R)-3-Hydroxy-1-[(R)-4-hydroxy-1,3-dihydroisobenzofuran-1-yl]butan-2-one
139 CHEBI:69695 (R)-3-Hydroxy-1-[(S)-4-hydroxy-1,3-dihydroisobenzofuran-1-yl]butan-2-one
140 CHEBI:69696 (E)-2-(Hydroxymethyl)-3-(4-hydroxypent-1-enyl)phenol
141 CHEBI:69697 1-(3,9-Dihydroxy-1,3-dihydrobenzo[c]oxepin-3-yl)ethanone, (rac)-
142 CHEBI:69698 Pestalospirane A
143 CHEBI:69699 Pestalospirane B
144 CHEBI:145828 Methyl 3,4,5-trihydroxybenzoate
145 CHEBI:9908 Ursolic acid
146 Justicia adhatoda CHEBI:2814 Arecoline
147 CHEBI:156072 Propyl benzoate
148 Plectranthus amboinicus CHEBI:66763 Plectranthol A
149 CHEBI:66764 Plectranthol B
150 CHEBI:138963 11,20-Dihydroxysugiol
151 CHEBI:138962 11-Hydroxysugiol
152 CHEBI:86062 Abietatriene
153 Saussurea lappa CHEBI:66024 1beta-hydroxy arbusculin A
154 CHEBI:2540 Alantolactone
155 CHEBI:244418 Dehydrocostus lactone
156 CHEBI:3900 Costunolide
157 CHEBI:132820 Matairesinoside
158 CHEBI:138251 3-Hydroxyhexane-2,5-dione
159 CHEBI:133981 Heptacosan-1-ol
160 Tinospora cordifolia CHEBI:66046 6-Hydroxyluteolin 7-O-laminaribioside
161 CHEBI:89715 Cyclotetradecane
162 CHEBI:142915 Cycloeucalenone
163 CHEBI:141063 Rubimaillin
164 CHEBI:132345 Canophyllal
165 CHEBI:132718 Stepharanine
166 CHEBI:134479 (Z)-icos-13-enoic acid
167 CHEBI:145828 Methyl 3,4,5-trihydroxybenzoate
168 Rotheca serrata CHEBI:156193 Serratol
169 CHEBI:78330 Huperzine A
170 CHEBI:6701 Maytansine
171 Cypreus rotundus CHEBI:66416 Mustakone
172 CHEBI:81377 (+)-Nootkatone
173 Sida acuta Burm.f.L CHEBI:142397 Pectenotoxin-11
174 CHEBI:145981 Dinophysistoxin 2
175 CHEBI:142495 1-Icosanoylglycerol
176 CHEBI:131838 Swertisin
177 CHEBI:156193 Serratol
178 CHEBI:16634 Raffinose
179 CHEBI:90295 PLX-4720
180 CHEBI:78330 Huperzine A
181 CHEBI:6701 Maytansine
182 CHEBI:143119 N-(2-methoxyethyl)-4-{[6-(pyridin-4-yl)quinazolin-2-yl]amino}benzamide
183 Carica Papaya CHEBI:17127 Glucotropeolin
184 CHEBI:58021 Glucotropeolin(1-)
185 CHEBI:142658 Methyl 12-methyltetradecanoate
186 CHEBI:91143 (3S,5R,6S)-beta-cryptoxanthin 5,6-epoxide
187 CHEBI:3433 Carpaine
188 CHEBI:10362 Beta-cryptoxanthin
189 CHEBI:1307 24-Methylenecycloartanol
190 CHEBI:141360 Helvolic acid methyl ester
191 CHEBI:4316 Danielone
192 CHEBI:133683 2-Isobutylthiazole
193 A. paniculata CHEBI:69808 14-Deoxy-11,12-didehydroandrographolide
194 CHEBI:65408 Andrographolide
195 CHEBI:86612 Dihydroferulic acid
196 CHEBI:132373 Mesembryanthemoidigenic acid
197 CHEBI:142267 Methyl N-methylanthranilate
198 CHEBI:132830 Delta-elemene
199 CHEBI:65732 Decussatin
200 Ocimum tenuiflorum CHEBI:17580 Linalool
201 CHEBI:7545 Nevadensin
202 CHEBI:63710 7-Epi-sesquithujene
203 Vetiveria zizanioides CHEBI:138051 Selina-4(15),7(11)-diene
204 Santalum album CHEBI:16714 Codeine
205 CHEBI:45373 Sulfanilamide
206 CHEBI:65460 Avicularin
207 Piper nigrum CHEBI:66757 Pipercyclobutanamide A(rel)
208 CHEBI:65684 (−)-cubebin
209 CHEBI:65685 (−)-3,4-dimethoxy-3,4-desmethylenedioxycubebin
210 CHEBI:28821 Piperine
211 CHEBI:69686 Pellitorine
212 CHEBI:67582 Gaudichaudianic acid, (− rac)
213 CHEBI:69675 Sarmentosumin A
214 CHEBI:69676 Sarmentosumin B
215 CHEBI:69677 Sarmentosumin C
216 CHEBI:69678 Sarmentosumin D
217 CHEBI:69679 Isochamanetin
218 CHEBI:69680 7-Methoxychamanetin
219 CHEBI:69681 Dichamanetin
220 CHEBI:69682 7-Methoxydichamanetin
221 CHEBI:69683 5″-(2⁗-Hydroxybenzyl)uvarinol
222 CHEBI:69687 2,4-Dodecadienamide
223 CHEBI:69689 7-Methoxyisochamanetin
224 CHEBI:70083 (2E,4E)-N-[2-(methylsulfinyl)ethyl]-2,4-decadienamide
225 CHEBI:70084 (2E,4E)-N-[(4-hydroxy-3-methoxyphenyl)ethyl]-2,4-decadienamide
226 CHEBI:70085 3-(4-hydroxy-3,5-dimethoxyphenyl)propanoylpyrrole
227 CHEBI:70086 3-(3,4,5-timethoxyphenyl)propanoylpyrrole
228 CHEBI:70087 1-[(2E,4E,6E)-2,4,6-dodecatrienoyl]pyrrolidine
229 CHEBI:70088 1-[(2E,4Z,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine
230 CHEBI:70089 1-[(2E,4E,10E)-10-(3,4-methylenedioxyphenyl)-2,4,10-undecatrienoyl]pyrrolidine
231 CHEBI:70090 1-[(4E,10E)-11-(3,4-methylenedioxyphenyl)-4,10-undecadienoyl]pyrrolidine
232 CHEBI:70091 1-[(9E)-10-(3,4-methylenedioxyphenyl)-9-decenoyl]pyrrolidine
233 CHEBI:70092 1-[(2E,4E)-2,4-decadienoyl]pyrrolidine
234 CHEBI:70093 1-[(2E,4E)-2,4-dodecadienoyl]pyrrolidine
235 CHEBI:70094 1-[(2E)-7-(3,4-methylenedioxyphenyl)-2-heptenoyl]pyrrolidine
236 CHEBI:70095 1-[(2E,4E)-7-(3,4-methylenedioxyphenyl)-2,4-heptadienoyl]pyrrolidine
237 CHEBI:70096 1-[(2E,8E)-9-(3,4-methylenedioxyphenyl)-2,8-nonadienoyl]pyrrolidine
238 CHEBI:70097 1-[(8E)-9-(3,4-methylenedioxyphenyl)-8-nonenoyl]pyrrolidine
239 CHEBI:70098 1-[(2E,4E,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine
240 CHEBI:70099 1-[(2E,4E)-11-(3,4-methylenedioxyphenyl)-2,4-undecadienoyl]pyrrolidine
241 CHEBI:70100 1-[(2E,10E)-11-(3,4-methylenedioxyphenyl)-2,10-undecadienoyl]pyrrolidine
242 CHEBI:70101 (2E,4E)-N-isobutyl-2,4-dodecadienamide
243 CHEBI:70102 (2E,4E)-N-isobutyl-7-(3,4-methylenedioxyphenyl)-hepta-2,4-dienamide
244 CHEBI:70103 (8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide
245 CHEBI:70104 (2E,4E,8E)-N-isobutyl-11-(3,4-methylenedioxyphenyl)undeca-2,4,8-trienamide
246 CHEBI:70105 N-trans-sinapoyltyramine
247 CHEBI:70490 Dihydrocubebin, rel-
248 CHEBI:70491 Justiflorinol
249 CHEBI:70485 (−)-Sanguinolignan A
250 CHEBI:70486 (−)-Sanguinolignan B
251 CHEBI:70487 (−)-Sanguinolignan C
252 CHEBI:70488 (−)-Sanguinolignan D
253 CHEBI:70489 (7′S)-parabenzlactone
254 CHEBI:65899 Flavokawain B
255 CHEBI:66709 Methyl 3,4-dihydroxy-5-(3′-methyl-2′-butenyl)benzoate
256 CHEBI:69688 Pipercallosidine
257 CHEBI:132651 Kadsurenin C
258 CHEBI:132652 Kadsurenin K
259 CHEBI:132653 Kadsurenin L
260 CHEBI:69685 Pipercallosine
261 CHEBI:70483 (S)-1′-methylhexyl caffeate
262 CHEBI:132647 Futoenone
263 CHEBI:70482 (S)-1′-methylbutyl caffeate
264 CHEBI:70484 (S)-1′-methyloctyl caffeate
265 CHEBI:65937 Futokadsurin B
266 CHEBI:65938 Futokadsurin C
267 CHEBI:65936 Futokadsurin A
268 CHEBI:132650 Burchellin
269 CHEBI:8240 Piperonal
270 CHEBI:156224 (−)-Cubenol
271 CHEBI:37316 (E,E)-piperic acid
272 CHEBI:35697 Trans-cinnamic acid
273 CHEBI:80484 Pinocembrin chalcone
274 CHEBI:132657 Piperlactam S
275 CHEBI:2871 Asebogenin
276 CHEBI:51226 Epicocconone
277 CHEBI:66470 (+)-Sesamin
278 CHEBI:132658 Pipataline
279 CHEBI:143911 (−)-Antofine
280 CHEBI:30746 Benzoic acid
281 CHEBI:88764 Ethyl butyrate
282 CHEBI:17818 N-feruloyltyramine
283 CHEBI:132654 Kadsurenin M
284 CHEBI:156227 (−)-Epicubenol
285 CHEBI:70626 Acacetin-8-C-neohesperidoside
286 CHEBI:70148 Monocerin
287 CHEBI:70149 (2S,3aR,9bR)-6,7-dihydroxy-8-methoxy-2-propyl-3,3a-dihydro-2H-furo[3,2-c]isochromen-5(9bH)-one
288 CHEBI:70150 Fusarentin 6,7-dimethyl ether
289 CHEBI:70151 Fusarentin 6-methyl ether
290 CHEBI:70152 (3R,4R)-4,8-dihydroxy-3-((R)-2-hydroxypentyl)-6,7-dimethoxyisochroman-1-one
291 CHEBI:70153 Colletotrialide, (+)-
292 CHEBI:132648 Galgravin
293 CHEBI:133381 9,10-Epoxy-18-hydroxyoctadecanoic acid
294 CHEBI:28157 Pinocembrin
295 CHEBI:80788 1,4-Cineole
296 CHEBI:113455 Sodium benzoate
297 CHEBI:133325 9,10,18-Trihydroxyoctadecanoic acid
298 CHEBI:6116 Kavapyrone
299 CHEBI:10224 Alpha-cubebene
300 CHEBI:132649 Acuminatin
301 Hedyotis corymbosa CHEBI:66123 Jerantinine E
302 CHEBI:66124 Jerantinine F
303 CHEBI:66121 Jerantinine C
304 CHEBI:66120 Jerantinine B
305 CHEBI:66122 Jerantinine D
306 CHEBI:66119 Jerantinine A
307 CHEBI:142075 Tabernaemontanine
308 CHEBI:6682 Mangiferin
309 Plectranthus vettiveroides CHEBI:66763 Plectranthol A
310 CHEBI:66764 Plectranthol B
311 CHEBI:138963 11,20-Dihydroxysugiol
312 CHEBI:138962 11-Hydroxysugiol
313 CHEBI:86062 Abietatriene
314 Trichosanthes cucumerina CHEBI:66838 7-Oxo-10α-cucurbitadienol

3.3. Drug likeliness of phytochemical compounds

For a compound to persuade as a drug, the compound must satisfy a set of parameters that will prove its compatibility, efficiency, and toxicity. Lipinski's “rule of five” highlights possible bioavailability problems if two or more properties were violated. The SwissADME server was used to identify the Lipinski rule of 5 violations. The overall results from the SwissADME are tabulated in Table 4 . The list of 285 compounds that satisfy the Lipinski rule of 5 is tabulated in Table 5 .

Table 4.

The Lipinski rule calculation for the phytochemical compounds of the plant involved in the formulation of Nilavembu kudineer, Kabasura kudineer, and JACOM.

S.·no Compounds MW #H-bond acceptors #H-bond donors iLOGP Lipinski #violations
1 Gingerenone B 386.44 6 2 3.7 0
2 Beta-sesquiphellandrene 204.35 0 0 3.65 1
3 3-(3,4-Dimethoxyphenyl)-4-[(Z)-3,4-dimethoxystyryl]cyclohex-1-ene 380.48 4 0 4.43 0
4 3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene 380.48 4 0 4.43 0
5 Pinocarveol 152.23 1 1 2.12 0
6 Zerumboneoxide 234.33 2 0 2.71 0
7 Ramonanin A, (rel)- 680.74 10 4 4.14 1
8 Ramonanin B, (rel)- 680.74 10 4 4.51 1
9 Ramonanin C, (rel)- 680.74 10 4 4.5 1
10 Ramonanin D, (rel)- 680.74 10 4 5.29 1
11 Zerumbone 218.33 1 0 2.72 0
12 5-Hydroxyzerumbone 234.33 2 1 2.14 0
13 (2E,6E)-hedycaryol 222.37 1 1 3.05 0
14 Dodecane 170.33 0 0 3.82 1
15 7,4′-Dimethylkaempferol 314.29 6 2 2.94 0
16 Zingiberene 204.35 0 0 3.63 1
17 Glucoputranjivin(1-) 360.38 10 4 0.86 0
18 Glucoputranjivin 361.39 10 5 0.14 0
19 All-cis-octadeca-6,9,12,15-tetraenoic acid 276.41 2 1 3.29 1
20 Pipataline 288.42 2 0 4.61 1
21 Pipercyclobutanamide A(rel) 570.68 6 0 5.26 1
22 pellitorine 223.35 1 1 3.61 0
23 Gaudichaudianic acid, (− rac) 340.46 3 1 3.85 1
24 Sarmentosumin A 680.74 8 6 3.7 2
25 Sarmentosumin B 680.74 8 6 3.97 2
26 Sarmentosumin C 786.86 9 7 4.13 3
27 Sarmentosumin D 786.86 9 7 4.06 3
28 Isochamanetin 362.38 5 3 2.68 0
29 7-Methoxychamanetin 376.4 5 2 3.2 0
30 Dichamanetin 468.5 6 4 3.01 0
31 7-Methoxydichamanetin 482.52 6 3 3.58 0
32 5″-(2⁗-Hydroxybenzyl)uvarinol 694.77 8 5 4.16 1
33 2,4-Dodecadienamide 195.3 1 1 2.87 0
34 7-Methoxyisochamanetin 376.4 5 2 3.5 0
35 (2E,4E)-N-[2-(methylsulfinyl)ethyl]-2,4-decadienamide 257.39 2 1 3.05 0
36 (2E,4E)-N-[(4-hydroxy-3-methoxyphenyl)ethyl]-2,4-decadienamide 317.42 3 2 3.76 0
37 3-(4-Hydroxy-3,5-dimethoxyphenyl)propanoylpyrrole 275.3 4 1 2.63 0
38 3-(3,4,5-Timethoxyphenyl)propanoylpyrrole 289.33 4 0 3.21 0
39 1-[(2E,4E,6E)-2,4,6-dodecatrienoyl]pyrrolidine 247.38 1 0 3.86 0
40 1-[(2E,4Z,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine 325.4 3 0 3.88 0
41 1-[(2E,4E,10E)-10-(3,4-methylenedioxyphenyl)-2,4,10-undecatrienoyl]pyrrolidine 353.45 3 0 4.53 0
42 1-[(4E,10E)-11-(3,4-methylenedioxyphenyl)-4,10-undecadienoyl]pyrrolidine 355.47 3 0 4.6 0
43 1-[(9E)-10-(3,4-methylenedioxyphenyl)-9-decenoyl]pyrrolidine 343.46 3 0 4.43 0
44 1-[(2E,4E)-2,4-decadienoyl]pyrrolidine 221.34 1 0 3.45 0
45 1-[(2E,4E)-2,4-dodecadienoyl]pyrrolidine 249.39 1 0 3.95 0
46 1-[(2E)-7-(3,4-methylenedioxyphenyl)-2-heptenoyl]pyrrolidine 301.38 3 0 3.64 0
47 1-[(2E,4E)-7-(3,4-methylenedioxyphenyl)-2,4-heptadienoyl]pyrrolidine 299.36 3 0 3.65 0
48 1-[(2E,8E)-9-(3,4-methylenedioxyphenyl)-2,8-nonadienoyl]pyrrolidine 327.42 3 0 4.04 0
49 1-[(8E)-9-(3,4-methylenedioxyphenyl)-8-nonenoyl]pyrrolidine 329.43 3 0 4.16 0
50 1-[(2E,4E,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine 325.4 3 0 3.88 0
51 1-[(2E,4E)-11-(3,4-methylenedioxyphenyl)-2,4-undecadienoyl]pyrrolidine 355.47 3 0 4.51 0
52 1-[(2E,10E)-11-(3,4-methylenedioxyphenyl)-2,10-undecadienoyl]pyrrolidine 355.47 3 0 4.16 0
53 (2E,4E)-N-isobutyl-2,4-dodecadienamide 251.41 1 1 4.06 0
54 (2E,4E)-N-isobutyl-7-(3,4-methylenedioxyphenyl)-hepta-2,4-dienamide 301.38 3 1 3.67 0
55 (8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide 331.45 3 1 4.18 0
56 (2E,4E,8E)-N-isobutyl-11-(3,4-methylenedioxyphenyl)undeca-2,4,8-trienamide 355.47 3 1 4.42 0
57 N-trans-sinapoyltyramine 343.37 5 3 2.71 0
58 Dihydrocubebin, rel- 358.39 6 2 3.19 0
59 Justiflorinol 356.33 7 1 2.76 0
60 (−)-Sanguinolignan A 384.34 8 1 2.82 0
61 (−)-Sanguinolignan B 384.34 8 1 2.79 0
62 (−)-Sanguinolignan C 442.42 9 0 3.36 0
63 (−)-Sanguinolignan D 426.37 9 0 2.74 0
64 (7′S)-parabenzlactone 370.35 7 1 3.12 0
65 Flavokawain B 284.31 4 1 2.63 0
66 Methyl 3,4-dihydroxy-5-(3′-methyl-2′-butenyl)benzoate 236.26 4 2 2.62 0
67 Pipercallosidine 303.4 3 1 3.76 0
68 Kadsurenin C 358.43 5 1 3.37 0
69 Kadsurenin K 342.39 5 1 3.02 0
70 Kadsurenin L 400.46 6 0 3.42 0
71 Pipercallosine 329.43 3 1 4.04 0
72 (S)-1′-methylhexyl caffeate 278.34 4 2 3.41 0
73 Futoenone 340.37 5 0 3.15 0
74 (−)-Cubebin 356.37 6 1 3.18 0
75 (−)-3,4-Dimethoxy-3,4-desmethylenedioxycubebin 372.41 6 1 3.06 0
76 (S)-1′-methylbutyl caffeate 250.29 4 2 2.81 0
77 (S)-1′-methyloctyl caffeate 306.4 4 2 3.66 0
78 Futokadsurin B 356.41 5 0 3.89 0
79 Futokadsurin C 356.41 5 0 3.77 0
80 Piperine 285.34 3 0 3.42 0
81 Futokadsurin A 358.43 5 1 3.46 0
82 Burchellin 340.37 5 0 3.26 0
83 Trans-cinnamic acid 148.16 2 1 1.55 0
84 Pinocembrin chalcone 256.25 4 3 1.09 0
85 Piperlactam S 295.29 4 1 2.54 0
86 Asebogenin 288.3 5 3 1.97 0
87 (+)-Sesamin 354.35 6 0 3.46 0
88 Benzoic acid 122.12 2 1 1.11 0
89 N-feruloyltyramine 313.35 4 3 2.58 0
90 Kadsurenin M 328.36 5 0 3.15 0
91 (−)-Epicubenol 222.37 1 1 3.11 0
92 Acacetin-8-C-neohesperidoside 592.55 14 8 1.49 3
93 Monocerin 308.33 6 1 2.99 0
94 (2S,3aR,9bR)-6,7-dihydroxy-8-methoxy-2-propyl-3,3a-dihydro-2H-furo[3,2-c]isochromen-5(9bH)-one 294.3 6 2 2.51 0
95 Fusarentin 6,7-dimethyl ether 310.34 6 2 2.85 0
96 Fusarentin 6-methyl ether 296.32 6 3 2.27 0
97 (3R,4R)-4,8-dihydroxy-3-((R)-2-hydroxypentyl)-6,7-dimethoxyisochroman-1-one 326.34 7 3 2.59 0
98 Colletotrialide, (+)- 308.33 6 1 2.49 0
99 Galgravin 372.45 5 0 3.97 0
100 Piperonal 150.13 3 0 1.6 0
101 Pinocembrin 256.25 4 2 2.11 0
102 1,4-Cineole 154.25 1 0 2.68 0
103 Sodium benzoate 144.1 2 0 − 11.15 0
104 (−)-Cubenol 222.37 1 1 3.24 0
105 (E,E)-piperic acid 218.21 4 1 2.2 0
106 Kavapyrone 244.24 4 0 2.6 0
107 Alpha-cubebene 204.35 0 0 3.4 1
108 Acuminatin 340.41 4 0 4.05 0
109 Betulin di(3-carboxybutanoate) 670.92 8 2 4.69 2
110 Dihydrobetulinic acid 458.72 3 2 3.91 1
111 Bevirimat 584.83 6 2 4.25 2
112 Platanic acid 458.67 4 2 3.52 1
113 Canophyllal 440.7 2 0 4.07 1
114 Cinnamic acid 148.16 2 1 1.55 0
115 Cinnamtannin D-1 864.76 18 14 2.04 3
116 Cassiatannin A 1153.01 24 19 2.75 3
117 Cinnamtannin B-1 864.76 18 14 2.25 3
118 Parameritannin A-1 1153.01 24 19 2.6 3
119 Methyl linolenate 292.46 2 0 4.94 1
120 Zerumbone 218.33 1 0 2.72 0
121 (Z)-3-phenyl-2-propenal 132.16 1 0 1.65 0
122 (E)-2-methoxycinnamic acid 178.18 3 1 1.76 0
123 Betulinic acid 456.7 3 2 3.81 1
124 Heptacosan-1-ol 396.73 1 1 6.93 1
125 Pyrethrin I 328.45 3 0 4.22 0
126 Pyrethrin II 372.45 5 0 4.2 0
127 14-Deoxy-11,12-didehydroandrographolide 332.43 4 2 3.07 0
128 Andrographolide 350.45 5 3 2.61 0
129 Dihydroferulic acid 196.2 4 2 1.62 0
130 Mesembryanthemoidigenic acid 472.7 4 3 3.56 1
131 Methyl N-methylanthranilate 165.19 2 1 2.02 0
132 Delta-elemene 204.35 0 0 3.43 1
133 Decussatin 302.28 6 1 2.96 0
134 Capensinidin 345.32 7 3 − 0.95 0
135 Termilignan B 294.34 3 1 2.74 0
136 (Z)-9-hydroxybenzo[c]oxepin-3(1H)-one 176.17 3 1 1.37 0
137 Cyclosordariolone, (rac)- 220.22 4 3 1.44 0
138 (R)-3-Hydroxy-1-[(R)-4-hydroxy-1,3-dihydroisobenzofuran-1-yl]butan-2-one 222.24 4 2 1.7 0
139 (R)-3-Hydroxy-1-[(S)-4-hydroxy-1,3-dihydroisobenzofuran-1-yl]butan-2-one 222.24 4 2 1.51 0
140 (E)-2-(Hydroxymethyl)-3-(4-hydroxypent-1-enyl)phenol 208.25 3 3 1.99 0
141 1-(3,9-Dihydroxy-1,3-dihydrobenzo[c]oxepin-3-yl)ethanone, (rac)- 220.22 4 2 1.53 0
142 Pestalospirane A 408.44 6 2 2.89 0
143 Pestalospirane B 408.44 6 2 3.02 0
144 Methyl 3,4,5-trihydroxybenzoate 184.15 5 3 0.96 0
145 Ursolic acid 456.7 3 2 3.95 1
146 Arecoline 155.19 3 0 2.26 0
147 Propyl benzoate 164.2 2 0 2.46 0
148 Plectranthol A 450.52 6 4 3.49 0
149 Plectranthol B 536.66 7 3 4.59 2
150 11,20-Dihydroxysugiol 332.43 4 3 2.87 0
151 11-Hydroxysugiol 316.43 3 2 3.15 0
152 Abietatriene 270.45 0 0 3.86 1
153 1beta-hydroxy arbusculin A 266.33 4 2 2.23 0
154 Alantolactone 232.32 2 0 2.71 0
155 Dehydrocostus lactone 230.3 2 0 2.67 0
156 Costunolide 232.32 2 0 2.72 0
157 Matairesinoside 520.53 11 5 2.37 2
158 3-Hydroxyhexane-2,5-dione 130.14 3 1 0.6 0
159 Heptacosan-1-ol 396.73 1 1 6.93 1
160 6-Hydroxyluteolin 7-O-laminaribioside 626.52 17 11 1.44 3
161 Cyclotetradecane 196.37 0 0 3.35 1
162 Cycloeucalenone 424.7 1 0 4.98 1
163 Rubimaillin 284.31 4 1 2.87 0
164 Canophyllal 440.7 2 0 4.07 1
165 Stepharanine 324.35 4 2 − 0.53 0
166 (Z)-icos-13-enoic acid 310.51 2 1 4.26 1
167 Methyl 3,4,5-trihydroxybenzoate 184.15 5 3 0.96 0
168 Serratol 290.48 1 1 3.82 1
169 Huperzine A 242.32 2 2 2.42 0
170 Maytansine 692.2 10 2 4.27 2
171 Mustakone 218.33 1 0 2.95 0
172 (+)-nootkatone 218.33 1 0 2.83 0
173 Pectenotoxin-11 875.05 15 4 4.09 2
174 Dinophysistoxin 2 805 13 5 6.22 2
175 1-Icosanoylglycerol 386.61 4 2 4.71 0
176 Swertisin 446.4 10 6 2.5 1
177 Serratol 290.48 1 1 3.82 1
178 Raffinose 504.44 16 11 1.12 3
179 PLX-4720 413.83 6 2 2.42 0
180 Huperzine A 242.32 2 2 2.42 0
181 Maytansine 692.2 10 2 4.27 2
182 N-(2-methoxyethyl)-4-{[6-(pyridin-4-yl)quinazolin-2-yl]amino}benzamide 399.45 5 2 2.8 0
183 Glucotropeolin 409.43 10 5 0.57 0
184 Glucotropeolin(1-) 408.42 10 4 1.04 0
185 Methyl 12-methyltetradecanoate 256.42 2 0 4.08 1
186 (3S,5R,6S)-beta-cryptoxanthin 5,6-epoxide 568.87 2 1 7.8 2
187 Carpaine 478.71 6 2 4.4 0
188 Beta-cryptoxanthin 552.87 1 1 7.6 2
189 24-Methylenecycloartanol 440.74 1 1 5.31 1
190 Helvolic acid methyl ester 582.72 8 0 4.5 1
191 Danielone 212.2 5 2 1.63 0
192 2-Isobutylthiazole 141.23 1 0 2.37 0
193 14-Deoxy-11,12-didehydroandrographolide 332.43 4 2 3.07 0
194 Andrographolide 350.45 5 3 2.61 0
195 Dihydroferulic acid 196.2 4 2 1.62 0
196 Mesembryanthemoidigenic acid 472.7 4 3 3.56 1
197 Methyl N-methylanthranilate 165.19 2 1 2.02 0
198 Delta-elemene 204.35 0 0 3.43 1
199 Decussatin 302.28 6 1 2.96 0
200 Linalool 154.25 1 1 2.7 0
201 Nevadensin 344.32 7 2 3 0
202 7-Epi-sesquithujene 204.35 0 0 3.37 1
203 Selina-4(15),7(11)-diene 204.35 0 0 3.31 1
204 Codeine 299.36 4 1 2.67 0
205 Sulfanilamide 172.2 3 2 0.61 0
206 Avicularin 434.35 11 7 1.86 2
207 Pipercyclobutanamide A(rel) 570.68 6 0 5.26 1
208 (−)-Cubebin 356.37 6 1 3.18 0
209 (−)-3,4-Dimethoxy-3,4-desmethylenedioxycubebin 372.41 6 1 3.06 0
210 Piperine 285.34 3 0 3.42 0
211 Pellitorine 223.35 1 1 3.61 0
212 Gaudichaudianic acid, (− rac) 340.46 3 1 3.85 1
213 Sarmentosumin A 680.74 8 6 3.7 2
214 Sarmentosumin B 680.74 8 6 3.97 2
215 Sarmentosumin C 786.86 9 7 4.13 3
216 Sarmentosumin D 786.86 9 7 4.06 3
217 Isochamanetin 362.38 5 3 2.68 0
218 7-Methoxychamanetin 376.4 5 2 3.2 0
219 Dichamanetin 468.5 6 4 3.01 0
220 7-Methoxydichamanetin 482.52 6 3 3.58 0
221 5″-(2⁗-Hydroxybenzyl)uvarinol 694.77 8 5 4.16 1
222 2,4-Dodecadienamide 195.3 1 1 2.87 0
223 7-Methoxyisochamanetin 376.4 5 2 3.5 0
224 (2E,4E)-N-[2-(methylsulfinyl)ethyl]-2,4-decadienamide 257.39 2 1 3.05 0
225 (2E,4E)-N-[(4-hydroxy-3-methoxyphenyl)ethyl]-2,4-decadienamide 317.42 3 2 3.76 0
226 3-(4-Hydroxy-3,5-dimethoxyphenyl)propanoylpyrrole 275.3 4 1 2.63 0
227 3-(3,4,5-Timethoxyphenyl)propanoylpyrrole 289.33 4 0 3.21 0
228 1-[(2E,4E,6E)-2,4,6-dodecatrienoyl]pyrrolidine 247.38 1 0 3.86 0
229 1-[(2E,4Z,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine 325.4 3 0 3.88 0
230 1-[(2E,4E,10E)-10-(3,4-methylenedioxyphenyl)-2,4,10-undecatrienoyl]pyrrolidine 353.45 3 0 4.53 0
231 1-[(4E,10E)-11-(3,4-methylenedioxyphenyl)-4,10-undecadienoyl]pyrrolidine 355.47 3 0 4.6 0
232 1-[(9E)-10-(3,4-methylenedioxyphenyl)-9-decenoyl]pyrrolidine 343.46 3 0 4.43 0
233 1-[(2E,4E)-2,4-decadienoyl]pyrrolidine 221.34 1 0 3.45 0
234 1-[(2E,4E)-2,4-dodecadienoyl]pyrrolidine 249.39 1 0 3.95 0
235 1-[(2E)-7-(3,4-methylenedioxyphenyl)-2-heptenoyl]pyrrolidine 301.38 3 0 3.64 0
236 1-[(2E,4E)-7-(3,4-methylenedioxyphenyl)-2,4-heptadienoyl]pyrrolidine 299.36 3 0 3.65 0
237 1-[(2E,8E)-9-(3,4-methylenedioxyphenyl)-2,8-nonadienoyl]pyrrolidine 327.42 3 0 4.04 0
238 1-[(8E)-9-(3,4-methylenedioxyphenyl)-8-nonenoyl]pyrrolidine 329.43 3 0 4.16 0
239 1-[(2E,4E,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine 325.4 3 0 3.88 0
240 1-[(2E,4E)-11-(3,4-methylenedioxyphenyl)-2,4-undecadienoyl]pyrrolidine 355.47 3 0 4.51 0
241 1-[(2E,10E)-11-(3,4-methylenedioxyphenyl)-2,10-undecadienoyl]pyrrolidine 355.47 3 0 4.16 0
242 (2E,4E)-N-isobutyl-2,4-dodecadienamide 251.41 1 1 4.06 0
243 (2E,4E)-N-isobutyl-7-(3,4-methylenedioxyphenyl)-hepta-2,4-dienamide 301.38 3 1 3.67 0
244 (8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide 331.45 3 1 4.18 0
245 (2E,4E,8E)-N-isobutyl-11-(3,4-methylenedioxyphenyl)undeca-2,4,8-trienamide 355.47 3 1 4.42 0
246 N-trans-sinapoyltyramine 343.37 5 3 2.71 0
247 Dihydrocubebin, rel- 358.39 6 2 3.19 0
248 Justiflorinol 356.33 7 1 2.76 0
249 (−)-Sanguinolignan A 384.34 8 1 2.82 0
250 (−)-Sanguinolignan B 384.34 8 1 2.79 0
251 (−)-Sanguinolignan C 442.42 9 0 3.36 0
252 (−)-Sanguinolignan D 426.37 9 0 2.74 0
253 (7′S)-parabenzlactone 370.35 7 1 3.12 0
254 Flavokawain B 284.31 4 1 2.63 0
255 Methyl 3,4-dihydroxy-5-(3′-methyl-2′-butenyl)benzoate 236.26 4 2 2.62 0
256 Pipercallosidine 303.4 3 1 3.76 0
257 Kadsurenin C 358.43 5 1 3.37 0
258 Kadsurenin K 342.39 5 1 3.02 0
259 Kadsurenin L 400.46 6 0 3.42 0
260 Pipercallosine 329.43 3 1 4.04 0
261 (S)-1′-methylhexyl caffeate 278.34 4 2 3.41 0
262 Futoenone 340.37 5 0 3.15 0
263 (S)-1′-methylbutyl caffeate 250.29 4 2 2.81 0
264 (S)-1′-methyloctyl caffeate 306.4 4 2 3.66 0
265 Futokadsurin B 356.41 5 0 3.89 0
266 Futokadsurin C 356.41 5 0 3.77 0
267 Futokadsurin A 358.43 5 1 3.46 0
268 Burchellin 340.37 5 0 3.26 0
269 Piperonal 150.13 3 0 1.6 0
270 (−)-Cubenol 222.37 1 1 3.24 0
271 (E,E)-piperic acid 218.21 4 1 2.2 0
272 Trans-cinnamic acid 148.16 2 1 1.55 0
273 Pinocembrin chalcone 256.25 4 3 1.09 0
274 Piperlactam S 295.29 4 1 2.54 0
275 Asebogenin 288.3 5 3 1.97 0
276 Epicocconone 410.42 7 2 3.17 0
277 (+)-Sesamin 354.35 6 0 3.46 0
278 Pipataline 288.42 2 0 4.61 1
279 (−)-Antofine 363.45 4 0 3.8 0
280 Benzoic acid 122.12 2 1 1.11 0
281 Ethyl butyrate 116.16 2 0 1.9 0
282 N-feruloyltyramine 313.35 4 3 2.58 0
283 Kadsurenin M 328.36 5 0 3.15 0
284 (−)-Epicubenol 222.37 1 1 3.11 0
285 Acacetin-8-C-neohesperidoside 592.55 14 8 1.49 3
286 Monocerin 308.33 6 1 2.99 0
287 (2S,3aR,9bR)-6,7-dihydroxy-8-methoxy-2-propyl-3,3a-dihydro-2H-furo[3,2-c]isochromen-5(9bH)-one 294.3 6 2 2.51 0
288 Fusarentin 6,7-dimethyl ether 310.34 6 2 2.85 0
289 Fusarentin 6-methyl ether 296.32 6 3 2.27 0
290 (3R,4R)-4,8-dihydroxy-3-((R)-2-hydroxypentyl)-6,7-dimethoxyisochroman-1-one 326.34 7 3 2.59 0
291 Colletotrialide, (+)- 308.33 6 1 2.49 0
292 Galgravin 372.45 5 0 3.97 0
293 9,10-Epoxy-18-hydroxyoctadecanoic acid 314.46 4 2 3.8 0
294 Pinocembrin 256.25 4 2 2.11 0
295 1,4-Cineole 154.25 1 0 2.68 0
296 Sodium benzoate 144.1 2 0 − 11.15 0
297 9,10,18-Trihydroxyoctadecanoic acid 332.48 5 4 3.25 0
298 Kavapyrone 244.24 4 0 2.6 0
299 Alpha-cubebene 204.35 0 0 3.4 1
300 Acuminatin 340.41 4 0 4.05 0
301 Jerantinine E 384.47 5 2 3.52 0
302 Jerantinine F 398.45 6 2 3.4 0
303 Jerantinine C 396.44 5 2 3.13 0
304 Jerantinine B 398.45 6 2 3.29 0
305 Jerantinine D 412.44 6 2 3.07 0
306 Jerantinine A 382.45 5 2 3.49 0
307 Tabernaemontanine 354.44 4 1 2.79 0
308 Mangiferin 422.34 11 8 0.89 2
309 Plectranthol A 450.52 6 4 3.49 0
310 Plectranthol B 536.66 7 3 4.59 2
311 11,20-Dihydroxysugiol 332.43 4 3 2.87 0
312 11-Hydroxysugiol 316.43 3 2 3.15 0
313 Abietatriene 270.45 0 0 3.86 1
314 7-oxo-10α-cucurbitadienol 440.7 2 1 4.65 1

Table 5.

The list of phytochemical those satisfies the Lipinski rule of 5 and their structures in SMILES format.

S.·no Compound SMILES (chEBI)
1 Gingerenone B C = 1(C(= CC = C(C1)CCC(/C = C/CCC = 2C = C(C(= C(C2)OC)O)OC)=O)O)OC
2 Beta-sesquiphellandrene [H][C@@]1(CCC(= C)C = C1)[C@@H](C)CCC = C(C)C
3 3-(3,4-Dimethoxyphenyl)-4-[(Z)-3,4-dimethoxystyryl]cyclohex-1-ene COc1ccc(\C = C/C2CCC = CC2c2ccc(OC)c(OC)c2)cc1OC
4 3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene COc1ccc(\C = C\C2CCC = CC2c2ccc(OC)c(OC)c2)cc1OC
5 Pinocarveol CC1(C)C2CC(O)C(= C)C1C2
6 Zerumboneoxide [H][C@]12CC(C)(C)\C = C\C(= O)\C(C)=C\CC[C@@]1(C)O2
7 Ramonanin A, (rel)- COc1cc(ccc1O)[C@H]1O[C@@H](c2ccc(O)c(OC)c2)[C@@]2(CCC3 = C(C2)[C@H](O[C@H]3c2ccc(O)c(OC)c2)c2ccc(O)c(OC)c2)C1 = C
8 Ramonanin B, (rel)- COc1cc(ccc1O)[C@@H]1O[C@H](c2ccc(O)c(OC)c2)[C@@]2(CCC3 = C(C2)[C@H](O[C@H]3c2ccc(O)c(OC)c2)c2ccc(O)c(OC)c2)C1 = C
9 Ramonanin C, (rel)- COc1cc(ccc1O)[C@H]1O[C@@H](c2ccc(O)c(OC)c2)[C@@]2(CCC3 = C(C2)[C@@H](O[C@@H]3c2ccc(O)c(OC)c2)c2ccc(O)c(OC)c2)C1 = C
10 Ramonanin D, (rel)- COc1cc(ccc1O)[C@H]1O[C@@H](c2ccc(O)c(OC)c2)[C@@]2(CCC3 = C(C2)[C@H](O[C@@H]3c2ccc(O)c(OC)c2)c2ccc(O)c(OC)c2)C1 = C
11 Zerumbone C\C1 = C/CC(C)(C)\C = C\C(= O)\C(C)=C\CC1
12 5-Hydroxyzerumbone C\C1 = C/CC(C)(C)\C = C\C(= O)\C(C)=C\C(O)C1
13 (2E,6E)-hedycaryol C\C1 = C/CC\C(C)=C\C[C@@H](CC1)C(C)(C)O
14 Dodecane CCCCCCCCCCCC
15 7,4′-Dimethylkaempferol C12 = C(OC(C3 = CC = C(OC)C = C3)=C(C1 = O)O)C = C(OC)C = C2O
16 Zingiberene [H][C@@]1(CC = C(C)C = C1)[C@@H](C)CCC = C(C)C
17 Glucoputranjivin(1-) [C@H]1(O[C@@H]([C@@H](O)[C@@H]([C@H]1O)O)CO)S/C(= N\OS([O-])(= O)=O)/C(C)C
18 Glucoputranjivin [C@H]1(O[C@@H]([C@@H](O)[C@@H]([C@H]1O)O)CO)S/C(= N\OS(O)(= O)=O)/C(C)C
19 All-cis-octadeca-6,9,12,15-tetraenoic acid CC\C = C/C\C = C/C\C = C/C\C = C/CCCCC(O)=O
20 Pipataline O1C = 2C = C(\C = C\CCCCCCCCCC)C = CC2OC1
21 Pipercyclobutanamide A(rel) O = C(\C = C/[C@@H]1[C@@H](\C = C\c2ccc3OCOc3c2)[C@@H]([C@H]1c1ccc2OCOc2c1)C(= O)N1CCCCC1)N1CCCCC1
22 Pellitorine CCCCC\C = C\C = C\C(= O)NCC(C)C
23 Gaudichaudianic acid, (− rac) CC(C)=CCCC1(C)Oc2c(CC = C(C)C)cc(cc2C = C1)C(O)=O
24 Isochamanetin Oc1ccccc1Cc1c(O)cc2O[C@@H](CC(= O)c2c1O)c1ccccc1
25 7-Methoxychamanetin COc1cc(O)c2C(= O)C[C@H](Oc2c1Cc1ccccc1O)c1ccccc1
26 Dichamanetin Oc1ccccc1Cc1c(O)c(Cc2ccccc2O)c2O[C@@H](CC(= O)c2c1O)c1ccccc1
27 7-Methoxydichamanetin COc1c(Cc2ccccc2O)c(O)c2C(= O)C[C@H](Oc2c1Cc1ccccc1O)c1ccccc1
28 5″-(2⁗-Hydroxybenzyl)uvarinol COc1c(Cc2cc(Cc3ccccc3O)ccc2O)c(O)c2C(= O)C[C@H](Oc2c1Cc1cc(Cc2ccccc2O)ccc1O)c1ccccc1
29 2,4-Dodecadienamide CCCCCCC\C = C\C = C\C(N)=O
30 7-Methoxyisochamanetin COc1cc2O[C@@H](CC(= O)c2c(O)c1Cc1ccccc1O)c1ccccc1
31 (2E,4E)-N-[2-(methylsulfinyl)ethyl]-2,4-decadienamide CCCCC\C = C\C = C\C(= O)NCCS(C)=O
32 (2E,4E)-N-[(4-hydroxy-3-methoxyphenyl)ethyl]-2,4-decadienamide CCCCC\C = C\C = C\C(= O)NCCc1ccc(O)c(OC)c1
33 3-(4-Hydroxy-3,5-dimethoxyphenyl)propanoylpyrrole COc1cc(CCC(= O)n2cccc2)cc(OC)c1O
34 3-(3,4,5-Timethoxyphenyl)propanoylpyrrole COc1cc(CCC(= O)n2cccc2)cc(OC)c1OC
35 1-[(2E,4E,6E)-2,4,6-dodecatrienoyl]pyrrolidine CCCCC\C = C\C = C\C = C\C(= O)N1CCCC1
36 1-[(2E,4Z,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine O = C(\C = C\C = C/CC\C = C\c1ccc2OCOc2c1)N1CCCC1
37 1-[(2E,4E,10E)-10-(3,4-methylenedioxyphenyl)-2,4,10-undecatrienoyl]pyrrolidine O = C(\C = C\C = C\CCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
38 1-[(4E,10E)-11-(3,4-methylenedioxyphenyl)-4,10-undecadienoyl]pyrrolidine O = C(CC\C = C\CCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
39 1-[(9E)-10-(3,4-methylenedioxyphenyl)-9-decenoyl]pyrrolidine O = C(CCCCCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
40 1-[(2E,4E)-2,4-decadienoyl]pyrrolidine CCCCC\C = C\C = C\C(= O)N1CCCC1
41 1-[(2E,4E)-2,4-dodecadienoyl]pyrrolidine CCCCCCC\C = C\C = C\C(= O)N1CCCC1
42 1-[(2E)-7-(3,4-methylenedioxyphenyl)-2-heptenoyl]pyrrolidine O = C(\C = C\CCCCc1ccc2OCOc2c1)N1CCCC1
43 1-[(2E,4E)-7-(3,4-methylenedioxyphenyl)-2,4-heptadienoyl]pyrrolidine O = C(\C = C\C = C\CCc1ccc2OCOc2c1)N1CCCC1
44 1-[(2E,8E)-9-(3,4-methylenedioxyphenyl)-2,8-nonadienoyl]pyrrolidine O = C(\C = C\CCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
45 1-[(8E)-9-(3,4-methylenedioxyphenyl)-8-nonenoyl]pyrrolidine O = C(CCCCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
46 1-[(2E,4E,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine O = C(\C = C\C = C\CC\C = C\c1ccc2OCOc2c1)N1CCCC1
47 1-[(2E,4E)-11-(3,4-methylenedioxyphenyl)-2,4-undecadienoyl]pyrrolidine O = C(\C = C\C = C\CCCCCCc1ccc2OCOc2c1)N1CCCC1
48 1-[(2E,10E)-11-(3,4-methylenedioxyphenyl)-2,10-undecadienoyl]pyrrolidine O = C(\C = C\CCCCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
49 (2E,4E)-N-isobutyl-2,4-dodecadienamide CCCCCCC\C = C\C = C\C(= O)NCC(C)C
50 (2E,4E)-N-isobutyl-7-(3,4-methylenedioxyphenyl)-hepta-2,4-dienamide CC(C)CNC(= O)\C = C\C = C\CCc1ccc2OCOc2c1
51 (8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide CC(C)CNC(= O)CCCCCC\C = C\c1ccc2OCOc2c1
52 (2E,4E,8E)-N-isobutyl-11-(3,4-methylenedioxyphenyl)undeca-2,4,8-trienamide CC(C)CNC(= O)\C = C\C = C\CC\C = C\CCc1ccc2OCOc2c1
53 N-trans-sinapoyltyramine COc1cc(cc(OC)c1O)\C = C\C(= O)NCCc1ccc(O)cc1
54 Dihydrocubebin, rel- OC[C@@H](Cc1ccc2OCOc2c1)[C@@H](CO)Cc1ccc2OCOc2c1
55 Justiflorinol OCC(CC(= O)c1ccc2OCOc2c1)C(= O)c1ccc2OCOc2c1
56 (−)-Sanguinolignan A O[C@@H]([C@H]1COC(= O)[C@@H]1C(= O)c1ccc2OCOc2c1)c1ccc2OCOc2c1
57 (−)-Sanguinolignan B O[C@@H]([C@@H]1COC(= O)[C@@H]1C(= O)c1ccc2OCOc2c1)c1ccc2OCOc2c1
58 (−)-Sanguinolignan C COc1ccc(cc1OC)[C@@H](OC(C)=O)[C@H]1COC(= O)[C@@H]1C(= O)c1ccc2OCOc2c1
59 (−)-Sanguinolignan D CC(= O)O[C@@H]([C@@H]1[C@H](COC1 = O)C(= O)c1ccc2OCOc2c1)c1ccc2OCOc2c1
60 (7′S)-parabenzlactone O[C@@H]([C@H]1COC(= O)[C@@H]1Cc1ccc2OCOc2c1)c1ccc2OCOc2c1
61 Flavokawain B COc1cc(O)c(C(= O)\C = C\c2ccccc2)c(OC)c1
62 Methyl 3,4-dihydroxy-5-(3′-methyl-2′-butenyl)benzoate COC(= O)c1cc(O)c(O)c(CC = C(C)C)c1
63 Pipercallosidine C(/C = C/CCCCC = 1C = C2C(= CC1)OCO2)(NCC(C)C)=O
64 Kadsurenin C O([C@@]12[C@@H]([C@H]([C@@]([C@H]1O)(C(= O)C(= C2)CC = C)[H])C3 = CC(OC)=C(OC)C = C3)C)C
65 Kadsurenin K O([C@@]12[C@@H]([C@H]([C@@](C1 = O)(C(= O)C(= C2)CC = C)[H])C3 = CC(OC)=C(O)C = C3)C)C
66 Kadsurenin L O([C@@]12[C@@H]([C@H]([C@@]([C@@H]1OC(= O)C)(C(= O)C(= C2)CC = C)[H])C3 = CC(OC)=C(OC)C = C3)C)C
67 Pipercallosine C(/C = C/C = C/CCCCC1 = CC = C2C(= C1)OCO2)(= O)NCC(C)C
68 (S)-1′-methylhexyl caffeate CCCCC[C@H](C)OC(= O)\C = C\c1ccc(O)c(O)c1
69 Futoenone O1[C@@H]2C[C@@]3([C@@H]([C@H](C2)C4 = CC = 5OCOC5C = C4)C)C1 = CC(= O)C(OC)=C3
70 (−)-Cubebin [H][C@@]1(CO[C@H](O)[C@]1([H])Cc1ccc2OCOc2c1)Cc1ccc2OCOc2c1
71 (−)-3,4-Dimethoxy-3,4-desmethylenedioxycubebin [H][C@@]1(COC(O)[C@]1([H])Cc1ccc2OCOc2c1)Cc1ccc(OC)c(OC)c1
72 (S)-1′-methylbutyl caffeate CCC[C@H](C)OC(= O)\C = C\c1ccc(O)c(O)c1
73 (S)-1′-methyloctyl caffeate CCCCCCC[C@H](C)OC(= O)\C = C\c1ccc(O)c(O)c1
74 Futokadsurin B COc1ccc(cc1OC)[C@@H]1O[C@@H]([C@H](C)[C@H]1C)c1ccc2OCOc2c1
75 Futokadsurin C COc1ccc(cc1OC)[C@H]1O[C@H]([C@H](C)[C@@H]1C)c1ccc2OCOc2c1
76 Piperine O = C(\C = C\C = C\c1ccc2OCOc2c1)N1CCCCC1
77 Futokadsurin A COc1cc(ccc1O)[C@@H]1O[C@@H]([C@@H](C)[C@@H]1C)c1ccc(OC)c(OC)c1
78 Burchellin O1[C@@H]([C@H]([C@]2(C1 = CC(= O)C(OC)=C2)CC = C)C)C3 = CC = 4OCOC4C = C3
79 Trans-cinnamic acid OC(= O)\C = C\c1ccccc1
80 Pinocembrin chalcone Oc1cc(O)c(C(= O)\C = C\c2ccccc2)c(O)c1
81 Piperlactam S O(C = 1C2 = C3C(= CC = 4C2 = CC = CC4)N(C(C3 = CC1O)=O)OC)C
82 Asebogenin COc1cc(O)c(C(= O)CCc2ccc(O)cc2)c(O)c1
83 (+)-Sesamin [C@]12([C@@]([C@H](OC1)C3 = CC4 = C(C = C3)OCO4)(CO[C@@H]2C5 = CC6 = C(C = C5)OCO6)[H])[H]
84 Benzoic acid OC(= O)c1ccccc1
85 N-feruloyltyramine COc1cc(\C = C\C(= O)NCCc2ccc(O)cc2)ccc1O
86 Kadsurenin M O1[C@@H]([C@H](C2 = C1C(OC)=CC(= C2)C(= O)[H])C)C3 = CC(OC)=C(OC)C = C3
87 (−)-Epicubenol [C@]12([C@@H](CC[C@H]([C@]2(CCC(= C1)C)O)C)C(C)C)[H]
88 Monocerin [H][C@@]12C[C@H](CCC)O[C@]1([H])c1cc(OC)c(OC)c(O)c1C(= O)O2
89 (2S,3aR,9bR)-6,7-dihydroxy-8-methoxy-2-propyl-3,3a-dihydro-2H-furo[3,2-c]isochromen-5(9bH)-one [H][C@@]12C[C@H](CCC)O[C@]1([H])c1cc(OC)c(O)c(O)c1C(= O)O2
90 Fusarentin 6,7-dimethyl ether CCC[C@H](O)C[C@@H]1Cc2cc(OC)c(OC)c(O)c2C(= O)O1
91 Fusarentin 6-methyl ether CCC[C@H](O)C[C@@H]1Cc2cc(OC)c(O)c(O)c2C(= O)O1
92 (3R,4R)-4,8-dihydroxy-3-((R)-2-hydroxypentyl)-6,7-dimethoxyisochroman-1-one CCC[C@@H](O)C[C@H]1OC(= O)c2c(O)c(OC)c(OC)cc2[C@H]1O
93 Colletotrialide, (+)- CCCC(= O)CC[C@H]1OC(= O)c2c(O)c(OC)c(OC)cc12
94 Galgravin C1(= C(C = CC(= C1)[C@@H]2O[C@@H]([C@H]([C@H]2C)C)C3 = CC = C(C(= C3)OC)OC)OC)OC
95 Piperonal [H]C(= O)c1ccc2OCOc2c1
96 Pinocembrin Oc1cc(O)c2C(= O)C[C@H](Oc2c1)c1ccccc1
97 1,4-Cineole C1C[C@]2(CC[C@]1(C)O2)C(C)C
98 Sodium benzoate C(C = 1C = CC = CC1)([O-])=O.[Na +]
99 (−)-Cubenol [C@]12([C@@H](CC[C@H]([C@@]2(CCC(= C1)C)O)C)C(C)C)[H]
100 (E,E)-piperic acid OC(= O)\C = C\C = C\c1ccc2OCOc2c1
101 Kavapyrone COc1cc(oc(= O)c1)[C@@H]1O[C@H]1c1ccccc1
102 Alpha-cubebene C1C[C@H]([C@]2([C@]3([C@@H]1C)CC = C([C@]23[H])C)[H])C(C)C
103 Acuminatin O1[C@H]([C@@H](C2 = C1C(OC)=CC(= C2)/C = C/C)C)C3 = CC(OC)=C(OC)C = C3
104 Dihydrobetulinic acid [H][C@]12CC[C@]3([H])[C@@]4(C)CC[C@H](O)C(C)(C)[C@]4([H])CC[C@@]3(C)[C@]1(C)CC[C@]1(CC[C@@H](C(C)C)[C@]21[H])C(O)=O
105 Platanic acid [H][C@]12CC[C@]3([H])[C@@]4(C)CC[C@H](O)C(C)(C)[C@]4([H])CC[C@@]3(C)[C@]1(C)CC[C@]1(CC[C@@H](C(C)=O)[C@]21[H])C(O)=O
106 Canophyllal [C@]12([C@]([C@]3([C@@](CC1)(CCC(C3)(C)C)C(= O)[H])[H])(CC[C@@]4([C@@]2(CC[C@]5([C@]4(CCC([C@@H]5C)=O)[H])C)[H])C)C)C
107 Cinnamic acid [H]C(= Cc1ccccc1)C(O)=O
108 Methyl linolenate CC/C = C\C/C = C\C/C = C\CCCCCCCC(= O)OC
109 Zerumbone C\C1 = C/CC(C)(C)\C = C\C(= O)\C(C)=C\CC1
110 (Z)-3-phenyl-2-propenal C1 = CC = C(C = C1)/C = C\C = O
111 (E)-2-methoxycinnamic acid COC = 1C = CC = CC1/C = C/C(= O)O
112 Betulinic acid [H][C@]12CC[C@]3([H])[C@@]4(C)CC[C@H](O)C(C)(C)[C@]4([H])CC[C@@]3(C)[C@]1(C)CC[C@]1(CC[C@@H](C(C)=C)[C@]21[H])C(O)=O
113 Heptacosan-1-ol C(CCCCCCCCCCCCCCCCO)CCCCCCCCCC
114 Pyrethrin I CC(C)=C[C@@H]1[C@@H](C(= O)O[C@H]2CC(= O)C(C\C = C/C = C)=C2C)C1(C)C
115 Pyrethrin II COC(= O)C(\C)=C\[C@@H]1[C@@H](C(= O)O[C@H]2CC(= O)C(C\C = C/C = C)=C2C)C1(C)C
116 14-Deoxy-11,12-didehydroandrographolide [H][C@]12CCC(= C)[C@@H](\C = C\C3 = CCOC3 = O)[C@]1(C)CC[C@@H](O)[C@@]2(C)CO
117 Andrographolide [H][C@]12CCC(= C)[C@@H](C\C = C3/[C@H](O)COC3 = O)[C@]1(C)CC[C@@H](O)[C@@]2(C)CO
118 Dihydroferulic acid C = 1(C = C(C(= CC1)O)OC)CCC(= O)O
119 Mesembryanthemoidigenic acid [C@@]12(C([C@@]3(C[C@@](CO)(C)CC[C@@]3(CC1)C(= O)O)[H])=CC[C@@]4([C@]5(CC[C@@H](C([C@@]5(CC[C@@]24C)[H])(C)C)O)C)[H])C
120 Methyl N-methylanthranilate CNC1 = CC = CC = C1C(OC)=O
121 Delta-elemene [C@@H]1(C = C(CC[C@@]1(C = C)C)C(C)C)C(C)=C
122 Decussatin COc1cc(O)c2c(c1)oc1ccc(OC)c(OC)c1c2 = O
123 Capensinidin COc1cc(cc(OC)c1O)-c1[o +]c2cc(O)cc(OC)c2cc1O
124 Termilignan B Oc1ccc(CC(= C)C(= C)Cc2ccc3OCOc3c2)cc1
125 (Z)-9-hydroxybenzo[c]oxepin-3(1H)-one Oc1cccc2C = CC(= O)OCc12
126 Cyclosordariolone, (rac)- CC1(O)C(= O)C = Cc2c(CO)c(O)ccc12
127 (R)-3-Hydroxy-1-[(R)-4-hydroxy-1,3-dihydroisobenzofuran-1-yl]butan-2-one C[C@@H](O)C(= O)C[C@H]1OCc2c(O)cccc12
128 (R)-3-Hydroxy-1-[(S)-4-hydroxy-1,3-dihydroisobenzofuran-1-yl]butan-2-one C[C@@H](O)C(= O)C[C@@H]1OCc2c(O)cccc12
129 (E)-2-(Hydroxymethyl)-3-(4-hydroxypent-1-enyl)phenol C[C@@H](O)C\C = C\c1cccc(O)c1CO
130 1-(3,9-Dihydroxy-1,3-dihydrobenzo[c]oxepin-3-yl)ethanone, (rac)- CC(= O)C1(O)OCc2c(O)cccc2C = C1
131 Pestalospirane A C[C@H]1O[C@]2(OCc3c(O)cccc3C = C2)[C@@H](C)O[C@@]11OCc2c(O)cccc2C = C1
132 Pestalospirane B C[C@H]1O[C@]2(OCc3c(O)cccc3C = C2)[C@@H](C)O[C@]11OCc2c(O)cccc2C = C1
133 Methyl 3,4,5-trihydroxybenzoate OC1 = CC(= CC(O)=C1O)C(OC)=O
134 Ursolic acid C[C@@H]1CC[C@@]2(CC[C@]3(C)C(= CC[C@@H]4[C@@]5(C)CC[C@H](O)C(C)(C)[C@@H]5CC[C@@]34C)[C@@H]2[C@H]1C)C(O)=O
135 Arecoline COC(= O)C1 = CCCN(C)C1
136 Propyl benzoate C = 1C = CC(= CC1)C(= O)OCCC
137 Plectranthol A CC(C)c1cc2C = C[C@@]3(C)C(= CCC[C@]3(C)COC(= O)c3ccc(O)c(O)c3)c2c(O)c1O
138 11,20-Dihydroxysugiol C1 = C(C(C)C)C(= C(C2 = C1C(C[C@@]3([C@@]2(CCCC3(C)C)CO)[H])=O)O)O
139 11-Hydroxysugiol C1 = C(C(C)C)C(= C(C2 = C1C(C[C@@]3([C@@]2(CCCC3(C)C)C)[H])=O)O)O
140 Abietatriene CC(C)c1ccc2c(CC[C@H]3C(C)(C)CCC[C@]23C)c1
141 1beta-hydroxy arbusculin A [H][C@@]12CC[C@@]3(C)[C@H](O)CC[C@@](C)(O)[C@]3([H])[C@@]1([H])OC(= O)C2 = C
142 Alantolactone [H][C@@]12C[C@@]3(C)CCC[C@H](C)C3 = C[C@]1([H])C(= C)C(= O)O2
143 Dehydrocostus lactone [H][C@@]12CCC(= C)[C@]1([H])[C@H]1OC(= O)C(= C)[C@@H]1CCC2 = C
144 Costunolide C\C1 = C/CC\C(C)=C\[C@H]2OC(= O)C(= C)[C@@H]2CC1
145 3-Hydroxyhexane-2,5-dione CC(CC(C(C)=O)O)=O
146 Heptacosan-1-ol C(CCCCCCCCCCCCCCCCO)CCCCCCCCCC
147 Cyclotetradecane C1CCCCCCCCCCCCC1
148 Cycloeucalenone [C@]123CCC(= O)[C@@H](C)[C@]1([H])CC[C@]4([H])[C@@]2(C3)CC[C@@]5([C@](CC[C@@]45C)([C@@H](CCC(C(C)C)=C)C)[H])C
149 Rubimaillin C12 = CC = CC = C1C3 = C(C(= C2O)C(OC)=O)C = CC(O3)(C)C
150 Canophyllal [C@]12([C@]([C@]3([C@@](CC1)(CCC(C3)(C)C)C(= O)[H])[H])(CC[C@@]4([C@@]2(CC[C@]5([C@]4(CCC([C@@H]5C)=O)[H])C)[H])C)C)C
151 Stepharanine O(C = 1C2 = C[N +]=3CCC = 4C(C3C = C2C = CC1O)=CC(O)=C(OC)C4)C
152 (Z)-icos-13-enoic acid CCCCCC/C = C\CCCCCCCCCCCC(O)=O
153 Methyl 3,4,5-trihydroxybenzoate OC1 = CC(= CC(O)=C1O)C(OC)=O
154 Serratol C1C(= CCCC(= CCCC(= CC[C@@](C1)(C(C)C)O)C)C)C
155 Huperzine A C\C = C1/[C@@H]2Cc3[nH]c(= O)ccc3[C@@]1(N)CC(C)=C2
156 Mustakone CC(C)[C@@H]1CCC2(C)C3C1C2C(C)=CC3 = O
157 (+)-Nootkatone [C@@]12(C(CC[C@H](C1)C(C)=C)=CC(C[C@H]2C)=O)C
158 1-Icosanoylglycerol C(CCCCCCCCCCCC(OCC(CO)O)=O)CCCCCCC
159 Swertisin O1[C@@H](C2 = C(O)C3 = C(OC(= CC3 = O)C4 = CC = C(O)C = C4)C = C2OC)[C@H](O)[C@@H](O)[C@H](O)[C@H]1CO
160 Serratol C1C(= CCCC(= CCCC(= CC[C@@](C1)(C(C)C)O)C)C)C
161 PLX-4720 C(CC)S(NC1 = CC = C(C(= C1F)C(C = 2C3 = C(N = CC(= C3)Cl)NC2)=O)F)(= O)=O
162 Huperzine A C\C = C1/[C@@H]2Cc3[nH]c(= O)ccc3[C@@]1(N)CC(C)=C2
163 N-(2-methoxyethyl)-4-{[6-(pyridin-4-yl)quinazolin-2-yl]amino}benzamide O = C(C1 = CC = C(NC2 = NC3 = CC = C(C4 = CC = NC = C4)C = C3C = N2)C = C1)NCCOC
164 Glucotropeolin [C@H]1(O[C@@H]([C@@H](O)[C@@H]([C@H]1O)O)CO)S/C(= N\OS(O)(= O)=O)/CC = 2C = CC = CC2
165 Glucotropeolin(1-) [C@H]1(O[C@@H]([C@@H](O)[C@@H]([C@H]1O)O)CO)S/C(= N\OS([O-])(= O)=O)/CC = 2C = CC = CC2
166 Methyl 12-methyltetradecanoate O(C(= O)CCCCCCCCCCC(CC)C)C
167 Carpaine C[C@@H]1N[C@H]2CC[C@@H]1OC(= O)CCCCCCC[C@@H]1CC[C@H](OC(= O)CCCCCCC2)[C@H](C)N1
168 24-Methylenecycloartanol [C@]123[C@@]4([C@](C([C@@H](O)CC4)(C)C)(CC[C@]1([C@]5([C@]([C@@]([C@@H](CCC(C(C)C)=C)C)(CC5)[H])(C)CC2)C)[H])[H])C3
169 Helvolic acid methyl ester C = 1[C@@]2([C@@]3(CC[C@@]/4([C@@]([C@]3(C([C@H]([C@]2([C@@H](C(C1)=O)C)[H])OC(= O)C)=O)C)(C[C@@H](\C4 = C(\CCC = C(C)C)/C(= O)OC)OC(= O)C)C)[H])[H])C
170 Danielone COc1cc(cc(OC)c1O)C(= O)CO
171 2-Isobutylthiazole N1 = C(SC = C1)CC(C)C
172 14-Deoxy-11,12-didehydroandrographolide [H][C@]12CCC(= C)[C@@H](\C = C\C3 = CCOC3 = O)[C@]1(C)CC[C@@H](O)[C@@]2(C)CO
173 Andrographolide [H][C@]12CCC(= C)[C@@H](C\C = C3/[C@H](O)COC3 = O)[C@]1(C)CC[C@@H](O)[C@@]2(C)CO
174 Dihydroferulic acid C = 1(C = C(C(= CC1)O)OC)CCC(= O)O
175 Mesembryanthemoidigenic acid [C@@]12(C([C@@]3(C[C@@](CO)(C)CC[C@@]3(CC1)C(= O)O)[H])=CC[C@@]4([C@]5(CC[C@@H](C([C@@]5(CC[C@@]24C)[H])(C)C)O)C)[H])C
176 Methyl N-methylanthranilate CNC1 = CC = CC = C1C(OC)=O
177 Delta-elemene [C@@H]1(C = C(CC[C@@]1(C = C)C)C(C)C)C(C)=C
178 Decussatin COc1cc(O)c2c(c1)oc1ccc(OC)c(OC)c1c2 = O
179 Linalool CC(C)=CCCC(C)(O)C = C
180 Nevadensin COc1ccc(cc1)-c1cc(= O)c2c(O)c(OC)c(O)c(OC)c2o1
181 7-Epi-sesquithujene C[C@H](CCC = C(C)C)[C@@]12CC = C(C)[C@@H]1C2
182 Selina-4(15),7(11)-diene C1CCC([C@]2([C@]1(CCC(C2) = C(C)C)C)[H]) = C
183 Codeine [H][C@]12C = C[C@H](O)[C@@H]3Oc4c(OC)ccc5C[C@H]1N(C)CC[C@@]23c45
184 Sulfanilamide Nc1ccc(cc1)S(N)(= O)=O
185 Pipercyclobutanamide A(rel) O = C(\C = C/[C@@H]1[C@@H](\C = C\c2ccc3OCOc3c2)[C@@H]([C@H]1c1ccc2OCOc2c1)C(= O)N1CCCCC1)N1CCCCC1
186 (−)-cubebin [H][C@@]1(CO[C@H](O)[C@]1([H])Cc1ccc2OCOc2c1)Cc1ccc2OCOc2c1
187 (−)-3,4-dimethoxy-3,4-desmethylenedioxycubebin [H][C@@]1(COC(O)[C@]1([H])Cc1ccc2OCOc2c1)Cc1ccc(OC)c(OC)c1
188 Piperine O = C(\C = C\C = C\c1ccc2OCOc2c1)N1CCCCC1
189 Pellitorine CCCCC\C = C\C = C\C(= O)NCC(C)C
190 Gaudichaudianic acid, (− rac) CC(C)=CCCC1(C)Oc2c(CC = C(C)C)cc(cc2C = C1)C(O)=O
191 Isochamanetin Oc1ccccc1Cc1c(O)cc2O[C@@H](CC(= O)c2c1O)c1ccccc1
192 7-Methoxychamanetin COc1cc(O)c2C(= O)C[C@H](Oc2c1Cc1ccccc1O)c1ccccc1
193 Dichamanetin Oc1ccccc1Cc1c(O)c(Cc2ccccc2O)c2O[C@@H](CC(= O)c2c1O)c1ccccc1
194 7-Methoxydichamanetin COc1c(Cc2ccccc2O)c(O)c2C(= O)C[C@H](Oc2c1Cc1ccccc1O)c1ccccc1
195 5″-(2⁗-Hydroxybenzyl)uvarinol COc1c(Cc2cc(Cc3ccccc3O)ccc2O)c(O)c2C(= O)C[C@H](Oc2c1Cc1cc(Cc2ccccc2O)ccc1O)c1ccccc1
196 2,4-Dodecadienamide CCCCCCC\C = C\C = C\C(N)=O
197 7-Methoxyisochamanetin COc1cc2O[C@@H](CC(= O)c2c(O)c1Cc1ccccc1O)c1ccccc1
198 (2E,4E)-N-[2-(methylsulfinyl)ethyl]-2,4-decadienamide CCCCC\C = C\C = C\C(= O)NCCS(C)=O
199 (2E,4E)-N-[(4-hydroxy-3-methoxyphenyl)ethyl]-2,4-decadienamide CCCCC\C = C\C = C\C(= O)NCCc1ccc(O)c(OC)c1
200 3-(4-Hydroxy-3,5-dimethoxyphenyl)propanoylpyrrole COc1cc(CCC(= O)n2cccc2)cc(OC)c1O
201 3-(3,4,5-Timethoxyphenyl)propanoylpyrrole COc1cc(CCC(= O)n2cccc2)cc(OC)c1OC
202 1-[(2E,4E,6E)-2,4,6-dodecatrienoyl]pyrrolidine CCCCC\C = C\C = C\C = C\C(= O)N1CCCC1
203 1-[(2E,4Z,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine O = C(\C = C\C = C/CC\C = C\c1ccc2OCOc2c1)N1CCCC1
204 1-[(2E,4E,10E)-10-(3,4-methylenedioxyphenyl)-2,4,10-undecatrienoyl]pyrrolidine O = C(\C = C\C = C\CCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
205 1-[(4E,10E)-11-(3,4-methylenedioxyphenyl)-4,10-undecadienoyl]pyrrolidine O = C(CC\C = C\CCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
206 1-[(9E)-10-(3,4-methylenedioxyphenyl)-9-decenoyl]pyrrolidine O = C(CCCCCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
207 1-[(2E,4E)-2,4-decadienoyl]pyrrolidine CCCCC\C = C\C = C\C(= O)N1CCCC1
208 1-[(2E,4E)-2,4-dodecadienoyl]pyrrolidine CCCCCCC\C = C\C = C\C(= O)N1CCCC1
209 1-[(2E)-7-(3,4-methylenedioxyphenyl)-2-heptenoyl]pyrrolidine O = C(\C = C\CCCCc1ccc2OCOc2c1)N1CCCC1
210 1-[(2E,4E)-7-(3,4-methylenedioxyphenyl)-2,4-heptadienoyl]pyrrolidine O = C(\C = C\C = C\CCc1ccc2OCOc2c1)N1CCCC1
211 1-[(2E,8E)-9-(3,4-methylenedioxyphenyl)-2,8-nonadienoyl]pyrrolidine O = C(\C = C\CCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
212 1-[(8E)-9-(3,4-methylenedioxyphenyl)-8-nonenoyl]pyrrolidine O = C(CCCCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
213 1-[(2E,4E,8E)-9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]pyrrolidine O = C(\C = C\C = C\CC\C = C\c1ccc2OCOc2c1)N1CCCC1
214 1-[(2E,4E)-11-(3,4-methylenedioxyphenyl)-2,4-undecadienoyl]pyrrolidine O = C(\C = C\C = C\CCCCCCc1ccc2OCOc2c1)N1CCCC1
215 1-[(2E,10E)-11-(3,4-methylenedioxyphenyl)-2,10-undecadienoyl]pyrrolidine O = C(\C = C\CCCCCC\C = C\c1ccc2OCOc2c1)N1CCCC1
216 (2E,4E)-N-isobutyl-2,4-dodecadienamide CCCCCCC\C = C\C = C\C(= O)NCC(C)C
217 (2E,4E)-N-isobutyl-7-(3,4-methylenedioxyphenyl)-hepta-2,4-dienamide CC(C)CNC(= O)\C = C\C = C\CCc1ccc2OCOc2c1
218 (8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide CC(C)CNC(= O)CCCCCC\C = C\c1ccc2OCOc2c1
219 (2E,4E,8E)-N-isobutyl-11-(3,4-methylenedioxyphenyl)undeca-2,4,8-trienamide CC(C)CNC(= O)\C = C\C = C\CC\C = C\CCc1ccc2OCOc2c1
220 N-trans-sinapoyltyramine COc1cc(cc(OC)c1O)\C = C\C(= O)NCCc1ccc(O)cc1
221 Dihydrocubebin, rel- OC[C@@H](Cc1ccc2OCOc2c1)[C@@H](CO)Cc1ccc2OCOc2c1
222 Justiflorinol OCC(CC(= O)c1ccc2OCOc2c1)C(= O)c1ccc2OCOc2c1
223 (−)-Sanguinolignan A O[C@@H]([C@H]1COC(= O)[C@@H]1C(= O)c1ccc2OCOc2c1)c1ccc2OCOc2c1
224 (−)-Sanguinolignan B O[C@@H]([C@@H]1COC(= O)[C@@H]1C(= O)c1ccc2OCOc2c1)c1ccc2OCOc2c1
225 (−)-Sanguinolignan C COc1ccc(cc1OC)[C@@H](OC(C) = O)[C@H]1COC(= O)[C@@H]1C(= O)c1ccc2OCOc2c1
226 (−)-Sanguinolignan D CC(= O)O[C@@H]([C@@H]1[C@H](COC1 = O)C(= O)c1ccc2OCOc2c1)c1ccc2OCOc2c1
227 (7’S)-Parabenzlactone O[C@@H]([C@H]1COC(= O)[C@@H]1Cc1ccc2OCOc2c1)c1ccc2OCOc2c1
228 Flavokawain B COc1cc(O)c(C(= O)\C = C\c2ccccc2)c(OC)c1
229 Methyl 3,4-dihydroxy-5-(3′-methyl-2′-butenyl)benzoate COC(= O)c1cc(O)c(O)c(CC = C(C)C)c1
230 Pipercallosidine C(/C = C/CCCCC = 1C = C2C(= CC1)OCO2)(NCC(C)C)=O
231 Kadsurenin C O([C@@]12[C@@H]([C@H]([C@@]([C@H]1O)(C(= O)C(= C2)CC = C)[H])C3 = CC(OC)=C(OC)C = C3)C)C
232 Kadsurenin K O([C@@]12[C@@H]([C@H]([C@@](C1 = O)(C(= O)C(= C2)CC = C)[H])C3 = CC(OC)=C(O)C = C3)C)C
233 Kadsurenin L O([C@@]12[C@@H]([C@H]([C@@]([C@@H]1OC(= O)C)(C(= O)C(= C2)CC = C)[H])C3 = CC(OC)=C(OC)C = C3)C)C
234 Pipercallosine C(/C = C/C = C/CCCCC1 = CC = C2C(= C1)OCO2)(= O)NCC(C)C
235 (S)-1′-methylhexyl caffeate CCCCC[C@H](C)OC(= O)\C = C\c1ccc(O)c(O)c1
236 Futoenone O1[C@@H]2C[C@@]3([C@@H]([C@H](C2)C4 = CC = 5OCOC5C = C4)C)C1 = CC(= O)C(OC)=C3
237 (S)-1′-methylbutyl caffeate CCC[C@H](C)OC(= O)\C = C\c1ccc(O)c(O)c1
238 (S)-1′-methyloctyl caffeate CCCCCCC[C@H](C)OC(= O)\C = C\c1ccc(O)c(O)c1
239 Futokadsurin B COc1ccc(cc1OC)[C@@H]1O[C@@H]([C@H](C)[C@H]1C)c1ccc2OCOc2c1
240 Futokadsurin C COc1ccc(cc1OC)[C@H]1O[C@H]([C@H](C)[C@@H]1C)c1ccc2OCOc2c1
241 Futokadsurin A COc1cc(ccc1O)[C@@H]1O[C@@H]([C@@H](C)[C@@H]1C)c1ccc(OC)c(OC)c1
242 Burchellin O1[C@@H]([C@H]([C@]2(C1 = CC(= O)C(OC)=C2)CC = C)C)C3 = CC = 4OCOC4C = C3
243 Piperonal [H]C(= O)c1ccc2OCOc2c1
244 (−)-Cubenol [C@]12([C@@H](CC[C@H]([C@@]2(CCC(= C1)C)O)C)C(C)C)[H]
245 (E,E)-piperic acid OC(= O)\C = C\C = C\c1ccc2OCOc2c1
246 Trans-cinnamic acid OC(= O)\C = C\c1ccccc1
247 Pinocembrin chalcone Oc1cc(O)c(C(= O)\C = C\c2ccccc2)c(O)c1
248 Piperlactam S O(C = 1C2 = C3C(= CC = 4C2 = CC = CC4)N(C(C3 = CC1O)=O)OC)C
249 Asebogenin COc1cc(O)c(C(= O)CCc2ccc(O)cc2)c(O)c1
250 Epicocconone C\C = C\C = C\C = C\C(= O)\C = C(O)\C1 = C2C = C3C[C@@H](CO)OC = C3C(= O)[C@@]2(C)OC1 = O
251 (+)-Sesamin [C@]12([C@@]([C@H](OC1)C3 = CC4 = C(C = C3)OCO4)(CO[C@@H]2C5 = CC6 = C(C = C5)OCO6)[H])[H]
252 Pipataline O1C = 2C = C(\C = C\CCCCCCCCCC)C = CC2OC1
253 (−)-Antofine C = 1C2 = C(C = C(C1OC)OC)C = 3C = C(C = CC3C4 = C2C[C@]5(CCCN5C4)[H])OC
254 Benzoic acid OC(= O)c1ccccc1
255 Ethyl butyrate CCCC(= O)OCC
256 N-feruloyltyramine COc1cc(\C = C\C(= O)NCCc2ccc(O)cc2)ccc1O
257 Kadsurenin M O1[C@@H]([C@H](C2 = C1C(OC)=CC(= C2)C(= O)[H])C)C3 = CC(OC)=C(OC)C = C3
258 (−)-Epicubenol [C@]12([C@@H](CC[C@H]([C@]2(CCC(= C1)C)O)C)C(C)C)[H]
259 Monocerin [H][C@@]12C[C@H](CCC)O[C@]1([H])c1cc(OC)c(OC)c(O)c1C(= O)O2
260 (2S,3aR,9bR)-6,7-dihydroxy-8-methoxy-2-propyl-3,3a-dihydro-2H-furo[3,2-c]isochromen-5(9bH)-one [H][C@@]12C[C@H](CCC)O[C@]1([H])c1cc(OC)c(O)c(O)c1C(= O)O2
261 Fusarentin 6,7-dimethyl ether CCC[C@H](O)C[C@@H]1Cc2cc(OC)c(OC)c(O)c2C(= O)O1
262 Fusarentin 6-methyl ether CCC[C@H](O)C[C@@H]1Cc2cc(OC)c(O)c(O)c2C(= O)O1
263 (3R,4R)-4,8-dihydroxy-3-((R)-2-hydroxypentyl)-6,7-dimethoxyisochroman-1-one CCC[C@@H](O)C[C@H]1OC(= O)c2c(O)c(OC)c(OC)cc2[C@H]1O
264 Colletotrialide, (+)- CCCC(= O)CC[C@H]1OC(= O)c2c(O)c(OC)c(OC)cc12
265 Galgravin C1(= C(C = CC(= C1)[C@@H]2O[C@@H]([C@H]([C@H]2C)C)C3 = CC = C(C(= C3)OC)OC)OC)OC
266 9,10-Epoxy-18-hydroxyoctadecanoic acid C1(CCCCCCCC(= O)O)C(CCCCCCCCO)O1
267 Pinocembrin Oc1cc(O)c2C(= O)C[C@H](Oc2c1)c1ccccc1
268 1,4-Cineole C1C[C@]2(CC[C@]1(C)O2)C(C)C
269 Sodium benzoate C(C = 1C = CC = CC1)([O-])=O.[Na +]
270 9,10,18-Trihydroxyoctadecanoic acid C(C(C(CCCCCCCCO)O)O)CCCCCCC(= O)O
271 Kavapyrone COc1cc(oc(= O)c1)[C@@H]1O[C@H]1c1ccccc1
272 Alpha-cubebene C1C[C@H]([C@]2([C@]3([C@@H]1C)CC = C([C@]23[H])C)[H])C(C)C
273 Acuminatin O1[C@H]([C@@H](C2 = C1C(OC)=CC(= C2)/C = C/C)C)C3 = CC(OC)=C(OC)C = C3
274 Jerantinine E [H][C@]12N3CCC[C@@]1(CC)CC(C(= O)OC)=C1Nc4cc(OC)c(O)cc4[C@]21CC3
275 Jerantinine F [H][C@]12CCN3CC[C@@]45C(Nc6cc(OC)c(O)cc46)=C(C[C@@]1(CCO2)[C@]35[H])C(= O)OC
276 Jerantinine C [H][C@@]12N3CC[C@]11C(Nc4cc(OC)c(O)cc14)=C(C[C@]2(CC)C = CC3 = O)C(= O)OC
277 Jerantinine B [H][C@]12CN3CC[C@@]45C(Nc6cc(OC)c(O)cc46)=C(C[C@](CC)([C@@]1([H])O2)[C@]35[H])C(= O)OC
278 Jerantinine D [H][C@@]12O[C@]1([H])[C@@]1(CC)CC(C(= O)OC)=C3Nc4cc(OC)c(O)cc4[C@@]33CCN(C2 = O)[C@@]13[H]
279 Jerantinine A [H][C@@]12N3CC[C@]11C(Nc4cc(OC)c(O)cc14)=C(C[C@]2(CC)C = CC3)C(= O)OC
280 Tabernaemontanine CC[C@@H]1CN(C)[C@]2(CC = 3C4 = CC = CC = C4NC3C(C[C@@]1([C@@]2(C(= O)OC)[H])[H])=O)[H]
281 Plectranthol A CC(C)c1cc2C = C[C@@]3(C)C(= CCC[C@]3(C)COC(= O)c3ccc(O)c(O)c3)c2c(O)c1O
282 11,20-Dihydroxysugiol C1 = C(C(C)C)C(= C(C2 = C1C(C[C@@]3([C@@]2(CCCC3(C)C)CO)[H])=O)O)O
283 11-Hydroxysugiol C1 = C(C(C)C)C(= C(C2 = C1C(C[C@@]3([C@@]2(CCCC3(C)C)C)[H])=O)O)O
284 Abietatriene CC(C)c1ccc2c(CC[C@H]3C(C)(C)CCC[C@]23C)c1
285 7-Oxo-10α-cucurbitadienol [H][C@@]1(CC[C@@]2(C)[C@]3([H])C(= O)C = C4[C@@]([H])(CC[C@H](O)C4(C)C)[C@]3(C)CC[C@]12C)[C@H](C)CCC = C(C)C

3.4. Target prediction for the phytochemical compounds

Target prediction for the phytochemical compounds is a website that helps to calculate the most likely macromolecular targets of a small bioactive molecule. The SwissTagetPrediction was used to find the target of the compounds that satisfy the Lipinski rule of 5. The overall 24,843 targets were predicted for the 285 compounds (Supplementary Table 1 ). The probability score will be provided for each of the targets. Considering the confidence level, the targets with a probability score of more than 0 were considered for further research (Supplementary Table 2 ).

Supplementary Table 1.

A complete list of protein targets of the phytochemical compounds obtained from the SwissTargetPrediction server.

mmc09-03-9780323992275.xlsx (760.5KB, xlsx)

Supplementary Table 2.

A list of protein targets of the phytochemical compounds with probability score more than 0 obtained from the SwissTargetPrediction server.

mmc09-04-9780323992275.xlsx (133.2KB, xlsx)

3.5. Common target identification

The list of common targets between the COVID-19 infection (339 proteins) and phytochemical targets (24843) were analyzed using the Venn diagram (Fig. 1 ). The Venn diagram was plotted using a web server embedded in Bioinformatics & Evolutionary Genomics. From the analysis, 13 targets, namely, ACE, IMPDH2, EGFR, DPP4, RIPK1, HDAC2, CTSL, POLA1, CTSB, PABPC1, VEGFA, SIGMAR1, and IL6, were identified as potent protein targets.

Fig. 1.

Fig. 1

Venn diagram showing the number of COVID-19 receptors, Compound targets and the common genes between the COVID-19 receptors and compound targets.

3.6. Enrichment analysis

BP, CC, biological pathways, and MF were identified using the FunRich tool. Energy pathways, immune response, nucleoside, nucleic acid metabolism, nucleotide, and regulation of nucleobase were identified as the top biological process for the common receptor (Fig. 2A). Nucleus, plasma membrane, cytoplasm, exosome, lysosome, and extracellular were identified as the top cellular component for typical receptors (Fig. 2B). PAR1-mediated thrombin signaling events, IFN-gamma pathway, Nectin adhesion pathway, IL3-mediated pathway events, signaling events mediated by hepatocyte growth factor receptor (c-Met), and PDGF receptor signaling network were identified as the biological pathway for the typical receptors (Fig. 2C). Cytokine activity, transmembrane receptor protein tyrosine kinase activity, peptidase activity, transmembrane receptor activity, DNA-directed DNA polymerase activity, and cysteine-type peptidase activity (Fig. 2D). The complete list of results obtained from the FunRich analysis is tabulated in Supplementary Table 3 .

Fig. 2.

Fig. 2

Enrichment analysis using FunRich shows the most significant biological process, cellular component, biological pathway, and molecular function of the identified targets as the input. (A) Biological process for common receptors, (B) Cellular component for common receptors, (C) Biological pathway for common receptors, and (D) Molecular function for common receptors.

Supplementary Table 3.

The binding affinity obtained from the AutoDock Vina between the identified targets and the phytochemical compounds. The binding affinity values are expressed in term of kcal/mol.

3.7. Pathway analysis

Pathway analysis was performed using the Reactome version 76 on 05/06/2021. All the 13 identifiers in the sample were found in Reactome, where 256 pathways were hit by at least one of them. The 25 most relevant significant pathways sorted by P-value are tabulated in Table 6 . TFAP2 (AP-2) family regulates the transcription of growth factors and their receptors. Potential therapeutics for SARS and SARS-CoV (SARS-CoV-1 & SARS-CoV-2) Infections were identified as the top 3 significant pathways with 4/21, 5/84, and 6/203 entities found, respectively (Fig. 3A and B).

Table 6.

The list of 25 most relevant pathways sorted by P value.

S.·no Pathway name Entities found Ratio P value FDRa Reactions found Ratio
1 TFAP2 (AP-2) family regulates transcription of growth factors and their receptors 4/21 0.001 2.57E-08 6.88E-06 4/18 0.001
2 Potential therapeutics for SARS 5/84 0.006 0.000000122 0.0000163 6/32 0.002
3 SARS-CoV infections 6/203 0.014 0.000000338 0.0000301 9/254 0.019
4 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 4/52 0.004 9.37e-07 6.28e-05 4/44 0.003
5 Trafficking and processing of endosomal TLR 3/16 0.001 1.75e-06 9.29e-05 2/7 5.21e-04
6 Infectious disease 9/1343 0.092 0.0000516 0.002 16/750 0.056
7 VEGF ligand-receptor interactions 2/8 0.000551 0.0000633 0.002 3/4 0.000298
8 VEGF binds to VEGFR leading to receptor dimerization 2/8 5.51e-04 6.33e-05 0.002 2/3 2.23e-04
9 RUNX1 regulates transcription of genes involved in differentiation of keratinocytes 2/11 7.57e-04 1.19e-04 0.003 1/8 5.96e-04
10 Assembly of collagen fibrils and other multimeric structures 3/67 0.005 1.23e-04 0.003 1/26 0.002
11 Toll-like receptor cascades 4/188 0.013 0.000141 0.003 14/185 0.014
12 Disease 11/2360 0.163 0.000148 0.003 99/1591 0.119
13 Generic transcription pathway 9/1555 0.107 0.000163 0.003 17/824 0.061
14 Interleukin-4 and interleukin-13 signaling 4/211 0.015 2.19e-04 0.004 2/47 0.004
15 Regulation of gene expression by hypoxia-inducible factor 2/15 0.001 2.21e-04 0.004 1/7 5.21e-04
16 RNA polymerase II transcription 9/1694 0.117 0.000314 0.004 17/885 0.066
17 ERBB2 activates PTK6 signaling 2/18 0.001 0.000318 0.004 2/2 0.000149
18 ERBB2 regulates cell motility 2/19 0.001 0.000354 0.005 2/2 0.000149
19 Collagen formation 3/104 0.007 0.000444 0.006 1/77 0.006
20 PI3K events in ERBB2 signaling 2/22 0.002 0.000473 0.006 5/7 0.000521
21 Gene expression (transcription) 9/1855 0.128 0.000622 0.007 23/1000 0.074
22 Signaling by VEGF 3/137 0.009 0.000983 0.011 49/86 0.006
23 Signaling by ERBB2 KD Mutants 2/35 0.002 0.001 0.011 15/17 0.001
24 MHC class II antigen presentation 3/148 0.01 0.001 0.011 3/26 0.002
25 Degradation of the extracellular matrix 3/148 0.01 0.001 0.011 6/105 0.008
a

False discovery rate.

Fig. 3.

Fig. 3

Fig. 3

(A) Pathway shows the transcriptional regulation by the AP-2 (TFAP2) transcription factor family. (B) Pathway showing the potential therapeutics for SARS.

3.8. Gene–gene interaction analysis

The gene–gene interaction analysis helped to prioritize the study of genes in the pathway that helped to understand the underlying mechanism of COVID. The gene–gene interaction analysis was performed using the STRING online server. The number of nodes and edges were found to be 13 and 17, respectively. The average degree of nodes and clustering coefficient of local was found to be 2.62 and 0.566. The anticipated amount of edges was 9 with a PPI enrichment P-value of 0.0115. Except for IMPDH2, PABPC1, SIGMAR1, and POLA1, all the other genes interacted with at least one gene (Fig. 4 ).

Fig. 4.

Fig. 4

The gene-gene interaction between the identified targets common to the COVID-19 receptors and compound targets.

3.9. Virtual screening and molecular interaction analysis

The identified targets such as VEGFA, CTSL, CTSB, EGFR, and IL6 have been identified as the target by more than one phytochemical compound (Table 7). Virtual screenings were performed to identify the most suitable phytochemical compound. The compound with the highest binding affinity was taken for the molecular interaction analysis using AutoDock (Supplementary Table 3). We observed that betulinic acid was found to interact best with the ACE protein with the binding energy − 9.32 kcal/mol from the molecular docking results. The 5″-(2⁗-Hydroxybenzyl) uvarinol was found to interact best with Cathepsin L and Cathepsin B & K with the binding energy − 6.71 kcal/mol and − 6.06 kcal/mol, respectively. The (-)-antofine, S)-1′-methyloctyl caffeate, (Z)-3-phenyl-2-propenal, 7-oxo-10α-cucurbitadienol, PLX-4720, and 5″-(2⁗-Hydroxybenzyl) uvarinol were found to interact best to the DPP4, EGFR, HDAC2, IL6, RIPK1, and VEGFA with binding energies − 8.25 kcal/mol, − 4.76 kcal/mol, − 4.39 kcal/mol, − 6.9 kcal/mol, − 5.91 kcal/mol, and − 5.66 kcal/mol respectively. The interactions between the compounds and the proteins are shown in Fig. 5.

Table 7.

The list of selected receptors of the COVID-19 and the identified interacting phytochemical compounds.

S.·no Name of the receptor Name of the compound
1 Angiotensin-converting enzyme Betulinic acid
2 Dipeptidyl peptidase IV (−)-Antofine
3 Vascular endothelial growth factor A Isochamanetin
7-Methoxychamanetin
Dichamanetin
7-Methoxydichamanetin
5″-(2⁗-Hydroxybenzyl)uvarinol
7-Methoxyisochamanetin
Pinocembrin
1,4-Cineole
4 Cathepsin L Isochamanetin
7-Methoxychamanetin
Dichamanetin
7-Methoxydichamanetin
5″-(2⁗-Hydroxybenzyl)uvarinol
7-Methoxyisochamanetin
Pinocembrin chalcone
Pinocembrin
1,4-Cineole
Carpaine
5 Cathepsin (B and K) Isochamanetin
7-Methoxychamanetin
Dichamanetin
7-Methoxydichamanetin
5″-(2⁗-Hydroxybenzyl)uvarinol
7-Methoxyisochamanetin
Asebogenin
Pinocembrin
1,4-Cineole
Carpaine
6 Epidermal growth factor receptor erbB1 7,4′-dimethylkaempferol
Pipataline
N-trans-sinapoyltyramine
Flavokawain B
(S)-1′-methylhexyl caffeate
(S)-1′-methylbutyl caffeate
(S)-1′-methyloctyl caffeate
Trans-cinnamic acid
Pinocembrin chalcone
N-feruloyltyramine
Cinnamic acid
Dihydroferulic acid
Capensinidin
Nevadensin
7 Interleukin-6 All-cis-octadeca-6,9,12,15-tetraenoic acid
7-Oxo-10α-cucurbitadienol
8 Receptor-interacting serine/threonine-protein kinase 1 PLX-4720
9 Histone deacetylase 2 (Z)-3-phenyl-2-propenal

Fig. 5.

Fig. 5

Visualization of the best interacting phytochemical with the identified targets. (A) ACE receptor with betulinic acid, (B) Cathepsin L receptor with 5″-(2⁗-Hydroxybenzyl)uvarinol, (C) Cathepsin B & K receptor with 5″-(2⁗-Hydroxybenzyl)uvarinol, (D) DPPR receptor with (−)-antofine, (E) EGFR receptor with S)-1′-methyloctyl caffeate, (F) HDAC2 with (Z)-3-phenyl-2-propenal, (G) IL6 with 7-oxo-10α-cucurbitadienol, (H) RIPK1 with PLX-4720, and (I) VEGFA with 5″-(2⁗-Hydroxybenzyl)uvarinol.

4. Discussion

SARS-CoV-2 belongs to a genetic group of viruses that cause respiratory sickness and was declared a worldwide pandemic on March 11th, 2020 (Cucinotta & Vanelli, 2020). As of September 6th, 2021, the reported cases are more than 220,563,227, and at least 4,565,483 people have died (WHO, 2021b). The number of cases across the globe is gradually increasing and decreasing in terms of the COVID-19 infection wave. The countries in America, Europe, and the South Asian region are highly infected with the second wave of COVID-19 infection. Few countries have started to face the third wave of COVID-19 (Taboada et al., 2021).

On the other hand, drug discovery is still far behind, and only drug repurposing serves as the day's choice (Lamontagne et al., 2020; Wu et al., 2020). Unfortunately, several repurposed drugs that showed promising results in the early studies were failed to treat COVID-19; this also includes hydroxychloroquine (Boulware et al., 2020; Geleris et al., 2020). With this less efficiency of repurposed drugs, the search for the vaccine was on a serious note, and several vaccines were developed across the globe, but none were 100% active. Further, there is always a chance of vaccine failure with the mutations and their evolution in the SARS-CoV-2 (Williams & Burgers, 2021). Developing an immune response against COVID-19 can only be a ray of hope in this scenario.

Traditional medicines have been immune boosters since the ancient days (Ravishankar & Shukla, 2007). Siddha herbal formulations with medicinal value are effective against various causative agents, including influenza, dengue fever, chikungunya, tuberculosis, and others (Jain et al., 2020; Jain, Narayanan, Chaturvedi, Pai, & Sunil, 2018; Jain, Pai, & Sunil, 2018). Currently, the ministry of AYUSH has also approved the use of Kabasura kudineer and Nilavembu kudineer against COVID-19 (Alagu Lakshmi, Shafreen, Priya, & Shunmugiah, 2020; Natarajan et al., 2020). This study is intended to understand the immune-boosting mechanism by the JACOM, Kabasura kudineer, and Nilavembu kudineer against COVID-19. A total of 339 human genes were found to be involved in COVID-19. This list was obtained from the GeneCards database (Table 1). Twenty-five plants were found in the JACOM, Kabasura kudineer, and Nilavembu kudineer formulations (Table 2). A list of 314 phytochemicals was obtained from these 25 plants from the ChEBI database (Table 3). The drug-likeness properties of the 314 phytochemical compounds were evaluated using the online SwissADME server (Table 4). From the analysis, we observed 285 compounds to satisfy the Lipinski rule of 5, and these could be considered drug-like compounds (Table 5). The possible targets for these drug-like compounds were predicted using the online SwissTargetPrediction server. An overall of 24,839 targets was predicted for these 285 compounds (Supplementary Table 1). The targets were ranked based on the probability score. Out of 24,839 targets, 5129 genes (with repeats) were the promising target with a probability score of more than 0 (Supplementary Table 2). A Venn diagram was plotted to find the common targets between the genes involved in the COVID-19 and the compounds target (Table 1, Table 5). From the Venn diagram, 13 targets (ACE, IMPDH2, EGFR, DPP4, RIPK1, HDAC2, CTSL, POLA1, CTSB, PABPC1, VEGFA, SIGMAR1, and IL6) were found to be common between the causative and treatment for COVID-19. Three hundred and twenty-six and 520 genes were COVID-19 receptors and targets for compounds, respectively (Fig. 1). The enrichment analysis was performed to understand the role of identified targets in their BP, CC, biological pathways, and MF. Energy pathways, nucleoside, immune response, nucleotide, regulation of nucleobase, and nucleic acid metabolism were identified as the top biological process for the common receptor (Fig. 2A). Nucleus, plasma membrane, cytoplasm, exosome, lysosome, and extracellular were identified as the top cellular component for common receptors (Fig. 2B). PAR1-mediated thrombin signaling events, Nectin adhesion pathway, IL3-mediated signaling events, IFN-gamma pathway, cellular pathways engaged by hepatocyte growth factor receptor (c-Met), and PDGF receptor signaling network were identified as the biological pathway for the common receptors (Fig. 2C). Cytokine activity, peptidase activity, transmembrane receptor protein tyrosine kinase activity, transmembrane receptor activity, DNA-directed DNA polymerase activity, and cysteine-type peptidase activity (Fig. 2D). Further, the pathways involved in these gene targets were predicted using the Reactome database (Jassal et al., 2020). The pathways such as the TFAP2 (AP-2) family that controls the expression of growth factors and their receptors, Potential therapeutics for SARS, and SARS-CoV Infections were identified as the top 3 pathways out of significant 25 pathways (Table 6). The clear pathway of the TFAP2 (AP-2) family regulates the transcription of growth factors, and their receptors are shown in Fig. 3A. In mammals, there are five transcription factors in the AP-2 (TFAP2) family: TFAP2A, TFAP2B, TFAP2C, TFAP2D, and TFAP2E (AP-2 epsilon). The AP-2 transcription factors have a helix-span-helix motif at the C-terminus, a core basic region, and a transactivation domain at the N-terminus, and are evolutionarily conserved in metazoans (Eckert, Buhl, Weber, Jäger, & Schorle, 2005). EGFR and VEGFA identified genes were found to be involved in this pathway. The identified second most significant pathway was potential therapeutics for SARS. The detailed pathway is shown in Fig. 3B. Based on their efficacy in treating infectious disease with other RNA viruses or in reducing cytokine storms and other illnesses caused by viruses are identical to SARS-CoV-1 and SARS-CoV-2. A significant number of intriguing therapeutic candidates have been found to be also similar. HDAC2, SIGMAR1, IMPDH2, VEGFA, and RIPK1 identified genes were found to be involved in this pathway. SARS-CoV-2 infection pathway is not well annotated. However, the viral infection pathways are curated based on the SARS-CoV-1 and SARS-CoV-2 infection processes and drug responses. Many of the steps in SARS-CoV-1 infections are well studied experimentally correlated with the steps involved in SARS-CoV-2 infection. In comparison with the other two significant pathways, a maximum of 6 targets (CTSL, RIPK1, HDAC2, SIGMAR1, IMPDH2, and VEGFA) are found to be in this pathway (Supplementary Data 1, Supplementary Data 2 ).

Supplementary Data 1.

Pathway analysis report for the identified targets. The analysis was performed against Reactome version 76 on 05/06/2021.

Supplementary Data 2.

A complete enrichment analysis of the identified targets obtained from the FunRich software.

The common genes were subjected to the gene–gene interaction study using the online STRING database to identify the connected genes (Szklarczyk et al., 2019). Out of the identified targets, HDAC2, IL6, EGFR, DPP4, ACE, VEGFA, CTSL, CTSB, and RIPK1 were interlinked with another target (Fig. 4). These targets were already promising targets for COVID-19 treatment in several previous studies. Therefore, activating or suppressing one of these genes could impact the other and improve efficacy.

The Histone deacetylase 2 (HDAC2) plays a crucial role in monocytes' regular immune response function. These monocytes were found to maintain the immune system's regular role when combined with the macrophages. The HDAC2 drugs such as Theophylline, Macrolides, Nortriptyline, and many others have been shown to prevent the pathological response of the inflammatory monocytes and thereby regulate the normal lung function (HDAC2 Regulates Response of Inflammatory Monocytes: A COVID-19 Target, 2020). A study by Liu et al., 2020 has also proposed that the inhibition of HDAC could be a promising target for the COVID-19 infection (Liu et al., 2020).

T-lymphocytes, adipose tissues, and macrophages all produce interleukin-6 (IL-6), a pro-inflammatory cytokine protein. It plays a significant role in atherogenesis and is linked to cardiovascular clinical outcomes (Gabay, 2006). The COVID-19 patients with more severe illnesses had higher inflammatory cytokines linked to pulmonary inflammation, lung destruction, and multiple organ failure. SARS-CoV-2 patients exhibit low concentrations of the modulator of cytokine signaling-3, which again is involved in the stimulation of the IL-6 negative feedback loop. Increased IL 6 has also been discovered to be an indicator of the change from a mild to a severe illness, limiting the severity if caught early (Vatansever & Becer, 2020).

The progression of SARS-CoV induces fibrosis, as well as a review of evidence indicating pulmonary fibrosis is generated by an overactive host response to lung damage driven through epidermal growth factor receptor (EGFR) signaling (Venkataraman & Frieman, 2017). Adeno-associated virus 2 (AAV2) second-strand DNA synthesis and transgene expression are inhibited by FK506-binding protein (FKBP52), which is phosphorylated at tyrosine residues by EGFR-PTK (Yano et al., 2003). Because EGFR is abundantly expressed in various solid tumors and its expression is linked to tumor progression, leading to chemotherapy resistance and poor prognosis. It is a promising strategy for the rational development of new anticancer drugs.

DPP4 is widely known to involve in type 2 diabetic conditions. DPP4 activity affects glucose homeostasis and inflammation in numerous ways. The change in expression levels of DPP4 in the early MERS infections was also studied several years ago (Chan et al., 2015). Currently, the SARS-CoV-2 being the same family of MERS infection, the role of DPP4 in SARS-CoV-2 conditions is also widely studied and found to be a promising target for COVID-19 treatment (Scheen, 2021; Solerte, Di Sabatino, Galli, & Fiorina, 2020).

ACE2 acts as a functional receptor on the cell's surface through which the SARS-CoV-2 can enter the human cell. This ACE2 is expressed highly in the heart, kidney, and lungs. The ACE/ACE2 balance disruption with RAAS (renin-angiotensin-aldosterone system) activation can lead to severe COVID-19, especially in diabetes, cardiovascular diseases, and hypertension (Beyerstedt, Casaro, & Rangel, 2021).

In ICU and non-ICU COVID-19 patients, VEGF concentrations were more significant than in healthy controls. Angiogenesis, neurogenesis, and neuroprotection are all aided by VEGFs, leading to vascular leakiness and permeability. ACE2 inhibits VEGF-A, which reduces vascular permeability in patients with acute lung damage. In the account of SARS-downregulation CoV-2’s of ACE2, the VEGF-A antagonistic effect of ACE2 is expected to be canceled, resulting in overexpression of VEGF and increased vascular permeability and exacerbation of endothelial injury (Yazihan et al., 2021).

The CTSL1 gene codes for a lysosomal cysteine protease involved in intracellular protein degradation. It impacts collagen and elastin, along with alpha-1 protease inhibitor, a key regulator of neutrophil elastase function. CatL is essential in degrading the extracellular matrix, a crucial mechanism for SARS-CoV-2 to enter host cells and is upregulated during chronic inflammation. CatL is also likely involved in the processing of SARS-CoV-2 spike protein. CatL could have been regarded as a valuable therapeutic target because its suppression damages SARS-CoV-2 infection and maybe egress from cells through late stages of infection (Gomes et al., 2020; Pišlar et al., 2020).

Because several patients had greater serum RIPK3 (a family of RIPK1) levels, it is possible that RIPK-3-mediated signaling may lead to necroptosis; it is implicated in the development of COVID-19 pneumonia-related acute lung injury. In ARDS patients, RIPK-3 levels were considerably more significant than in non-ARDS patients. In immunohistochemistry, all epithelial cell samples from COVID-19 individuals were confirmed for active phosphorylated RIPK1. Thus, ICD mediated by RIPK1 may have a part in the progression of SARS-CoV-2 infection and can be a new therapeutic target (Nakamura et al., 2020).

Several compounds targeting these genes are capable of interacting with more than one gene. Virtual screenings were performed to identify the best interaction of the compounds with these targets. From the virtual screening analysis, betulinic acid was found to interact with ACE, 5″-(2⁗-Hydroxybenzyl)uvarinol was found to interact with Cathepsin L, and Cathepsin B & K, -(-)-antofine was found to interact with DPP4, (S)-1′-methyloctyl caffeate was found to interact with EGFR, (Z)-3-phenyl-2-propenal was found to interact with HDAC2, 7-oxo-10α-cucurbitadienol was found to interact with IL6, PLX-4720 was found to interact with RIPK1, and 5″-(2⁗-Hydroxybenzyl)uvarinol was found to interact with VEGFA (Supplementary Table 3). The molecular dockings were performed using the AutoDock, and the interactions were studied using the Discovery Studio (Fig. 5). Thus collectively, these compounds targeting the identified targets could improve the immune system, fighting against the COVID-19 infection.

5. Conclusion

The COVID-19 infection is widely increasing across the globe. The drugs to treat COVID-19 are still in the clinical trials, which might take years for approval. Drugs such as Hydroxychloroquine, Remdesivir, Favipiravir, Lopinavir/ritonavir are widely repurposed to treat the COVID-19 during the earlier outbreak. On the other hand, various vaccine manufacturers such as COVID-19 Vaccine AstraZeneca, COVID-19 Vaccine Janssen, Sputnik, and Covaxin are in the race to develop vaccines, yet none seems to be 100% efficient. In addition, with the evolution of SARS-CoV-2 mutations, the efficiency of the vaccines is becoming a interrogation point every day.

Similarly, these mutations might lead to drug inefficacy and drug-resistant. The promising approach to be safe from COVID-19 is to develop the immune system. The traditional medicines are immune boosters, serving as a promising remedy for various diseases since ancient days. This study used the network pharmacology approach and analyzed the phytochemical compounds in Nilavembu kudineer, Kabasura kudineer, and JACOM and their interacting human protein targets, activating or suppressing the target. These identified compounds can be tested in vivo and in vitro to compare the toxicity and efficiency of the currently available formulations.

Acknowledgments

Conflict of interest

The authors have declared that no conflicts of interest exist.

Acknowledgments

Author contributions

D.T.K., S.U.K., S.P., S.D.M.S., S.R., and C.G.P.D. were involved in the study's design. D.T.K., A.S., A.M., L.M., R.G., M.R., and S.U.K. were involved in the data collection and experimentation. D.T.K., A.S., A.M., L.M., R.G., M.R., and S.U.K. were engaged in the acquisition, analysis, and interpretation results. D.T.K. and S.U.K. drafted the manuscript. C.G.P.D., S.R. and S.P. supervised the entire study and was involved in study design, the acquisition, analysis, understanding of the data, and critically reviewed the manuscript. All authors edited and approved the submitted version of the article.

Funding

No funding agency was involved in the present study.

Acknowledgments

The authors would like to take this opportunity to thank the management of Vellore Institute of Technology (VIT), Vellore, India, and Meenakshi Academy of Higher Education and Research, Chennai, for providing the necessary facilities and encouragement to carry out this work.

References

  1. Alagu Lakshmi S., Shafreen R.M.B., Priya A., Shunmugiah K.P. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: Using structure-based drug discovery approach. Journal of Biomolecular Structure and Dynamics. 2020 doi: 10.1080/07391102.2020.1778537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beyerstedt S., Casaro E.B., Rangel É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology and Infectious Diseases. 2021;40(5):905–919. doi: 10.1007/s10096-020-04138-6. Springer Science and Business Media Deutschland GmbH. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boulware D.R., Pullen M.F., Bangdiwala A.S., Pastick K.A., Lofgren S.M., Okafor E.C., et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. New England Journal of Medicine. 2020;383(6):517–525. doi: 10.1056/nejmoa2016638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cain D.W., Cidlowski J.A. After 62 years of regulating immunity, dexamethasone meets COVID-19. Nature Reviews Immunology. 2020;20(10):587–588. doi: 10.1038/s41577-020-00421-x. Nature Research. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan J.F.W., Lau S.K.P., To K.K.W., Cheng V.C.C., Woo P.C.Y., Yue K.Y. Middle East Respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clinical Microbiology Reviews. 2015 doi: 10.1128/CMR.00102-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corman V.M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D.K.W., et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cucinotta D., Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomedica. 2020;91(1):157–160. doi: 10.23750/abm.v91i1.9397. Mattioli 1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017;7:42717. doi: 10.1038/srep42717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dallakyan S., Olson A.J. Small-molecule library screening by docking with PyRx. Methods in Molecular Biology. 2015;1263:243–250. doi: 10.1007/978-1-4939-2269-7_19. [DOI] [PubMed] [Google Scholar]
  10. Dhand R., Li J. Coughs and sneezes: Their role in transmission of respiratory viral infections, including SARS-CoV-2. American Journal of Respiratory and Critical Care Medicine. 2020;202(5):651–659. doi: 10.1164/rccm.202004-1263PP. American Thoracic Society. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eckert D., Buhl S., Weber S., Jäger R., Schorle H. The AP-2 family of transcription factors. Genome Biology. 2005;6(13):246. doi: 10.1186/gb-2005-6-13-246. BioMed Central. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fabregat A., Sidiropoulos K., Garapati P., Gillespie M., Hausmann K., Haw R., et al. The reactome pathway knowledgebase. Nucleic Acids Research. 2016;44(D1):D481–D487. doi: 10.1093/nar/gkv1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Research and Therapy. 2006;8(Suppl. 2) doi: 10.1186/ar1917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Geleris J., Sun Y., Platt J., Zucker J., Baldwin M., Hripcsak G., et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. New England Journal of Medicine. 2020;382(25):2411–2418. doi: 10.1056/nejmoa2012410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gfeller D., Grosdidier A., Wirth M., Daina A., Michielin O., Zoete V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research. 2014;42(W1):W32–W38. doi: 10.1093/nar/gku293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gomes C.P., Fernandes D.E., Casimiro F., da Mata G.F., Passos M.T., Varela P., et al. Frontiers in cellular and infection microbiology. Vol. 10. Frontiers Media S.A; 2020. Cathepsin L in COVID-19: From pharmacological evidences to genetics; p. 777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hastings J., De Matos P., Dekker A., Ennis M., Harsha B., Kale N., et al. The ChEBI reference database and ontology for biologically relevant chemistry: Enhancements for 2013. Nucleic Acids Research. 2013;41(D1) doi: 10.1093/nar/gks1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HDAC HDAC2 Regulates response of inflammatory monocytes: a COVID-19 target. 2020. https://www.drugtargetreview.com/article/60593/histone-deacetylase-2-hdac2-regulates-pathological-response-of-inflammatory-monocytes-a-potential-target-of-adjuvant-therapies-for-covid-19-infection/ Retrieved June 12th, 2021, from.
  19. Jain J., Kumar A., Narayanan V., Ramaswamy R.S., Sathiyarajeswaran P., Shree Devi M.S., et al. Antiviral activity of ethanolic extract of Nilavembu Kudineer against dengue and chikungunya virus through in vitro evaluation. Journal of Ayurveda and Integrative Medicine. 2020;11(3):329–335. doi: 10.1016/j.jaim.2018.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jain J., Narayanan V., Chaturvedi S., Pai S., Sunil S. In vivo evaluation of Withania somnifera–based Indian traditional formulation (amukkara choornam), against chikungunya virus–induced morbidity and arthralgia. Journal of Evidence-Based Integrative Medicine. 2018 doi: 10.1177/2156587218757661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jain J., Pai S., Sunil S. Standardization of in vitro assays to evaluate the activity of polyherbal siddha formulations against Chikungunya virus infection. VirusDisease. 2018 doi: 10.1007/s13337-018-0421-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jassal B., Matthews L., Viteri G., Gong C., Lorente P., Fabregat A., et al. The reactome pathway knowledgebase. Nucleic Acids Research. 2020;48(D1):D498–D503. doi: 10.1093/nar/gkz1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kiran G., Karthik L., Shree Devi M.S., Sathiyarajeswaran P., Kanakavalli K., Kumar K.M., et al. In silico computational screening of Kabasura Kudineer—official siddha formulation and JACOM against SARS-CoV-2 spike protein. Journal of Ayurveda and Integrative Medicine. 2020 doi: 10.1016/j.jaim.2020.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kumar D.T., Shaikh N., Kumar S.U., Doss C.G.P., Zayed H. Structure-based virtual screening to identify novel potential compound as an alternative to remdesivir to overcome the RdRp protein mutations in SARS-CoV-2. Frontiers in Molecular Biosciences. 2021;8 doi: 10.3389/fmolb.2021.645216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kumar S.U., Kumar D.T., Christopher B.P., Doss C.G.P. The rise and impact of COVID-19 in India. Frontiers in Medicine. 2020;7 doi: 10.3389/fmed.2020.00250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kumar S.U., Kumar D.T., Siva R., Doss C.G.P. Kerala, India's front runner in novel coronavirus disease (COVID-19) Frontiers in Medicine. 2020;7 doi: 10.3389/fmed.2020.00355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lamontagne F., Agoritsas T., MacDonald H., Leo Y.S., DIaz J., Agarwal A., et al. A living WHO guideline on drugs for covid-19. The BMJ. 2020;370:m3379. doi: 10.1136/bmj.m3379. [DOI] [PubMed] [Google Scholar]
  28. Liu K., Zou R., Cui W., Li M., Wang X., Dong J., et al. Clinical HDAC inhibitors are effective drugs to prevent the entry of SARS-CoV2. ACS Pharmacology and Translational Science. 2020;3(6):1361–1370. doi: 10.1021/acsptsci.0c00163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry. 1998;19(14):1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14 < 1639::AID-JCC10 > 3.0.CO;2-B. [Google Scholar]
  30. Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry. 2009;30(16):2785–2791. doi: 10.1002/jcc.21256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nakamura H., Kinjo T., Arakaki W., Miyagi K., Tateyama M., Fujita J. Serum levels of receptor-interacting protein kinase-3 in patients with COVID-19. Critical Care. 2020;24(1) doi: 10.1186/s13054-020-03209-6. BioMed Central. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Natarajan S., Anbarasi C., Sathiyarajeswaran P., Manickam P., Geetha S., Kathiravan R., et al. The efficacy of Siddha Medicine, Kabasura Kudineer (KSK) compared to Vitamin C & Zinc (CZ) supplementation in the management of asymptomatic COVID-19 cases: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21(1) doi: 10.1186/s13063-020-04823-z. BioMed Central Ltd. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pathan M., Keerthikumar S., Ang C.S., Gangoda L., Quek C.Y.J., Williamson N.A., et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015;15(15):2597–2601. doi: 10.1002/pmic.201400515. [DOI] [PubMed] [Google Scholar]
  34. Patwardhan B., Warude D., Pushpangadan P., Bhatt N. Ayurveda and traditional Chinese medicine: A comparative overview. Evidence-Based Complementary and Alternative Medicine. 2005;2(4):465–473. doi: 10.1093/ecam/neh140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pišlar A., Mitrovic A., Sabotič J., Fonovic U.P., Nanut M.P., Jakoš T., et al. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathogens. 2020;16(11):e1009013. doi: 10.1371/journal.ppat.1009013. Public Library of Science. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Plante J.A., Mitchell B.M., Plante K.S., Debbink K., Weaver S.C., Menachery V.D. The variant gambit: COVID-19’s next move. Cell Host and Microbe. 2021;29(4):508–515. doi: 10.1016/j.chom.2021.02.020. Cell Press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rathinam S., Muthiah K., Parameswaran S., Tamilarasan K., Selvarajan E., Ayyasamy U. Analogy of Kaba Suram with COVID-19 symptoms–A siddha literature review. International Journal of Ayurvedic Medicine. 2020;11(4):616–621. doi: 10.47552/ijam.v11i4.1674. [DOI] [Google Scholar]
  38. Ravishankar B., Shukla V.J. Indian systems of medicine: A brief profile. African Journal of Traditional, Complementary and Alternative Medicines. 2007;4(3):319–337. doi: 10.4314/ajtcam.v4i3.31226. African Ethnomedicines Network. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rebhan M., Chalifa-Caspi V., Prilusky J., Lancet D. GeneCards: Integrating information about genes, proteins and diseases. Trends in Genetics. 1997;13(4):163. doi: 10.1016/S0168-9525(97)01103-7. [DOI] [PubMed] [Google Scholar]
  40. Ross C.L. Integral healthcare: The benefits and challenges of integrating complementary and alternative medicine with a conventional healthcare practice. Integrative Medicine Insights. 2009;2009(4):13–20. doi: 10.4137/IMI.S2239. SAGE Publications. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Scheen A.J. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations. Diabetes and Metabolism. 2021;47(2):101213. doi: 10.1016/j.diabet.2020.11.005. Elsevier Masson s.r.l. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Solerte S.B., Di Sabatino A., Galli M., Fiorina P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetologica. 2020;57(7):779–783. doi: 10.1007/s00592-020-01539-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Srivastava S., Banu S., Singh P., Sowpati D.T., Mishra R.K. SARS-CoV-2 genomics: An Indian perspective on sequencing viral variants. Journal of Biosciences. 2021;46(1):1–14. doi: 10.1007/s12038-021-00145-7. Springer. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research. 2019;47(D1):D607–D613. doi: 10.1093/nar/gky1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Taboada M., González M., Alvarez A., Eiras M., Costa J., Álvarez J., et al. First, second and third wave of COVID-19. What have we changed in the ICU management of these patients? Journal of Infection. 2021;82(6):e14–e15. doi: 10.1016/j.jinf.2021.03.027. W.B. Saunders Ltd. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tai W., He L., Zhang X., Pu J., Voronin D., Jiang S., et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular and molecular immunology. 2020;17(6):613–620. doi: 10.1038/s41423-020-0400-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010;31(2):455–461. doi: 10.1002/jcc.21334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vatansever H.S., Becer E. Relationship between IL-6 and COVID-19: To be considered during treatment. Future Virology. 2020;15(12):817–822. doi: 10.2217/fvl-2020-0168. Future Medicine Ltd. [DOI] [Google Scholar]
  49. Venkataraman T., Frieman M.B. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Research. 2017;143:142–150. doi: 10.1016/j.antiviral.2017.03.022. Elsevier B.V. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. WHO What is COVID-19 vaccine efficacy? | WHO | Regional Office for Africa. 2021. https://www.afro.who.int/news/what-covid-19-vaccine-efficacy Retrieved June 12th, 2021, from.
  51. WHO WHO coronavirus (COVID-19) dashboard | WHO coronavirus (COVID-19) dashboard with vaccination data. 2021. https://covid19.who.int/ Retrieved June 8th, 2021, from.
  52. Williams T.C., Burgers W.A. SARS-CoV-2 evolution and vaccines: Cause for concern? The Lancet Respiratory Medicine. 2021;9(4):333–335. doi: 10.1016/S2213-2600(21)00075-8. Lancet Publishing Group. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wu R., Wang L., Kuo H.C.D., Shannar A., Peter R., Chou P.J., et al. An update on current therapeutic drugs treating COVID-19. Current Pharmacology Reports. 2020;6(3):56–70. doi: 10.1007/s40495-020-00216-7. Springer. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yano S., Kondo K., Yamaguchi M., Richmond G., Hutchison M., Wakeling A., et al. Distribution and function of EGFR in human tissue and the effect of EGFR tyrosine kinase inhibition. Anticancer Research. 2003;Vol. 23(5A):3639–3650. https://europepmc.org/article/med/14666659 [PubMed] [Google Scholar]
  55. Yazihan N., Tanacan A., Erol S.A., Anuk A.T., Sinaci S., Biriken D., et al. Comparison of VEGF-A values between pregnant women with COVID-19 and healthy pregnancies and its association with composite adverse outcomes. Journal of Medical Virology. 2021;93(4):2204–2209. doi: 10.1002/jmv.26631. [DOI] [PubMed] [Google Scholar]
  56. Youns M., Hoheisel J.D., Efferth T. Traditional Chinese Medicines (TCMs) for molecular targeted therapies of tumours. Current Drug Discovery Technologies. 2010;7(1):37–45. doi: 10.2174/157016310791162730. [DOI] [PubMed] [Google Scholar]

Articles from Advances in Protein Chemistry and Structural Biology are provided here courtesy of Elsevier

RESOURCES