Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2020 Oct 25;49(5):629–636. [Article in Chinese] doi: 10.3785/j.issn.1008-9292.2020.10.13

降血糖药对内皮祖细胞作用的研究进展

Effects of antihyperglycemics on endothelial progenitor cells

Xue HAN 1,2, Guojun JIANG 2, Qiaojuan SHI 1,*
PMCID: PMC8800672  PMID: 33210492

Abstract

内皮祖细胞(EPC)在糖尿病血管并发症中发挥重要作用。大量研究证明,临床部分降血糖药可通过调节EPC功能进而发挥改善糖尿病并发症的作用。其中二甲双胍可通过多效性调节机体氧化应激水平或AMP活化蛋白激酶下游信号通路改善糖尿病患者的EPC功能;吡格列酮可通过调节端粒酶活性延缓EPC衰老;阿卡波糖、西格列汀和胰岛素在临床研究中均显示出提高EPC活性的作用,其机制主要表现为促进EPC增殖、迁移、黏附等。降血糖药的这种降血糖之外的药理作用可能是改善糖尿病并发症的机制之一。本文在分析EPC对糖尿病并发症血管修复影响的基础上,对降血糖药调控EPC数量和功能的研究进展作一综述。


糖尿病是一组以慢性血糖水平增高为特征的代谢性疾病,由胰岛素分泌和/或作用缺陷引起 [ 1] 。糖尿病的慢性并发症可遍及全身各个重要器官,发病机制极其复杂,其中血管内皮细胞功能紊乱是一个不可忽视的致病因素 [ 2] 。血管内皮细胞参与了心血管活动的调节,其生理功能是维持循环系统平衡和稳定的基础。循环中的内皮祖细胞(endothelial progenitor cell, EPC)是血管内皮细胞的前体细胞,可以迁移、分化为成熟的内皮细胞,参与血管内皮修复和组织血管再生 [ 3] 。EPC的另一个重要功能是可以分泌一些营养因子,如血管内皮生长因子(vascular endothelial growth factor, VEGF)、肝细胞生长因子、血管生成素1和基质细胞衍生因子1α(stromal cell-derived factor 1α, SDF-1α)等,这些因子对内皮细胞的增殖及血管修复起到积极作用 [ 4] 。EPC是一组多向性细胞,不同来源的EPC可通过细胞表面标志物进行鉴定( 表 1) [ 5- 11] 。目前药物对EPC的干预治疗大都体现在骨髓来源EPC向外周动员,从而增加外周血EPC数量。

表1 不同来源内皮祖细胞(EPC)的表面标志物

Table 1 Surface markers of endothelial progenitor cells (EPC)

来源

细胞表面标志物

参考文献序号

外周血

CD31、酪氨酸激酶受体2、胎肝激酶1

5-6

骨髓

血管内皮生长因子受体2、CD31, 血管上皮钙黏素、血管性血友病因子

7

胚胎

内皮型一氧化氮合酶、血管内皮生长因子、胎肝激酶1、样酪氨酸激酶、血管上皮钙黏素、CD34、血小板内皮细胞黏附分子1

8-9

脐带血

标记乙酰化低密度脂蛋白、人源血管内皮生长因子受体2(KDR)、血管上皮钙黏素、CD31、血管性血友病因子、CD45

10

人脐静脉内皮细胞

CD133、CD146单克隆抗体(P1H12)、血管内皮生长因子受体2、血小板内皮细胞黏附分子、内皮联蛋白、细胞间黏附分子1

11

在糖尿病及其慢性并发症等病理状态下,内皮细胞功能出现障碍。1型和2型糖尿病患者外周血EPC体外培养发现,其增殖、黏附及小管形成的能力均降低 [ 12] 。由于EPC功能失调可能降低糖尿病患者的血管再生能力,因此有学者提出糖尿病患者的血管并发症源于EPC功能失调的假说 [ 13] 。临床研究发现,出现外周血管病变的糖尿病患者中EPC功能受损程度高于未出现血管病变的患者,且循环中EPC数量与外周血管病变的严重程度存在相关性 [ 14] 。目前已有研究证明,临床上广泛应用的多种降血糖药,如二甲双胍、吡格列酮、阿卡波糖、西格列汀和胰岛素等,能够改善EPC生物活性 [ 15- 19] 。研究表明,部分降血糖药可以通过调节AMP活化蛋白激酶(AMPK)/内皮型一氧化氮合酶(eNOS)、磷酸肌醇3-激酶(PI3K)/蛋白激酶B(Akt)和Akt/eNOS等信号转导通路,影响机体氧化应激水平或端粒酶活性,从而提高糖尿病患者的EPC生物活性,对糖尿病患者的临床预后发挥积极作用 [ 15, 18, 20] 。本文就临床常用降血糖药与EPC之间的关系进行阐述, 旨在了解降血糖药调节EPC的机制,以供临床参考。

1 二甲双胍

二甲双胍以安全性高、价格低廉和疗效稳定而广泛应用于糖尿病患者的治疗,其主要作用机制是增加外周葡萄糖摄取,减少肝糖原输出,改善肝脏和肌肉组织胰岛素抵抗 [ 21] 。二甲双胍降血糖的分子机制并未明确,研究者普遍认为其与AMPK介导的信号通路相关,如通过激活AMPK抑制肝脏糖异生。大量证据表明,二甲双胍对心血管的保护作用更多得益于其作用的多效性,如抗氧化应激、抗炎等作用,而降糖作用十分有限 [ 22]

临床研究发现,糖尿病患者服用二甲双胍能显著增加EPC数量,改善EPC迁移、黏附和血管新生的能力,从而发挥修复内皮的作用。Liao等 [ 23] 研究显示,初诊2型糖尿病的患者口服二甲双胍单药治疗16周后,外周血中CD45 low/CD34 +/VEGFR2 + EPC数量增加,且血流介导的肱动脉扩张功能得以改善。2型糖尿病早期患者长期服用二甲双胍, 不仅能够增加乙酰化低密度脂蛋白-外源凝集素(lectin)阳性的EPC数量,还能增强集落形成能力和迁移能力 [ 24] 。二甲双胍可以调节大量的信号分子,包括eNOS、热休克蛋白90、β-分泌素和果糖-1, 6-二磷酸酶,解释了二甲双胍治疗多效性的分子机制。在糖尿病病理状态下,患者血液中的活性氧有很多来源,活性氧增多会造成EPC生物功能紊乱。通常,EPC可以通过eNOS脱偶联和还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶激活这两种方式产生活性氧,其中AMPK、蛋白激酶B和热休克蛋白90还可以调控eNOS的表达。脱偶联的eNOS会直接降低一氧化氮(NO)的有效性,减少基质金属蛋白酶9、SDF-1的表达及归巢和未归巢的EPC数量,从而使EPC修复受损血管的能力下降 [ 25] 。二甲双胍可以通过eNOS-NO-基质金属蛋白酶9-细胞因子介导的信号通路动员EPC至糖尿病机体损伤部位,参与修复受损器官 [ 26] 。有趣的是,Chen等 [ 27] 研究发现二甲双胍可以通过降低基质金属蛋白酶2和基质金属蛋白酶9介导的丝裂原激活的蛋白激酶(MAPK)/哺乳动物雷帕霉素靶蛋白(mTOR)自噬通路,抑制EPC的动员。这篇报道引发了二甲双胍是否具有促进EPC迁移能力的争议,今后还需要更多研究进一步论证。

笔者团队研究发现,在链脲佐菌素诱导的C57BL/6糖尿病小鼠模型中,二甲双胍(250 mg·kg -1·d -1)灌胃治疗2周可以改善EPC迁移能力、小管形成能力和伤口愈合能力,这一作用是通过激活AMPK/eNOS通路实现的 [ 15] 。该研究结果支持了二甲双胍对EPC的正性作用。此外,笔者团队采用db/db遗传性糖尿病小鼠模型进行验证,也得到相似的结论 [ 16]

2 吡格列酮

吡格列酮是噻唑烷二酮类抗糖尿病药物,属于胰岛素增敏剂,其作用机制是高选择性地激动过氧化物酶体增殖物激活受体-γ(PPAR-γ),PPAR-γ活化可以调节多种控制葡萄糖及脂类代谢的胰岛素相关基因的转录 [ 28] 。同时,PPAR-γ信号通路在心血管系统各种生物活性过程中起到重要作用。吡格列酮的降糖机制与胰岛素有关,因此常与二甲双胍、磺酰脲类或胰岛素联合应用。

吡格列酮对糖尿病患者EPC的生物活性发挥积极作用。Spigoni等 [ 17] 对糖耐量异常患者EPC进行体外培养发现,10 mmol/L吡格列酮能显著提高EPC细胞活性和小管形成能力,同时降低EPC中细胞间黏附分子1和血管细胞黏附分子1的表达。另有研究表明,吡格列酮可通过PI3K/Akt信号通路抑制大鼠骨髓来源内皮祖细胞凋亡 [ 20] 。近年临床研究证实吡格列酮还能增加EPC黏附至人体胸廓内动脉的能力 [ 29] 。吡格列酮与其他降血糖药联合使用同样展现出提高EPC生物活性的优势。Wang等 [ 30] 发现,与单用二甲双胍的患者相比,联合服用吡格列酮与二甲双胍的2型糖尿病患者治疗8周后CD34 +KDR + EPC数量增多和EPC功能改善更显著,这种改善可能是药物的直接作用,也可能是通过抗炎和脂质修饰实现的。

近年研究表明,EPC的衰老与端粒严重缩短密切相关 [ 31] ,而吡格列酮可以调节EPC的端粒酶活性。端粒酶功能障碍会使EPC增殖潜力下降,从而抑制血管新生,这可能与内皮素1、细胞间黏附分子1增加以及eNOS表达减少有关 [ 32- 33] 。研究显示,老年人EPC中PI3K/Akt、p70、S6-激酶和B细胞淋巴瘤2等重要蛋白和酶均处于低表达水平,且端粒酶的活性也下降了近60% [ 34- 35] 。另外,长期的氧化应激状态也会破坏端粒的完整性,导致EPC衰老和数量减少。氧化型低密度脂蛋白通过PI3K/Akt通路调节端粒酶活性,可诱导EPC过早死亡 [ 36- 37] 。增加端粒酶和端粒功能,清除氧化阴离子,均有助于延长EPC寿命和提高EPC生物活性 [ 38- 39] 。Imanishi等 [ 40] 研究发现,吡格列酮能通过转录后调控机制抑制血管紧张素Ⅱ1型受体的表达,改善血管紧张素Ⅱ介导的EPC端粒酶活性,延缓EPC的衰老,这种延缓衰老的作用也与吡格列酮抑制血管紧张素Ⅱ介导的氧化应激有关。

3 α-糖苷酶抑制剂

α-糖苷酶抑制剂是一类具有糖结构的降血糖药,包括阿卡波糖、伏格列波糖和米格列醇。这类药物通过竞争性抑制小肠的α-糖苷酶,抑制食物的多糖分解,使糖的吸收相应减缓,从而降低血糖。

餐后血糖浓度峰值是导致内皮功能障碍的一个重要因素,而内皮功能障碍正是动脉粥样硬化发病机制的早期分子事件。临床研究证实,阿卡波糖能有效降低糖尿病患者餐后血糖浓度峰值,改善内皮功能障碍,减少心血管事件的发生。Zheng等 [ 41] 发现,阿卡波糖单药治疗初诊的2型糖尿病患者24周,能显著增加患者血清中胰高血糖素样肽1(glucagon-like peptide 1,GLP-1)、NO水平及一氧化氮合酶活性。一项前瞻性的随机多中心试验结果提示,伏格列波糖治疗12周能改善糖尿病患者内皮功能障碍 [ 42] 。笔者团队通过db/db糖尿病小鼠模型发现, 阿卡波糖显著提高EPC数量,增强EPC小管形成和迁移等生物学性能。分子水平研究发现,阿卡波糖可通过磷酸化修饰Akt,促进eNOS活化,使NO释放增加,有利于维持内皮细胞生物学功能; 活化的eNOS还可以诱导EPC分化,增强EPC小管形成和迁移能力 [ 18] 。阿卡波糖可以通过这种非降糖依赖途径改善EPC功能失调,促进糖尿病小鼠伤口愈合和血管新生, 提示阿卡波糖具有降糖作用之外的新的药理学作用。

4 二肽基肽酶Ⅳ抑制剂

二肽基肽酶Ⅳ抑制剂(dipeptidyl peptidase-4 inhibitor, DPP-4i)包括西格列汀、利拉利汀等,常与二甲双胍、磺酰脲类或噻唑烷二酮类联合治疗糖尿病。DPP-4i能够提高血液中GLP-1及其他多种内源性肠促胰岛素水平,发挥降糖作用。近年来,DPP-4i非GLP-1水平依赖性心血管保护作用备受关注,DPP-4i可以通过Akt/eNOS通路引起NO释放,缓解脂多糖诱导的内皮功能异常,从而直接舒张血管 [ 43]

近年研究表明,短期、中期和长期DPP-4i治疗对糖尿病患者EPC功能障碍都有不同程度的改善作用。一项小型非随机临床试验发现,与单用二甲双胍相比,2型糖尿病患者口服西格列汀联用二甲双胍或胰岛素促泌剂短期治疗4周,EPC生物活性改善,并伴随着SDF-1α增加 [ 44] ;随后报道中,西格列汀中期治疗12周后,患者CD34 +/趋化因子受体4 +EPC数量增多更显著 [ 45] ;西格列汀长期治疗24周,相比于格列本脲联用二甲双胍组,患者CD34 +/CD133 +/KDR + EPC数量更多 [ 46] 。Fadini等 [ 47] 发现,利拉利汀短期治疗4 d,患者外周血CD34 +/CD133 + EPC数量和血浆SDF-1α均明显增多。另外,Nakamura等 [ 42] 研究表明,西格列汀治疗12周能显著改善内皮功能,具有一定的心血管保护作用。

5 胰岛素

外源性胰岛素是糖尿病治疗的重要部分,其对于EPC的生物活性有明显的改善作用。研究表明,基础胰岛素不仅可以增加2型糖尿病患者体外培养EPC数量 [ 48- 49] ,亦能增加外周血中CD34 +/CD133 + EPC数量 [ 50] ;短期胰岛素皮下持续输注强化治疗后,能恢复糖尿病患者EPC,进而有助于防止和修复已损伤的血管病变 [ 51] 。Dong等 [ 19] 研究发现,胰岛素具有独立于降血糖之外的血管保护作用,可以通过调节VEGF/eNOS相关的信号通路动员EPC,促进血管新生。

6 其他降血糖药

利拉鲁肽(liraglutide)是由诺和诺德制药公司研发的一种生物合成的GLP-1类似物,也是GLP-1的受体激动剂,临床主要用于治疗2型糖尿病。研究发现,利拉鲁肽不仅有降低血糖、减轻体质量、改善血脂水平等作用,还具备舒张血管、改善血管内皮细胞功能的作用 [ 52- 53] 。通过分析利拉鲁肽处理的Zucker糖尿病肥胖大鼠的相关蛋白表达水平发现,利拉鲁肽持续皮下注射6周后表皮生长因子受体、Akt、eNOS等蛋白表达上升,血清脂质氧化代谢产物丙二醛及抗氧化酶谷胱甘肽过氧化物酶(GSH-Px)等下降 [ 54] 。体外研究发现,利拉鲁肽能够抑制高糖(20 mmol/L)诱导的人脐静脉内皮细胞与单核细胞黏附,并抑制黏附分子在mRNA和蛋白水平的表达 [ 55] 。利拉鲁肽对经皮冠状动脉介入治疗术后血清致人脐静脉内皮细胞的炎症损伤亦有保护作用,其机制与介导蛋白激酶A(PKA)/NF-κB信号通路有关。

钠-葡萄糖协同转运蛋白2(sodium-dependent glucose transporters 2,SGLT-2)抑制剂是一种新型降血糖药,其通过选择性地抑制肾小管对葡萄糖的重吸收而降低血糖 [ 56] 。目前经美国食品药品监督管理局批准上市的SGLT-2抑制剂有三种,分别是达格列净、坎格列净和恩格列净。其中,达格列净于2017年在中国正式上市。临床研究表明,SGLT-2抑制剂对心血管系统具有保护作用,可能与改善内皮功能相关 [ 57] 。一项临床前研究发现,在持续高脂饮食的载脂蛋白E基因敲除小鼠模型中,达格列净1 mg·kg -1·d -1持续干预4周可改善内皮细胞功能并降低体内血管细胞黏附分子的表达,体外实验也得到相同的结果 [ 58] 。另一项研究发现,达格列净可改善全身内皮细胞功能及动脉硬化,可能与减轻氧化应激有关 [ 59]

7 结语

综上所述,糖尿病病理状态下,eNOS脱偶联和NADPH氧化酶均会引起氧化应激水平升高或端粒酶受损,导致EPC功能障碍;招募EPC动员的细胞因子低表达会抑制EPC向损伤区归巢。临床大部分降血糖药对糖尿病患者EPC的数量和/或功能都有积极作用,并可能预防和延缓糖尿病患者血管、神经等并发症。降血糖药治疗主要集中在骨髓EPC向损伤部位的动员,而不同降血糖药对eNOS、VEGF、活性氧等表达的影响也不一样,进而对EPC的作用不同。另外很多降血糖药与EPC的关系仍不明确,需要进一步研究证实。希望深入开展降血糖药对EPC的作用机制研究,以期为糖尿病及其并发症的防治提供新的思路。

Funding Statement

国家自然科学基金(31900381)

References

  • 1.RIDDY D M, DELERIVE P, SUMMERS R J, et al. G Protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacol Rev. 2018;70(1):39–67. doi: 10.1124/pr.117.014373. [RIDDY D M, DELERIVE P, SUMMERS R J, et al. G Protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus[J]. Pharmacol Rev, 2018, 70(1):39-67. DOI:10.1124/pr.117.014373. ] [DOI] [PubMed] [Google Scholar]
  • 2.SHAN K, LIU C, LIU B H, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation. 2017;136(17):1629–1642. doi: 10.1161/CIRCULATIONAHA.117.029004. [SHAN K, LIU C, LIU B H, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17):1629-1642. DOI:10.1161/CIRCULATIONAHA.117.029004. ] [DOI] [PubMed] [Google Scholar]
  • 3.DAI X, YAN X, ZENG J, et al. Elevating CXCR7 improves angiogenic function of EPCs via Akt/GSK-3β/Fyn-mediated Nrf2 activation in diabetic limb ischemia[J/OL]. Circ Res, 2017, 120(5): e7-e23. DOI: .10.1161/CIRCRESAHA.117.310619. [DOI] [PMC free article] [PubMed]
  • 4.CHOI J H, NGUYEN M P, JUNG S Y, et al. Inhibitory effect of glyceollins on vasculogenesis through suppression of endothelial progenitor cell function. Mol Nutr Food Res. 2013;57(10):1762–1771. doi: 10.1002/mnfr.201200826. [CHOI J H, NGUYEN M P, JUNG S Y, et al. Inhibitory effect of glyceollins on vasculogenesis through suppression of endothelial progenitor cell function[J]. Mol Nutr Food Res, 2013, 57(10):1762-1771. DOI:10.1002/mnfr.201200826. ] [DOI] [PubMed] [Google Scholar]
  • 5.ITO C, KUMAGAI M, MANABE A, et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes:a distinct biological entity with a marked propensity to undergo apoptosis. Blood. 1999;93(1):315–320. doi: 10.1182/blood.V93.1.315. [ITO C, KUMAGAI M, MANABE A, et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis[J]. Blood, 1999, 93(1):315-320. ] [DOI] [PubMed] [Google Scholar]
  • 6.HILL J M, ZALOS G, HALCOX J P, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600. doi: 10.1056/NEJMoa022287. [HILL J M, ZALOS G, HALCOX J P, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. N Engl J Med, 2003, 348(7):593-600. DOI:10.1056/NEJMoa022287. ] [DOI] [PubMed] [Google Scholar]
  • 7.HRISTOV M, ERL W, WEBER P C. Endothelial progenitor cells:isolation and characterization. Trends Cardiovasc Med. 2003;13(5):201–206. doi: 10.1016/s1050-1738(03)00077-x. [HRISTOV M, ERL W, WEBER P C. Endothelial progenitor cells: isolation and characterization[J]. Trends Cardiovasc Med, 2003, 13(5):201-206. DOI:10.1016/s1050-1738(03)00077-x. ] [DOI] [PubMed] [Google Scholar]
  • 8.MCCLOSKEY K E, SMITH D A, JO H, et al. Embryonic stem cell-derived endothelial cells may lack complete functional maturation in vitro . J Vasc Res. 2006;43(5):411–421. doi: 10.1159/000094791. [MCCLOSKEY K E, SMITH D A, JO H, et al. Embryonic stem cell-derived endothelial cells may lack complete functional maturation in vitro[J]. J Vasc Res, 2006, 43(5):411-421. DOI:10.1159/000094791. ] [DOI] [PubMed] [Google Scholar]
  • 9.GLASER R, PEACOCK W F, WU A H, et al. Placental growth factor and B-type natriuretic peptide as independent predictors of risk from a multibiomarker panel in suspected acute coronary syndrome (Acute Risk and Related Outcomes Assessed With Cardiac Biomarkers[ARROW]) study. Am J Cardiol. 2011;107(6):821–826. doi: 10.1016/j.amjcard.2010.11.003. [GLASER R, PEACOCK W F, WU A H, et al. Placental growth factor and B-type natriuretic peptide as independent predictors of risk from a multibiomarker panel in suspected acute coronary syndrome (Acute Risk and Related Outcomes Assessed With Cardiac Biomarkers[ARROW]) study[J]. Am J Cardiol, 2011, 107(6):821-826. DOI:10.1016/j.amjcard.2010.11.003. ] [DOI] [PubMed] [Google Scholar]
  • 10.MUROHARA T, IKEDA H, DUAN J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105(11):1527–1536. doi: 10.1172/JCI8296. [MUROHARA T, IKEDA H, DUAN J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization[J]. J Clin Invest, 2000, 105(11):1527-1536. DOI:10.1172/JCI8296. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.BAGLEY R G, WALTER-YOHRLING J, CAO X, et al. Endothelial precursor cells as a model of tumor endothelium:characterization and comparison with mature endothelial cells. https://www.ncbi.nlm.nih.gov/pubmed/14522911. Cancer Res. 2003;63(18):5866–5873. [BAGLEY R G, WALTER-YOHRLING J, CAO X, et al. Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells[J]. Cancer Res, 2003, 63(18):5866-5873. ] [PubMed] [Google Scholar]
  • 12.THUM T, FRACCAROLLO D, SCHULTHEISS M, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. 2007;56(3):666–674. doi: 10.2337/db06-0699. [THUM T, FRACCAROLLO D, SCHULTHEISS M, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes[J]. Diabetes, 2007, 56(3):666-674. DOI:10.2337/db06-0699. ] [DOI] [PubMed] [Google Scholar]
  • 13.SCHALKWIJK C G, STEHOUWER C D. Vascular complications in diabetes mellitus:the role of endothelial dysfunction. Clin Sci (Lond) 2005;109(2):143–159. doi: 10.1042/CS20050025. [SCHALKWIJK C G, STEHOUWER C D. Vascular complications in diabetes mellitus: the role of endothelial dysfunction[J]. Clin Sci (Lond), 2005, 109(2):143-159. DOI:10.1042/CS20050025. ] [DOI] [PubMed] [Google Scholar]
  • 14.FADINI G P, SARTORE S, ALBIERO M, et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol. 2006;26(9):2140–2146. doi: 10.1161/01.ATV.0000237750.44469.88. [FADINI G P, SARTORE S, ALBIERO M, et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy[J]. Arterioscler Thromb Vasc Biol, 2006, 26(9):2140-2146. DOI:10.1161/01.ATV.0000237750.44469.88. ] [DOI] [PubMed] [Google Scholar]
  • 15.YU J W, DENG Y P, HAN X, et al. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc Diabetol. 2016;15:88. doi: 10.1186/s12933-016-0408-3. [YU J W, DENG Y P, HAN X, et al. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice[J]. Cardiovasc Diabetol, 2016, 15:88. DOI:10.1186/s12933-016-0408-3. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.HAN X, TAO Y, DENG Y, et al. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol Med Rep. 2017;16(6):8691–8698. doi: 10.3892/mmr.2017.7707. [HAN X, TAO Y, DENG Y, et al. Metformin accelerates wound healing in type 2 diabetic db/db mice[J]. Mol Med Rep, 2017, 16(6):8691-8698. DOI:10.3892/mmr.2017.7707. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.SPIGONI V, PICCONI A, CITO M, et al. Pioglitazone improves in vitro viability and function of endothelial progenitor cells from individuals with impaired glucose tolerance[J/OL]. PLoS One, 2012, 7(11): e48283. DOI: .10.1371/journal.pone.0048283. [DOI] [PMC free article] [PubMed]
  • 18.HAN X, DENG Y, YU J, et al. Acarbose accelerates wound healing via Akt/eNOS signaling in db/db Mice. Oxid Med Cell Longev. 2017;2017:7809581. doi: 10.1155/2017/7809581. [HAN X, DENG Y, YU J, et al. Acarbose accelerates wound healing via Akt/eNOS signaling in db/db Mice[J]. Oxid Med Cell Longev, 2017, 2017:7809581. DOI:10.1155/2017/7809581. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.DONG L, KANG L, DING L, et al. Insulin modulates ischemia-induced endothelial progenitor cell mobilization and neovascularization in diabetic mice. Microvasc Res. 2011;82(3):227–236. doi: 10.1016/j.mvr.2011.09.006. [DONG L, KANG L, DING L, et al. Insulin modulates ischemia-induced endothelial progenitor cell mobilization and neovascularization in diabetic mice[J]. Microvasc Res, 2011, 82(3):227-236. DOI:10.1016/j.mvr.2011.09.006. ] [DOI] [PubMed] [Google Scholar]
  • 20.ZHANG H F, WANG L, YUAN H J, et al. PPAR-γ agonist pioglitazone prevents apoptosis of endothelial progenitor cells from rat bone marrow. Cell Biol Int. 2013;37(5):430–435. doi: 10.1002/cbin.10046. [ZHANG H F, WANG L, YUAN H J, et al. PPAR-γ agonist pioglitazone prevents apoptosis of endothelial progenitor cells from rat bone marrow[J]. Cell Biol Int, 2013, 37(5):430-435. DOI:10.1002/cbin.10046. ] [DOI] [PubMed] [Google Scholar]
  • 21.GHOSH S, LAKSHMANAN A P, HWANG M J, et al. Metformin improves endothelial function in aortic tissue and microvascular endothelial cells subjected to diabetic hyperglycaemic conditions. Biochem Pharmacol. 2015;98(3):412–421. doi: 10.1016/j.bcp.2015.10.008. [GHOSH S, LAKSHMANAN A P, HWANG M J, et al. Metformin improves endothelial function in aortic tissue and microvascular endothelial cells subjected to diabetic hyperglycaemic conditions[J]. Biochem Pharmacol, 2015, 98(3):412-421. DOI:10.1016/j.bcp.2015.10.008. ] [DOI] [PubMed] [Google Scholar]
  • 22.HATTORI Y, HATTORI K, HAYASHI T. Pleiotropic benefits of metformin:macrophage targeting its anti-inflammatory mechanisms. Diabetes. 2015;64(6):1907–1909. doi: 10.2337/db15-0090. [HATTORI Y, HATTORI K, HAYASHI T. Pleiotropic benefits of metformin: macrophage targeting its anti-inflammatory mechanisms[J]. Diabetes, 2015, 64(6):1907-1909. DOI:10.2337/db15-0090. ] [DOI] [PubMed] [Google Scholar]
  • 23.LIAO Y F, CHEN L L, ZENG T S, et al. Number of circulating endothelial progenitor cells as a marker of vascular endothelial function for type 2 diabetes. Vasc Med. 2010;15(4):279–285. doi: 10.1177/1358863X10367537. [LIAO Y F, CHEN L L, ZENG T S, et al. Number of circulating endothelial progenitor cells as a marker of vascular endothelial function for type 2 diabetes[J]. Vasc Med, 2010, 15(4):279-285. DOI:10.1177/1358863X10367537. ] [DOI] [PubMed] [Google Scholar]
  • 24.CHEN L L, LIAO Y F, ZENG T S, et al. Effects of metformin plus gliclazide compared with metformin alone on circulating endothelial progenitor cell in type 2 diabetic patients. Endocrine. 2010;38(2):266–275. doi: 10.1007/s12020-010-9383-8. [CHEN L L, LIAO Y F, ZENG T S, et al. Effects of metformin plus gliclazide compared with metformin alone on circulating endothelial progenitor cell in type 2 diabetic patients[J]. Endocrine, 2010, 38(2):266-275. DOI:10.1007/s12020-010-9383-8. ] [DOI] [PubMed] [Google Scholar]
  • 25.AMBASTA R K, KOHLI H, KUMAR P. Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. J Transl Med. 2017;15(1):185. doi: 10.1186/s12967-017-1280-y. [AMBASTA R K, KOHLI H, KUMAR P. Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder[J]. J Transl Med, 2017, 15(1):185. DOI:10.1186/s12967-017-1280-y. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.WU N, GU H J, LI Q. Effects of antidiabetic drug metformin on the migration and invasion abilities of human pulmonary adenocarcinoma A549 cell line in vitro . https://europepmc.org/articles/PMC3256443. J Thorac Dis. 2010;2(2):76–80. [WU N, GU H J, LI Q. Effects of antidiabetic drug metformin on the migration and invasion abilities of human pulmonary adenocarcinoma A549 cell line in vitro[J]. J Thorac Dis, 2010, 2(2):76-80. ] [PMC free article] [PubMed] [Google Scholar]
  • 27.CHEN X, HU C, ZHANG W, et al. Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro . Tumour Biol. 2015;36(12):9873–9883. doi: 10.1007/s13277-015-3751-1. [CHEN X, HU C, ZHANG W, et al. Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro[J]. Tumour Biol, 2015, 36(12):9873-9883. DOI:10.1007/s13277-015-3751-1. ] [DOI] [PubMed] [Google Scholar]
  • 28.DORMANDY J A, CHARBONNEL B, ECKLAND D J, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events):a randomised controlled trial. Lancet. 2005;366(9493):1279–1289. doi: 10.1016/S0140-6736(05)67528-9. [DORMANDY J A, CHARBONNEL B, ECKLAND D J, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial[J]. Lancet, 2005, 366(9493):1279-1289. DOI:10.1016/S0140-6736(05)67528-9. ] [DOI] [PubMed] [Google Scholar]
  • 29.RUIZ E, REDONDO S, GORDILLO-MOSCOSO A, et al. EPCs adhesion to arteries from diabetic and non-diabetic patients:effect of pioglitazone. Front Biosci (Landmark Ed) 2009;14(1):3608–3618. doi: 10.2741/3475. [RUIZ E, REDONDO S, GORDILLO-MOSCOSO A, et al. EPCs adhesion to arteries from diabetic and non-diabetic patients: effect of pioglitazone[J]. Front Biosci (Landmark Ed), 2009, 14(1):3608-3618. DOI:10.2741/3475. ] [DOI] [PubMed] [Google Scholar]
  • 30.WANG C H, TING M K, VERMA S, et al. Pioglitazone increases the numbers and improves the functional capacity of endothelial progenitor cells in patients with diabetes mellitus[J/OL]. Am Heart J, 2006, 152(6): 1051.e1-e8. DOI: .10.1016/j.ahj.2006.07.029. [DOI] [PubMed]
  • 31.MINAMINO T, MIYAUCHI H, YOSHIDA T, et al. Endothelial cell senescence in human atherosclerosis:role of telomere in endothelial dysfunction. Circulation. 2002;105(13):1541–1544. doi: 10.1161/01.cir.0000013836.85741.17. [MINAMINO T, MIYAUCHI H, YOSHIDA T, et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction[J]. Circulation, 2002, 105(13):1541-1544. DOI:10.1161/01.cir.0000013836.85741.17. ] [DOI] [PubMed] [Google Scholar]
  • 32.VAN DER HARST P, VAN DER STEEGE G, DE BOER R A, et al. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol. 2007;49(13):1459–1464. doi: 10.1016/j.jacc.2007.01.027. [VAN DER HARST P, VAN DER STEEGE G, DE BOER R A, et al. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure[J]. J Am Coll Cardiol, 2007, 49(13):1459-1464. DOI:10.1016/j.jacc.2007.01.027. ] [DOI] [PubMed] [Google Scholar]
  • 33.MINAMINO T, KOMURO I. Role of telomeres in vascular senescence. Front Biosci. 2008;13:2971–2979. doi: 10.2741/2902. [MINAMINO T, KOMURO I. Role of telomeres in vascular senescence[J]. Front Biosci, 2008, 13:2971-2979. DOI:10.2741/2902. ] [DOI] [PubMed] [Google Scholar]
  • 34.ASSMUS B, URBICH C, AICHER A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res. 2003;92(9):1049–1055. doi: 10.1161/01.RES.0000070067.64040.7C. [ASSMUS B, URBICH C, AICHER A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes[J]. Circ Res, 2003, 92(9):1049-1055. DOI:10.1161/01.RES.0000070067.64040.7C. ] [DOI] [PubMed] [Google Scholar]
  • 35.RUDOLPH K L, CHANG S, LEE H W, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96(5):701–712. doi: 10.1016/s0092-8674(00)80580-2. [RUDOLPH K L, CHANG S, LEE H W, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice[J]. Cell, 1999, 96(5):701-712. DOI:10.1016/s0092-8674(00)80580-2. ] [DOI] [PubMed] [Google Scholar]
  • 36.IMANISHI T, HANO T, SAWAMURA T, et al. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol. 2004;31(7):407–413. doi: 10.1111/j.1440-1681.2004.04022.x. [IMANISHI T, HANO T, SAWAMURA T, et al. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction[J]. Clin Exp Pharmacol Physiol, 2004, 31(7):407-413. DOI:10.1111/j.1440-1681.2004.04022.x. ] [DOI] [PubMed] [Google Scholar]
  • 37.KURZ D J, DECARY S, HONG Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117(Pt 11):2417–2426. doi: 10.1242/jcs.01097. [KURZ D J, DECARY S, HONG Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells[J]. J Cell Sci, 2004, 117(Pt 11):2417-2426. DOI:10.1242/jcs.01097. ] [DOI] [PubMed] [Google Scholar]
  • 38.FUJII H, LI S H, SZMITKO P E, et al. C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2006;26(11):2476–2482. doi: 10.1161/01.ATV.0000242794.65541.02. [FUJⅡ H, LI S H, SZMITKO P E, et al. C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells[J]. Arterioscler Thromb Vasc Biol, 2006, 26(11):2476-2482. DOI:10.1161/01.ATV.0000242794.65541.02. ] [DOI] [PubMed] [Google Scholar]
  • 39.MURASAWA S, LLEVADOT J, SILVER M, et al. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation. 2002;106(9):1133–1139. doi: 10.1161/01.cir.0000027584.85865.b4. [MURASAWA S, LLEVADOT J, SILVER M, et al. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells[J]. Circulation, 2002, 106(9):1133-1139. DOI:10.1161/01.cir.0000027584.85865.b4. ] [DOI] [PubMed] [Google Scholar]
  • 40.IMANISHI T, KOBAYASHI K, KUROI A, et al. Pioglitazone inhibits angiotensin II-induced senescence of endothelial progenitor cell. Hypertens Res. 2008;31(4):757–765. doi: 10.1291/hypres.31.757. [IMANISHI T, KOBAYASHI K, KUROI A, et al. Pioglitazone inhibits angiotensin Ⅱ-induced senescence of endothelial progenitor cell[J]. Hypertens Res, 2008, 31(4):757-765. DOI:10.1291/hypres.31.757. ] [DOI] [PubMed] [Google Scholar]
  • 41.ZHENG M Y, YANG J H, SHAN C Y, et al. Effects of 24-week treatment with acarbose on glucagon-like peptide 1 in newly diagnosed type 2 diabetic patients:a preliminary report. Cardiovasc Diabetol. 2013;12:73. doi: 10.1186/1475-2840-12-73. [ZHENG M Y, YANG J H, SHAN C Y, et al. Effects of 24-week treatment with acarbose on glucagon-like peptide 1 in newly diagnosed type 2 diabetic patients: a preliminary report[J]. Cardiovasc Diabetol, 2013, 12:73. DOI:10.1186/1475-2840-12-73. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.NAKAMURA K, OE H, KIHARA H, et al. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes:EDGE study. Cardiovasc Diabetol. 2014;13:110. doi: 10.1186/s12933-014-0110-2. [NAKAMURA K, OE H, KIHARA H, et al. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study[J]. Cardiovasc Diabetol, 2014, 13:110. DOI:10.1186/s12933-014-0110-2. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.KEATING G M. Vildagliptin:a review of its use in type 2 diabetes mellitus. Drugs. 2010;70(16):2089–2112. doi: 10.2165/11206370-000000000-00000. [KEATING G M. Vildagliptin: a review of its use in type 2 diabetes mellitus[J]. Drugs, 2010, 70(16):2089-2112. DOI:10.2165/11206370-000000000-00000. ] [DOI] [PubMed] [Google Scholar]
  • 44.FADINI G P, BOSCARO E, ALBIERO M, et al. The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes:possible role of stromal-derived factor-1alpha. Diabetes Care. 2010;33(7):1607–1609. doi: 10.2337/dc10-0187. [FADINI G P, BOSCARO E, ALBIERO M, et al. The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1alpha[J]. Diabetes Care, 2010, 33(7):1607-1609. DOI:10.2337/dc10-0187. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.ASO Y, JOJIMA T, IIJIMA T, et al. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34 + CXCR4 + cells in patients with type 2 diabetes . Endocrine. 2015;50(3):659–664. doi: 10.1007/s12020-015-0688-5. [ASO Y, JOJIMA T, ⅡJIMA T, et al. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34 + CXCR4 + cells in patients with type 2 diabetes[J]. Endocrine, 2015, 50(3):659-664. DOI:10.1007/s12020-015-0688-5. ] [DOI] [PubMed] [Google Scholar]
  • 46.DEI CAS A, SPIGONI V, CITO M, et al. Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number:a 12-month randomized controlled trial in patients with type 2 diabetes. Cardiovasc Diabetol. 2017;16(1):27. doi: 10.1186/s12933-017-0503-0. [DEI CAS A, SPIGONI V, CITO M, et al. Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month randomized controlled trial in patients with type 2 diabetes[J]. Cardiovasc Diabetol, 2017, 16(1):27. DOI:10.1186/s12933-017-0503-0. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.FADINI G P, BONORA B M, CAPPELLARI R, et al. Acute effects of linagliptin on progenitor cells, monocyte phenotypes, and soluble mediators in type 2 diabetes. J Clin Endocrinol Metab. 2016;101(2):748–756. doi: 10.1210/jc.2015-3716. [FADINI G P, BONORA B M, CAPPELLARI R, et al. Acute effects of linagliptin on progenitor cells, monocyte phenotypes, and soluble mediators in type 2 diabetes[J]. J Clin Endocrinol Metab, 2016, 101(2):748-756. DOI:10.1210/jc.2015-3716. ] [DOI] [PubMed] [Google Scholar]
  • 48.FADINI G P, DE KREUTZENBERG S V, MARIANO V, et al. Optimized glycaemic control achieved with add-on basal insulin therapy improves indexes of endothelial damage and regeneration in type 2 diabetic patients with macroangiopathy:a randomized crossover trial comparing detemir versus glargine. Diabetes Obes Metab. 2011;13(8):718–725. doi: 10.1111/j.1463-1326.2011.01396.x. [FADINI G P, DE KREUTZENBERG S V, MARIANO V, et al. Optimized glycaemic control achieved with add-on basal insulin therapy improves indexes of endothelial damage and regeneration in type 2 diabetic patients with macroangiopathy: a randomized crossover trial comparing detemir versus glargine[J]. Diabetes Obes Metab, 2011, 13(8):718-725. DOI:10.1111/j.1463-1326.2011.01396.x. ] [DOI] [PubMed] [Google Scholar]
  • 49.OIKONOMOU D, KOPF S, VON BAUER R, et al. Influence of insulin and glargine on outgrowth and number of circulating endothelial progenitor cells in type 2 diabetes patients:a partially double-blind, randomized, three-arm unicenter study. Cardiovasc Diabetol. 2014;13:137. doi: 10.1186/s12933-014-0137-4. [OIKONOMOU D, KOPF S, VON BAUER R, et al. Influence of insulin and glargine on outgrowth and number of circulating endothelial progenitor cells in type 2 diabetes patients: a partially double-blind, randomized, three-arm unicenter study[J]. Cardiovasc Diabetol, 2014, 13:137. DOI:10.1186/s12933-014-0137-4. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.HUMPERT P M, NEUWIRTH R, BATTISTA M J, et al. SDF-1 genotype influences insulin-dependent mobilization of adult progenitor cells in type 2 diabetes. Diabetes Care. 2005;28(4):934–936. doi: 10.2337/diacare.28.4.934. [HUMPERT P M, NEUWIRTH R, BATTISTA M J, et al. SDF-1 genotype influences insulin-dependent mobilization of adult progenitor cells in type 2 diabetes[J]. Diabetes Care, 2005, 28(4):934-936. DOI:10.2337/diacare.28.4.934. ] [DOI] [PubMed] [Google Scholar]
  • 51.杨 吉锋, 陶 松桔, 张 亚萍, et al. 短期胰岛素泵强化治疗对初诊T2DM患者循环内皮祖细胞水平的影响及其抗炎机制. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgckyx201108005. 中国临床研究. 2011;24(8):666–668. [杨吉锋, 陶松桔, 张亚萍, 等.短期胰岛素泵强化治疗对初诊T2DM患者循环内皮祖细胞水平的影响及其抗炎机制[J]. 中国临床研究, 2011, 24(8):666-668. ] [Google Scholar]
  • 52.CHEN Y, ZHANG X, HE J, et al. Delayed administration of the glucagon-like peptide 1 analog liraglutide promoting angiogenesis after focal cerebral ischemia in mice. J Stroke Cerebrovasc Dis. 2018;27(5):1318–1325. doi: 10.1016/j.jstrokecerebrovasdis.2017.12.015. [CHEN Y, ZHANG X, HE J, et al. Delayed administration of the glucagon-like peptide 1 analog liraglutide promoting angiogenesis after focal cerebral ischemia in mice[J]. J Stroke Cerebrovasc Dis, 2018, 27(5):1318-1325. DOI:10.1016/j.jstrokecerebrovasdis.2017.12.015. ] [DOI] [PubMed] [Google Scholar]
  • 53.ZITMAN-GAL T, EINBINDER Y, OHANA M, et al. Effect of liraglutide on the Janus kinase/signal transducer and transcription activator (JAK/STAT) pathway in diabetic kidney disease in db/db mice and in cultured endothelial cells. J Diabetes. 2019;11(8):656–664. doi: 10.1111/1753-0407.12891. [ZITMAN-GAL T, EINBINDER Y, OHANA M, et al. Effect of liraglutide on the Janus kinase/signal transducer and transcription activator (JAK/STAT) pathway in diabetic kidney disease in db/db mice and in cultured endothelial cells[J]. J Diabetes, 2019, 11(8):656-664. DOI:10.1111/1753-0407.12891. ] [DOI] [PubMed] [Google Scholar]
  • 54.李 彩林, 雅 军, 郭 立新. 利拉鲁肽对瘦素受体缺陷大鼠主动脉内皮细胞的保护作用及机制. 中华糖尿病杂志. 2017;9(9):567–572. doi: 10.3760/cma.j.issn.1674-5809.2017.09.007. [李彩林, 雅军, 郭立新.利拉鲁肽对瘦素受体缺陷大鼠主动脉内皮细胞的保护作用及机制[J]. 中华糖尿病杂志, 2017, 9(9):567-572. DOI:10.3760/cma.j.issn.1674-5809.2017.09.007. ] [DOI] [Google Scholar]
  • 55.李 虎, 束 庆, 杨 贤, et al. 利拉鲁肽对高糖诱导的人脐静脉内皮细胞与单核细胞黏附的影响及作用机制. 中国医师杂志. 2019;21(6):830–834, 839. doi: 10.3760/cma.j.issn.1008-1372.2019.06.008. [李虎, 束庆, 杨贤, 等.利拉鲁肽对高糖诱导的人脐静脉内皮细胞与单核细胞黏附的影响及作用机制[J]. 中国医师杂志, 2019, 21(6):830-834, 839. DOI:10.3760/cma.j.issn.1008-1372.2019.06.008. ] [DOI] [Google Scholar]
  • 56.DALAMA B, MESA J. New oral hypoglycemic agents and cardiovascular risk. Crossing the metabolic border. Rev Esp Cardiol (Engl Ed) 2017;70(4):309. doi: 10.1016/j.rec.2016.11.034. [DALAMA B, MESA J. New oral hypoglycemic agents and cardiovascular risk. Crossing the metabolic border[J]. Rev Esp Cardiol (Engl Ed), 2017, 70(4):309. DOI:10.1016/j.rec.2016.11.034. ] [DOI] [PubMed] [Google Scholar]
  • 57.SCHNELL O, VALENSI P, STANDL E, et al. Comparison of mechanisms and transferability of outcomes of SGLT2 inhibition between type 1 and type 2 diabetes[J/OL]. Endocrinol Diabetes Metab, 2020, 3(3): e00129. DOI: .10.1002/edm2.129. [DOI] [PMC free article] [PubMed]
  • 58.GASPARI T, SPIZZO I, LIU H, et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation:a potential mechanism for inhibition of atherogenesis. Diab Vasc Dis Res. 2018;15(1):64–73. doi: 10.1177/1479164117733626. [GASPARI T, SPIZZO I, LIU H, et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: a potential mechanism for inhibition of atherogenesis[J]. Diab Vasc Dis Res, 2018, 15(1):64-73. DOI:10.1177/1479164117733626. ] [DOI] [PubMed] [Google Scholar]
  • 59.SOLINI A, GIANNINI L, SEGHIERI M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients:a pilot study. Cardiovasc Diabetol. 2017;16(1):138. doi: 10.1186/s12933-017-0621-8. [SOLINI A, GIANNINI L, SEGHIERI M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study[J]. Cardiovasc Diabetol, 2017, 16(1):138. DOI:10.1186/s12933-017-0621-8. ] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES