Abstract
目的
了解浙江省新生儿异戊酸血症(IVA)的患病率、临床特征及基因突变特点。
方法
采用串联质谱技术对2009年1月至2019年12月浙江省新生儿疾病筛查中心的3 510 004名新生儿进行遗传代谢病筛查,结合尿有机酸分析及 IVD基因检测进行IVA诊断。IVA确诊患儿进行饮食和生活管理,补充左卡尼汀和甘氨酸治疗,长期随访观察并评估患儿的生长和智能发育情况。
结果
共确诊IVA患儿15例,3例为急性新生儿型,其余无临床症状,患病率为1/234 000。所有患儿的血异戊酰基肉碱浓度均不同程度增加。12例患儿进行尿有机酸分析,其中11例异戊酰甘氨酸升高,4例伴3-羟基异戊酸升高。11例患儿进行基因检测,9例为 IVD基因复合杂合突变,1例为 IVD基因纯合突变,1例只检测出一个 IVD基因位点。发现 IVD基因突变19种(错义突变14种、内含子突变3种、移码突变1种、同义突变1种),其中11种突变未见报道。15例患儿中1例死亡,2例在当地随访,其余暂未发现明显临床症状(随访时间2~79个月),其中3例生长发育落后,其他患儿体格和智力发育均正常。
结论
IVA临床表现无特异性,基因谱分散。使用串联质谱开展IVA新生儿筛查,实现早期诊断和治疗能纠正代谢缺陷及其引发的病理生理改变。
Abstract
Objective
To investigate the incidence, clinical, biochemical and genetic characteristics of isovaleric acidemia (IVA) in Zhejiang province.
Methods
Between January 2009 and December 2019, a total of 3 510 004 newborns were screened for IVA using tandem mass spectrometry. Patients of IVA were confirmed by urine organic acid and IVD gene detection. IVA patients were given diet and life management, supplemented with L-carnitine and glycine treatment, long-term followed up to observe and evaluate the growth and intellectual development.
Results
A total of 15 patients with IVA were diagnosed, with an incidence of 1/234 000. Three patients had acute neonatal IVA, and the rest were asymptomatic. The isovalerylcarnitine (C5) levels were increased in all patients. Twelve children underwent urinary organic acid analysis, of which 11 cases had elevated isovalerylglycine levels, 4 cases with 3-hydroxyisovalerate increased simultaneously. Eleven IVA patients underwent genetic testing, 9 patients were compound heterozygous variants in IVD gene, one with homozygous variants in IVD gene, and one harbored one IVD variant. Nineteen IVD variants (14 missense mutations, 3 intron mutations, 1 code shift mutation, and 1 synonymous mutation) were identified, 11 of which were not reported. Among the 15 IVA patients, one patient died and two patients were followed up locally. The remaining patients had no obvious clinical symptoms during the follow-up (2-79 months). Three patients presented with growth and development delay, the remaining had normal physical and mental development.
Conclusions
The clinical manifestations of IVA are non-specific, and the gene spectrum is scattered. Newborn patients screened by tandem mass spectrometry can receive early diagnosis and treatment, so as to correct metabolic defects and pathophysiological changes.
Keywords: Isovaleric acidemia, IVD gene , Neonatal screening, Tandem mass spectrometry, Prevalence rate, Genotype, Phenotype
异戊酸血症(isovaleric acidemia,IVA)是由于异戊酰辅酶A脱氢酶(isovaleryl-CoA dehydrogenase,IVD)缺陷导致的常染色体隐性遗传病。IVA新生儿期至成人期均可发病,临床表现复杂多样,缺乏特异性,超过半数患者在新生儿期发生急性脑病,婴儿期和儿童期可有反复呕吐、嗜睡、昏迷、汗脚样体臭、智力发育落后、代谢性酸中毒、血细胞减少及高血氨等症状 [ 1] ,须结合血液氨基酸及酰基肉碱谱、尿有机酸分析和基因检测等进行鉴别诊断。根据临床表型不同,IVA可分为急性新生儿型和慢性间歇型,近年来通过血液氨基酸及酰基肉碱谱新生儿筛查发现部分患者没有明显临床症状 [ 2] 。IVA是可治性疾病,早期诊治患者预后良好 [ 3] 。目前,很多国家和地区已将IVA列为新生儿筛查项目,国外学者报道的发病率为1/622 489~1/33 282 [ 4- 5] ,我国报道不多。本研究通过分析浙江省新生儿疾病筛查中心2009至2019年IVA新生儿筛查结果,旨在了解新生儿IVA的患病率、临床特征、基因突变及预后。
1 对象与方法
1.1 对象
2009年1月至2019年12月浙江省新生儿疾病筛查中心对3 510 004名新生儿进行血液氨基酸及酰基肉碱谱筛查,其中足月儿3 285 623名,早产儿215 597名,过期产儿8784名,男女比例为1.1:1。本研究经浙江大学医学院附属儿童医院伦理委员会审查(2018-IRB-077),家长均签署知情同意书。
1.2 仪器与试剂
ACQUITY TQD串联质谱仪为美国Waters公司产品;GCMS-QP2010 Plus气相色谱质谱联用仪为日本岛津公司产品;CT-100 PCR为美国Bio-Rad公司产品;3500Dx测序仪为美国Life Technologies公司产品;Miseq测序仪、外显子捕获试剂盒为美国Illumina公司产品;MassARRAY Analyzer 4飞行时间质谱仪、MassARRAY Nanodispenser RS-100芯片点样机均为美国Agena Bioscience公司产品。Neogram新生儿衍生法筛査试剂盒、Neobase新生儿非衍生法筛査试剂盒均为芬兰Perkin Elmer公司产品;文库制备试剂盒为美国NEB公司产品;PCR试剂盒为日本TaKaRa公司产品。
1.3 串联质谱法检测外周血氨基酸及酰基肉碱
按照《新生儿疾病筛查技术规范》(2010年版) [ 6] ,新生儿出生满72 h且充分哺乳6次后,由专业医护人员采集足跟血滴于专用采血滤纸片上,阴干后送检。根据试剂盒操作说明对干血斑标本进行前处理,再使用串联质谱仪检测氨基酸和肉碱浓度。2009年1月至2013年11月3日采用衍生化方法,2013年11月4日至2019年12月采用非衍生化法。
干血斑标本中异戊酰基肉碱(C5)浓度超过截断值(0.40 μmol/L),且伴异戊酰基肉碱/乙酰基肉碱(C2)、异戊酰基肉碱/丙酰基肉碱(C3)比值升高的新生儿,为筛查阳性。
1.4 血生化检测及尿有机酸分析
召回异戊酸血症筛查阳性新生儿,复查后血异戊酰基肉碱仍增高者进一步检测血常规、血氨、血气分析、肝功能等;采集新鲜尿液样本,先后经尿素酶、盐酸羟胺、氢氧化钠和盐酸处理,加入内标17烷酸、24烷酸和托品酸,乙酸乙酯萃取两次,经甲基硅烷化衍生后上机检测尿有机酸。
1.5 高通量测序检测基因突变
采用高通量测序和MassARRAY技术对 IVD基因的外显子及侧翼内含子进行检测,检测结果与千人基因组(1000 Genomes)、ESP6500数据库、ExAC数据库和基因组突变频率数据库(gnomAD)进行比对。
1.6 生物信息学方法预测突变基因致病性
使用SIFT、PROVEAN、PolyPhen-2、MutationTaster、fathmm和Human Splicing Finder等在线软件进行预测,分析可疑突变位点对蛋白质结构和功能的影响以及是否会引起剪接改变。应用MutationTaster软件评估突变位点在9种物种间(人、猕猴、家鼠、鸡、红鳍东方鲀、斑马鱼、果蝇、线虫和热带爪蟾)的保守性。根据美国医学遗传学与基因组学学会(ACMG)指南对突变位点的致病性进行分析 [ 7] 。明确基因突变患儿的父母进一步进行Sanger测序,以确定致病突变位点。
1.7 诊断标准
以下三个条件中符合两条可诊断为IVA:①血异戊酰基肉碱超过0.40 μmol/L、异戊酰基肉碱/乙酰基肉碱(C2)、异戊酰基肉碱/丙酰基肉碱(C3)比值升高;②尿有机酸分析提示异戊酰甘氨酸超过0.40 mmol/mol肌酐,可伴有3-羟基异戊酸增高;③ IVD基因检测杂合突变或纯合突变。
1.8 治疗和随访
IVA急性期严格限制患儿天然蛋白质的摄入,其中亮氨酸摄入减少至日常摄入量的50%,同时保证能量摄入,纠正代谢紊乱,补充左卡尼汀(100~200 mg·kg -1·d -1)和甘氨酸(250~600 mg·kg -1·d -1)。稳定期限制患儿天然蛋白质的摄入,使用不含亮氨酸的特殊医用配方,长期服用左卡尼汀(50~100 mg·kg -1·d -1)和甘氨酸(150~250 mg·kg -1·d -1)。
病情稳定2~3个月后随访复查,监测项目包括体格检查、血液氨基酸及酰基肉碱谱、尿有机酸、血常规、血氨、血气分析、肝功能等,评估患儿体格及智力发育状况。随访时间根据个体差异而定。智力发育评估:0~30月龄,采用贝利婴儿发展量表;30月龄以上~6岁,采用格塞尔发展测验;6岁以上采用韦氏儿童智力量表。
2 结果
2.1 IVA筛查情况
共筛查新生儿3 510 004名,血异戊酰基肉碱增高1131例,初筛阳性率为0.03%,阳性预测值为1.33%,假阳性率为0.03%。IVA确诊患儿15例,男性8例,女性7例,患病率为1/234 000( 表 1)。15例患儿分别来自15个无亲缘关系的家庭,父母非近亲结婚。除例13为早产儿(孕35周)外,其余均为足月正常体重儿。3例为急性新生儿型(例7、8和14),分别于出生后第7、3和13天因少哭、少吃、少动入院治疗;3例(例6、7和14)尿液有异味;其余患儿暂无临床症状。
例序 |
性别 |
确诊时间 |
随访时间 |
临床症状 |
疾病分型 |
随访和预后情况 |
1 |
女 |
2月龄 |
45个月 |
无 |
代谢轻型 |
生长发育落后 |
2 |
女 |
1月龄 |
79个月 |
无 |
代谢严重型 |
正常 |
3 |
男 |
13月龄 |
38个月 |
无 |
代谢轻型 |
正常 |
4 |
女 |
17日龄 |
2个月 |
无 |
代谢严重型 |
正常 |
5 |
男 |
59月龄 |
59个月 |
无 |
代谢轻型 |
正常 |
6 |
男 |
17日龄 |
46个月 |
尿液异味 |
代谢严重型 |
生长发育落后 |
7 |
男 |
13日龄 |
46个月 |
少哭、少吃、少动,尿液异味 |
急性新生儿型、代谢严重型 |
正常 |
8 |
男 |
15日龄 |
— |
少哭、少吃、少动 |
急性新生儿型、代谢严重型 |
出生后第7天死亡 |
9 |
男 |
2月龄 |
11个月 |
无 |
代谢轻型 |
正常 |
10 |
男 |
10日龄 |
— |
无 |
代谢严重型 |
当地确诊随访 |
11 |
男 |
21日龄 |
25个月 |
无 |
代谢严重型 |
生长发育落后 |
12 |
女 |
25日龄 |
18个月 |
无 |
代谢严重型 |
正常 |
13 |
女 |
28日龄 |
12个月 |
无 |
代谢严重型 |
正常 |
14 |
女 |
28日龄 |
14个月 |
少哭、少吃、少动,尿液异味 |
急性新生儿型、代谢严重型 |
正常 |
15 |
女 |
24日龄 |
7 d |
无 |
代谢严重型 |
当地确诊随访 |
“—”:无相关资料.
2.2 患儿实验室检查结果
15例IVA确诊患儿中,血常规结果异常8例,其中红细胞、白细胞和血小板减少3例,血红蛋白和白细胞减少4例,单纯血红蛋白减少1例;高氨血症10例(39~197 μmol/L,参考值< 30 μmol/L);代谢性酸中毒4例(酸碱度值7.325~7.346,参考值>7.350);丙氨酸转氨酶升高1例(154 U/L);肌酸激酶增高2例;乳酸脱氢酶升高1例。见 表 2。
例序 |
血异戊酰基肉碱(μmol/L) |
血游离肉碱(μmol/L) |
异戊酰甘氨酸(mmol/mol肌酐) |
3-羟基异戊酸(mmol/mol肌酐) |
白细胞计数(×10 9/L) |
红细胞计数(×10 12/L) |
血红蛋白量(g/L) |
血小板计数(×10 9/L) |
高血氨 |
酸中毒 |
肝损害 |
|||
初筛 |
随访 |
初筛 |
随访 |
|||||||||||
1 |
0.86 |
0.99~2.97 |
50.71 |
23.97~70.25 |
4.40 |
0.00 |
8.60 |
3.93 |
123 |
506 |
阳性 |
阳性 |
阳性 |
|
2 |
2.12 |
1.47~8.26 |
15.49 |
13.66~53.39 |
30.29~234.70 |
0.00~4.87 |
8.59 |
3.74 |
103 * |
591 |
阳性 |
阴性 |
阴性 |
|
3 |
2.09 |
0.95~2.38 |
57.35 |
28.59~40.71 |
7.78 |
0.00 |
7.61 * |
3.69 * |
126 * |
290 |
阳性 |
阴性 |
阴性 |
|
4 |
8.46 |
8.39~8.71 |
24.85 |
9.35~33.74 |
316.20~1136.00 |
5.59~2141.00 |
7.74 |
3.75 |
133 |
276 |
阳性 |
阳性 |
— |
|
5 |
1.74 |
0.40~1.28 |
47.13 |
22.74~42.39 |
0.00 |
0.00 |
9.22 |
3.62 |
116 |
301 |
阴性 |
阳性 |
阴性 |
|
6 |
6.13 |
4.65~12.05 |
11.31 |
9.64~41.46 |
76.52~799.10 |
0.00~1.18 |
6.92 * |
4.25 * |
130 * |
255 |
阴性 |
阴性 |
阴性 |
|
7 |
11.12 |
2.93~18.35 |
17.30 |
10.58~87.87 |
14.07~41.69 |
0.00 |
2.83 * |
3.66 * |
129 * |
26 * |
阳性 |
阳性 |
阴性 |
|
8 |
9.85 |
— |
22.17 |
— |
— |
— |
— |
— |
— |
— |
阳性 |
— |
— |
|
9 |
0.66 |
0.49~2.50 |
15.69 |
21.65~60.08 |
8.74 |
1.30 |
4.83 * |
3.05 * |
105 * |
214 |
阳性 |
阴性 |
阴性 |
|
10 |
9.13 |
— |
18.19 |
— |
— |
— |
— |
— |
— |
— |
— |
— |
— |
|
11 |
7.43 |
1.52~7.43 |
16.43 |
13.13~52.98 |
18.75~80.45 |
0.42~2.01 |
9.79 |
4.23 |
132 |
234 |
阳性 |
阴性 |
阴性 |
|
12 |
11.34 |
6.78~16.20 |
16.40 |
3.52~21.11 |
109.65~285.41 |
1.16~91.11 |
5.25 * |
3.65 * |
119 * |
51 * |
— |
阴性 |
阴性 |
|
13 |
9.36 |
3.93~17.13 |
30.97 |
28.26~85.83 |
52.55 |
2.22 |
10.49 * |
3.06 * |
109 * |
363 |
阳性 |
阴性 |
阴性 |
|
14 |
11.17 |
5.31~17.16 |
15.52 |
31.57~62.40 |
276.00 |
54.00 |
5.70 * |
4.64 * |
144 * |
35 * |
阳性 |
阴性 |
阴性 |
|
15 |
14.50 |
6.78 |
7.17 |
2.96 |
— |
— |
— |
— |
— |
— |
— |
— |
— |
“—”:无相关资料. *低于正常值下限.
15例IVA确诊患儿的血液氨基酸及酰基肉碱谱检测初筛结果中,异戊酰基肉碱为0.66~14.50 μmol/L(参考值< 0.40 μmol/L),仅例15伴游离肉碱(C0)降低(7.17 μmol/L,参考值>10.28 μmol/L);随访期间异戊酰基肉碱的波动范围为0.40~18.35 μmol/L。15例IVA确诊患儿中,除例8、10和15因死亡或在当地随访等原因未采集尿样,其余12例进行了尿有机酸分析,其中例5结果正常,其余11例异戊酰甘氨酸均升高(4.40~1136.00 mmol/mol肌酐,参考值< 0.40 mmol/mol肌酐),4例伴3-羟基异戊酸升高(4.87~2141.00 mmol/mol肌酐,参考值< 2.30 mmol/mol肌酐)。见 表 2。
15例患儿中4例(例1、3、5、9)血异戊酰基肉碱浓度低于6 μmol/L,尿异戊酰甘氨酸浓度低于195 mmol/mol肌酐,为代谢轻型;其余11例血异戊酰基肉碱浓度均高于6 μmol/L,为代谢严重型。
2.3 患儿及其父母基因检测结果
15例IVA确诊患儿中,11例进行了基因检测,例9只检测出一个 IVD基因位点,例11为 IVD基因纯合突变,其余9例患儿为 IVD基因复合杂合突变,突变位点分别来自父母双方。共检出突变19种(错义突变14种、内含子突变3种、移码突变1种、同义突变1种),检出c.640A>G、c.359G>A、c.476G>C和c.1015T>C各2次,其余突变各1次。预测分析结果显示,7个新错义突变为潜在的致病突变,c.123A>C和2个内含子突变(c.1147+5G>A和c.296-10C>G)可能会影响剪切改变( 表 3)。
例序 |
核苷酸改变 |
基因位置 |
人群频率 |
氨基酸改变 |
有害性预测 |
保守指数(%) |
||||||||
1000 Genomes |
ExAC |
gnomAD |
SIFT |
PROVEAN |
PolyPhen-2 HDIV |
PolyPhen-2 HVAR |
fathmm |
Mutation-Taster |
Human Splicing Finder |
|||||
2 |
c.340G>C |
外显子4 |
— |
— |
— |
V114L |
D |
N |
B |
B |
D |
D |
— |
67 |
c.1208A>G |
外显子12 |
— |
1.60×10 -5 |
1.62×10 -5 |
Y403C |
D |
D |
D |
P |
D |
D |
— |
100 |
|
3 |
c.134T>G |
外显子1 |
— |
— |
— |
L45R |
D |
D |
D |
D |
D |
D |
— |
100 |
c.640A>G |
外显子6 |
— |
8.00×10 -6 |
1.62×10 -5 |
T214A |
D |
D |
D |
D |
D |
D |
— |
100 |
|
5 |
c.302A>G |
外显子4 |
— |
— |
— |
Y101C |
D |
D |
P |
B |
D |
D |
— |
67 |
c.1147+5G>A |
内含子1 |
— |
— |
— |
— |
— |
— |
— |
— |
— |
— |
Y |
— |
|
6 |
c.1184G>T |
外显子12 |
— |
— |
— |
R395L |
D |
D |
D |
D |
D |
D |
— |
100 |
c.1232A>C |
外显子12 |
— |
— |
— |
E411A |
D |
D |
D |
D |
D |
D |
— |
100 |
|
7 |
c.466-2A>G |
内含子4 |
— |
— |
— |
— |
— |
— |
— |
— |
— |
— |
Y |
— |
c.877G>T |
外显子8 |
— |
— |
— |
G293W |
D |
D |
D |
D |
D |
D |
— |
100 |
|
8 |
c.359G>A |
外显子4 |
— |
8.00×10 -6 |
4.06×10 -6 |
R120Q |
D |
D |
D |
D |
D |
D |
— |
100 |
c.476G>C |
外显子5 |
— |
— |
— |
G159A |
D |
D |
D |
D |
D |
D |
— |
100 |
|
9 |
c.487G>A |
外显子5 |
— |
— |
4.06×10 -6 |
G163R |
D |
D |
D |
D |
D |
D |
— |
100 |
11 |
c.1015T>C |
外显子10 |
— |
— |
— |
C339R |
D |
D |
D |
D |
D |
D |
— |
77 |
12 |
c.1189_1190delCT |
外显子12 |
— |
— |
— |
L397Sfs*7 |
— |
— |
— |
— |
— |
— |
— |
— |
c.1019G>A |
外显子10 |
3.99×10 -4 |
4.10×10 -5 |
2.03×10 -5 |
R340Q |
D |
D |
D |
D |
D |
D |
— |
100 |
|
13 |
c.640A>G |
外显子6 |
— |
8.00×10 -6 |
1.62×10 -5 |
T214A |
D |
D |
D |
D |
D |
D |
— |
100 |
c.667C>T |
外显子6 |
— |
4.06×10 -6 |
5.80×10 -5 |
R223W |
D |
D |
D |
P |
D |
D |
— |
100 |
|
c.296-10C>G |
内含子3 |
— |
— |
— |
— |
— |
— |
— |
— |
— |
— |
Y |
— |
|
c.123A>C |
外显子1 |
— |
— |
— |
A41A |
T |
N |
— |
— |
— |
D |
Y |
— |
|
14 |
c.359G>A |
外显子4 |
— |
— |
— |
R120Q |
D |
D |
D |
D |
D |
D |
— |
100 |
c.476G>C |
外显子5 |
— |
— |
— |
G159A |
D |
D |
D |
D |
D |
D |
— |
— |
“—”:无相关资料. IVD参考序列:NM_002225.3.D:潜在有害、有害或致病;P:可能有害;N:中性;B:良性;T:可容忍;Y:剪切改变;保守指数:将人类IVD氨基酸序列与其他8个物种进行比较,该位点同为人类IVD野生型氨基酸的比例;加粗字体为新突变.
2.4 遗传代谢病家族史分析结果
例7母亲孕8产3,第一胎出生后第7天不明原因死亡。例14姐姐(6岁2个月)血异戊酰基肉碱及尿异戊酰甘氨酸升高,分别为6.09 μmol/L和92.48 mmol/mol肌酐,基因测序基因型同先证者,智力及体格发育正常,5岁左右曾有无明显原因酸中毒住院病史。其余13例患儿无遗传病家族史。
2.5 患儿临床随访和治疗情况
例8于出生第7天死于高氨血症,例10和例15在当地随访,其余12例IVA患儿的随访时间为2~79个月。例3和例5仅适当限制蛋白质摄入,未进行其他治疗,体格及智力发育均正常。其余10例患儿通过饮食及药物治疗,3例生长发育落后(例1、6和11,身高和体质量均为正常儿童的3%~10%),其他患儿体格和智力发育均正常。
3 讨论
不同国家和地区的IVA发病率差异较大,美国为1/250 000 [ 8] ,欧洲为1/622 489~1/45 466 [ 4, 9] ,中东地区较高,为1/56 416~1/33 282 [ 5, 10] ,中国台湾地区为1/365 000 [ 11] 。本研究筛查了超过350万名新生儿,共确诊IVA患儿15例,IVA患病率约为1/234 000。
IVD功能缺陷导致亮氨酸分解代谢过程中异戊酰辅酶A无法生成3-甲基巴豆酰辅酶A,造成异戊酰辅酶A蓄积,引起异戊酰基肉碱、异戊酰甘氨酸和3-羟基异戊酸增多。由于异戊酰基肉碱与2-甲基丁酰肉碱及特戊酰肉碱为同分异构体,采用目前的串联质谱法筛查试剂不能区分出来,须结合尿有机酸分析进行鉴别诊断。尿异戊酰甘氨酸增多是诊断IVA的特征性指标,患儿急性期可伴3-羟基异戊酸增多。2-甲基丁酰肉碱见于2-甲基丁酰辅酶A脱氢酶缺乏症,尿有机酸分析结果2-甲基丁酰甘氨酸增多 [ 12] ;匹氨西林和头孢菌素类抗菌药物及特戊酸酯软膏含特戊酰肉碱,使用这些药物会引起异戊酰基肉碱暂时增多,通过同位素稀释串联质谱法和超高效液相色谱串联质谱法检测干血斑标本中的异戊酰甘氨酸和异戊酰基肉碱可以进行鉴别 [ 13- 14] 。根据血异戊酰基肉碱和尿异戊酰甘氨酸浓度是否分别超过6 μmol/L和195 mmol/mol肌酐,可将IVA分为代谢轻型和代谢严重型 [ 15] 。对于代谢严重型患儿,监测尿异戊酰甘氨酸水平比血异戊酰基肉碱水平更能有效反映疾病状况和评估预后 [ 16] 。本研究确诊15例患儿,初筛时血异戊酰基肉碱水平均有不同程度的增高;11例患儿尿异戊酰甘氨酸水平增多,4例患儿伴3-羟基异戊酸增高;4例为代谢轻型,其中2例未特殊治疗,随访发育良好;其余均为代谢严重型,尿异戊酰甘氨酸水平较血异戊酰基肉碱水平升高程度更为明显,及早治疗可明显改善代谢紊乱;例7新生儿期发病,经过治疗后恢复良好,其同胞新生儿早期死亡。
IVA的致病基因 IVD位于染色体15q14-15,长约15 kb,含12个外显子,编码394个氨基酸。目前已报道超过92种的 IVD基因突变(),包括错义突变、剪切突变和移码突变等 [ 17] 。不同国家和地区的 IVD基因谱存在差异,热点突变在德国和美国均为c.932C>T(p.A282V) [ 2] ,南非高加索人群为c.367 G>A(p.G123R) [ 18] ,韩国为c.457-3_2CA>GG [ 19] ,泰国为c.457-3_2CA>GG [ 20] ,中国大陆及台湾地区以c.1208A>G(p.Y403C)较为常见 [ 11, 17] 。本文资料中, IVD基因突变多为错义突变(占比73.7%),突变位点分散,没有热点突变。研究显示,IVA基因型与生化表型存在一定相关性,c.158G>C(p.R53P)和c.1184G>A(p.R395H)突变与代谢严重型相关 [ 21- 22] ;c.941C>T(p.A314V)、c.941C>G(p.A314G)、c.500T>C(p.M167T)、c.158G>A(p.R53H)和c.706G>A(p.G236S)与代谢轻型相关 [ 2, 16, 23- 24] ;c.932C>T(p.A282V)突变在新生儿筛查患儿中最为常见,多为无症状型 [ 25] 。Dercksen等 [ 18] 报道的10例IVA患儿均为c.367G>A(p.G123R)纯合突变,临床表型从无症状型到严重的智力障碍和多发性代谢紊乱。Vatanavicharn等 [ 20] 报道的5例患儿均携带c.457-3_2CA>GG突变,4例急性新生儿型,1例慢性间歇型。Hertecant等 [ 22] 报道三个同胞兄妹均为c.1175G>A(p.R392H)纯合突变,分别为急性新生儿型、慢性间歇性及无症状型。Wiley等 [ 26] 报道的2例IVA患儿携带c.640A>G(p.T214A)突变,为无症状型,携带这一突变的例3为代谢轻型,例13却为代谢严重型。Li等 [ 17] 报道的一例急性新生儿型携带c.359G>A(p.R120Q)突变。本文资料中2例急性新生儿型(例8和例14)也携带该突变,但携带该突变的例14姐姐却为慢性间歇型,提示 IVD基因突变具有临床表现异质性,基因型与临床表型的关系须进一步论证。
IVA患者临床表现多样,通常伴有反复呕吐、嗜睡、昏迷、汗脚样体臭、智力发育落后、代谢性酸中毒、血细胞减少及高血氨等,其不良预后主要表现为死亡和神经系统损伤。急性新生儿型常于患儿出生后7 d发病,病死率高达30%以上,而慢性间歇型和无症状型患儿的病死率仅为3% [ 27] 。异戊酸等代谢产物在大脑皮层诱导氧化应激及在突触膜中通过脂质过氧化机制抑制钠钾ATP酶活性等可引起神经系统损伤 [ 28- 29] ,受损程度与诊治时机有关,与急性发作的程度和次数无关。出生后5周内诊治的IVA患儿仅有15%出现神经系统损伤,而后期诊断的患者半数以上会出现神经系统损伤 [ 27] ,患儿智商新生儿筛查诊断者较临床病例高5个百分点 [ 16] 。本文资料中,8例患儿出现血细胞减少,10例患儿出现高血氨,4例患儿出现代谢性酸中毒,治疗后均恢复正常;3例急性新生儿型,1例出生后第7天明确诊断前死亡,其余2例发育良好。随访的12例患儿智力发育均正常,治疗后没有出现代谢失调。因此,开展IVA新生儿筛查,患儿进行早期治疗能改善患儿代谢紊乱,极大降低病死率和避免神经系统损伤,进一步优化新生儿筛查流程缩短诊断时间可避免早期新生儿死亡。
慢性间歇型IVA患儿急性发作的次数随年龄增加而减少,可能与感染减少有关。青春期甚至成年后,麻醉、过度运动、体力活动、疲劳、低热量饮食和禁食、怀孕、酒精等因素可能加速内源蛋白质分解诱发急性发作,无症状患者及病情稳定超过一年的患者十年内仍可能发生代谢失偿,因此IVA一旦确诊须终身管理和治疗 [ 27] 。进一步对确诊患儿的同胞进行血液氨基酸及酰基肉碱谱或尿有机酸分析,可以发现慢性间歇型甚至无症状型患儿 [ 18] 。本文资料中,一例患儿的姐姐为代谢严重型,有代谢性酸中毒发作病史,针对性的治疗可避免代谢失调的再次发作。
综上所述,IVA是一种罕见的有机酸血症,临床表现无特异性,基因谱分散,急性新生儿型患儿病情危重且病死率高,须结合血液氨基酸及酰基肉碱谱、尿有机酸和基因检测等进行诊断和鉴别诊断。使用串联质谱法开展IVA新生儿筛查,实现早期诊断和治疗能纠正代谢缺陷及其引发的病理生理改变。IVA患者确诊后经终身管理和治疗,一般预后良好。
Funding Statement
国家重点研发计划(2018YFC1002204);浙江省公益技术研究计划(LGC19B050013)
References
- 1.李 溪远, 华 瑛, 丁 圆, et al. 新生儿期发病的经典型异戊酸血症四例分析. 中华围产医学杂志. 2015;18(3):188–194. doi: 10.3760/cma.j.issn.1007-9408.2015.03.005. [李溪远, 华瑛, 丁圆, 等.新生儿期发病的经典型异戊酸血症四例分析[J]. 中华围产医学杂志, 2015, 18(3):188-194. DOI:10.3760/cma.j.issn.1007-9408.2015.03.005. ] [DOI] [Google Scholar]
- 2.ENSENAUER R, VOCKLEY J, WILLARD J M, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–1142. doi: 10.1086/426318. [ENSENAUER R, VOCKLEY J, WILLARD J M, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening[J]. Am J Hum Genet, 2004, 75(6):1136-1142. DOI:10.1086/426318. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.洪 芳, 黄 新文, 张 玉, et al. 浙江省新生儿有机酸尿症筛查及随访分析. 浙江大学学报(医学版) 2017;46(3):240–247. doi: 10.3785/j.issn.1008-9292.2017.06.03. doi: 10.3785/j.issn.1008-9292.2017.06.03. [洪芳, 黄新文, 张玉, 等.浙江省新生儿有机酸尿症筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3):240-247. DOI:10.3785/j.issn.1008-9292.2017.06.03. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.KASPER D C, RATSCHMANN R, METZ T F, et al. The National Austrian Newborn Screening Program-eight years experience with mass spectrometry. Past, present, and future goals. Wien Klin Wochenschr. 2010;122(21-22):607–613. doi: 10.1007/s00508-010-1457-3. [KASPER D C, RATSCHMANN R, METZ T F, et al. The National Austrian Newborn Screening Program-eight years experience with mass spectrometry. Past, present, and future goals[J]. Wien Klin Wochenschr, 2010, 122(21-22):607-613. DOI:10.1007/s00508-010-1457-3. ] [DOI] [PubMed] [Google Scholar]
- 5.GOLBAHAR J, AL-JISHI E A, ALTAYAB D D, et al. Selective newborn screening of inborn errors of amino acids, organic acids and fatty acids metabolism in the Kingdom of Bahrain. Mol Genet Metab. 2013;110(1-2):98–101. doi: 10.1016/j.ymgme.2013.07.006. [GOLBAHAR J, AL-JISHI E A, ALTAYAB D D, et al. Selective newborn screening of inborn errors of amino acids, organic acids and fatty acids metabolism in the Kingdom of Bahrain[J]. Mol Genet Metab, 2013, 110(1-2):98-101. DOI:10.1016/j.ymgme.2013.07.006. ] [DOI] [PubMed] [Google Scholar]
- 6.中华人民共和国卫生部.新生儿疾病筛查技术规范(2010年版)[A/OL].(2010-11-10)[2020-06-11]..http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798.doc
- 7.RICHARDS S, AZIZ N, BALE S, et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. doi: 10.1038/gim.2015.30. [RICHARDS S, AZIZ N, BALE S, et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5):405-424. DOI:10.1038/gim.2015.30. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.CHACE D H, KALAS T A, NAYLOR E W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem. 2003;49(11):1797–1817. doi: 10.1373/clinchem.2003.022178. [CHACE D H, KALAS T A, NAYLOR E W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns[J]. Clin Chem, 2003, 49(11):1797-1817. DOI:10.1373/clinchem.2003.022178. ] [DOI] [PubMed] [Google Scholar]
- 9.SCOLAMIERO E, COZZOLINO C, ALBANO L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol Biosyst. 2015;11(6):1525–1535. doi: 10.1039/c4mb00729h. [SCOLAMIERO E, COZZOLINO C, ALBANO L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism[J]. Mol Biosyst, 2015, 11(6):1525-1535. DOI:10.1039/c4mb00729h. ] [DOI] [PubMed] [Google Scholar]
- 10.AL HOSANI H, SALAH M, OSMAN H M, et al. Expanding the comprehensive national neonatal screening programme in the United Arab Emirates from 1995 to 2011. East Mediterr Health J. 2014;20(1):17–23. doi: 10.26719/2014.20.1.17. [AL HOSANI H, SALAH M, OSMAN H M, et al. Expanding the comprehensive national neonatal screening programme in the United Arab Emirates from 1995 to 2011[J]. East Mediterr Health J, 2014, 20(1):17-23. ] [DOI] [PubMed] [Google Scholar]
- 11.LIN W D, WANG C H, LEE C C, et al. Genetic mutation profile of isovaleric acidemia patients in Taiwan. Mol Genet Metab. 2007;90(2):134–139. doi: 10.1016/j.ymgme.2006.08.011. [LIN W D, WANG C H, LEE C C, et al. Genetic mutation profile of isovaleric acidemia patients in Taiwan[J]. Mol Genet Metab, 2007, 90(2):134-139. DOI:10.1016/j.ymgme.2006.08.011. ] [DOI] [PubMed] [Google Scholar]
- 12.SCHLUNE A, RIEDERER A, MAYATEPEK E, et al. Aspects of newborn screening in isovaleric acidemia. Int J Neonatal Screen. 2018;4(1):7. doi: 10.3390/ijns4010007. [SCHLUNE A, RIEDERER A, MAYATEPEK E, et al. Aspects of newborn screening in isovaleric acidemia[J]. Int J Neonatal Screen, 2018, 4(1):7. DOI:10.3390/ijns4010007. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.CLOPPENBORG T, JANZEN N, WAGNER H, et al. Application of a second-tier newborn screening assay for C5 isoforms. JIMD Rep. 2014;13:23–26. doi: 10.1007/8904_2013_275. [CLOPPENBORG T, JANZEN N, WAGNER H, et al. Application of a second-tier newborn screening assay for C5 isoforms[J]. JIMD Rep, 2014, 13:23-26. DOI:10.1007/8904_2013_275. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.MINKLER P E, STOLL M, INGALLS S T, et al. Selective and accurate C5 acylcarnitine quantitation by UHPLC-MS/MS:Distinguishing true isovaleric acidemia from pivalate derived interference. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1061-1062:128–133. doi: 10.1016/j.jchromb.2017.07.018. [MINKLER P E, STOLL M, INGALLS S T, et al. Selective and accurate C5 acylcarnitine quantitation by UHPLC-MS/MS:Distinguishing true isovaleric acidemia from pivalate derived interference[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1061-1062:128-133. DOI:10.1016/j.jchromb.2017.07.018. ] [DOI] [PubMed] [Google Scholar]
- 15.VOCKLEY J, ENSENAUER R. Isovaleric acidemia:new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103. doi: 10.1002/ajmg.c.30089. [VOCKLEY J, ENSENAUER R. Isovaleric acidemia:new aspects of genetic and phenotypic heterogeneity[J]. Am J Med Genet C Semin Med Genet, 2006, 142C(2):95-103. DOI:10.1002/ajmg.c.30089. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.COUCE M L, ALDAMIZ-ECHEVARRÍA L, BUENO M A, et al. Genotype and phenotype characterization in a Spanish cohort with isovaleric acidemia. J Hum Genet. 2017;62(3):355–360. doi: 10.1038/jhg.2016.144. [COUCE M L, ALDAMIZ-ECHEVARRÍA L, BUENO M A, et al. Genotype and phenotype characterization in a Spanish cohort with isovaleric acidemia[J]. J Hum Genet, 2017, 62(3):355-360. DOI:10.1038/jhg.2016.144. ] [DOI] [PubMed] [Google Scholar]
- 17.LI Y, SHEN M, JIN Y, et al. Eight novel mutations detected from eight Chinese patients with isovaleric acidemia. Clin Chim Acta. 2019;498:116–121. doi: 10.1016/j.cca.2019.08.019. [LI Y, SHEN M, JIN Y, et al. Eight novel mutations detected from eight Chinese patients with isovaleric acidemia[J]. Clin Chim Acta, 2019, 498:116-121. DOI:10.1016/j.cca.2019.08.019. ] [DOI] [PubMed] [Google Scholar]
- 18.DERCKSEN M, DURAN M, IJLST L, et al. Clinical variability of isovaleric acidemia in a genetically homogeneous population. J Inherit Metab Dis. 2012;35(6):1021–1029. doi: 10.1007/s10545-012-9457-2. [DERCKSEN M, DURAN M, IJLST L, et al. Clinical variability of isovaleric acidemia in a genetically homogeneous population[J]. J Inherit Metab Dis, 2012, 35(6):1021-1029. DOI:10.1007/s10545-012-9457-2. ] [DOI] [PubMed] [Google Scholar]
- 19.LEE Y W, LEE D H, VOCKLEY J, et al. Different spectrum of mutations of isovaleryl-CoA dehydrogenase (IVD) gene in Korean patients with isovaleric acidemia. Mol Genet Metab. 2007;92(1-2):71–77. doi: 10.1016/j.ymgme.2007.05.003. [LEE Y W, LEE D H, VOCKLEY J, et al. Different spectrum of mutations of isovaleryl-CoA dehydrogenase (IVD) gene in Korean patients with isovaleric acidemia[J]. Mol Genet Metab, 2007, 92(1-2):71-77. DOI:10.1016/j.ymgme.2007.05.003. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.VATANAVICHARN N, LIAMMONGKOLKUL S, SAKAMOTO O, et al. Phenotypic and mutation spectrums of Thai patients with isovaleric acidemia. Pediatr Int. 2011;53(6):990–994. doi: 10.1111/j.1442-200X.2011.03488.x. [VATANAVICHARN N, LIAMMONGKOLKUL S, SAKAMOTO O, et al. Phenotypic and mutation spectrums of Thai patients with isovaleric acidemia[J]. Pediatr Int, 2011, 53(6):990-994. DOI:10.1111/j.1442-200X.2011.03488.x. ] [DOI] [PubMed] [Google Scholar]
- 21.MOHSEN A W, ANDERSON B D, VOLCHENBOUM S L, et al. Characterization of molecular defects in isovaleryl-CoA dehydrogenase in patients with isovaleric acidemia. Biochemistry. 1998;37(28):10325–10335. doi: 10.1021/bi973096r. [MOHSEN A W, ANDERSON B D, VOLCHENBOUM S L, et al. Characterization of molecular defects in isovaleryl-CoA dehydrogenase in patients with isovaleric acidemia[J]. Biochemistry, 1998, 37(28):10325-10335. DOI:10.1021/bi973096r. ] [DOI] [PubMed] [Google Scholar]
- 22.HERTECANT J L, BEN-REBEH I, MARAH M A, et al. Clinical and molecular analysis of isovaleric acidemia patients in the United Arab Emirates reveals remarkable phenotypes and four novel mutations in the IVD gene. Eur J Med Genet. 2012;55(12):671–676. doi: 10.1016/j.ejmg.2012.08.001. [HERTECANT J L, BEN-REBEH I, MARAH M A, et al. Clinical and molecular analysis of isovaleric acidemia patients in the United Arab Emirates reveals remarkable phenotypes and four novel mutations in the IVD gene[J]. Eur J Med Genet, 2012, 55(12):671-676. DOI:10.1016/j.ejmg.2012.08.001. ] [DOI] [PubMed] [Google Scholar]
- 23.TANAKA K, BUDD M A, EFRON M L, et al. Isovaleric acidemia:a new genetic defect of leucine metabolism. Proc Natl Acad Sci U S A. 1966;56(1):236–242. doi: 10.1073/pnas.56.1.236. [TANAKA K, BUDD M A, EFRON M L, et al. Isovaleric acidemia:a new genetic defect of leucine metabolism[J]. Proc Natl Acad Sci U S A, 1966, 56(1):236-242. DOI:10.1073/pnas.56.1.236. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.SAKAMOTO O, ARAI-ICHINOI N, MITSUBUCHI H, et al. Phenotypic variability and newly identified mutations of the ivd gene in japanese patients with isovaleric acidemia. Tohoku J Exp Med. 2015;236(2):103–106. doi: 10.1620/tjem.236.103. [SAKAMOTO O, ARAI-ICHINOI N, MITSUBUCHI H, et al. Phenotypic variability and newly identified mutations of the ivd gene in japanese patients with isovaleric acidemia[J]. Tohoku J Exp Med, 2015, 236(2):103-106. DOI:10.1620/tjem.236.103. ] [DOI] [PubMed] [Google Scholar]
- 25.ENSENAUER R, FINGERHUT R, MAIER E M, et al. Newborn screening for isovaleric acidemia using tandem mass spectrometry:data from 1.6 million newborns. Clin Chem. 2011;57(4):623–626. doi: 10.1373/clinchem.2010.151134. [ENSENAUER R, FINGERHUT R, MAIER E M, et al. Newborn screening for isovaleric acidemia using tandem mass spectrometry:data from 1.6 million newborns[J]. Clin Chem, 2011, 57(4):623-626. DOI:10.1373/clinchem.2010.151134. ] [DOI] [PubMed] [Google Scholar]
- 26.WILEY V, WEBSTER D, LOEBER G. Screening pathways through China, the Asia Pacific region, the world. Int J Neonatal Screen. 2019;5(3):26. doi: 10.3390/ijns5030026. [WILEY V, WEBSTER D, LOEBER G. Screening pathways through China, the Asia Pacific region, the world[J]. Int J Neonatal Screen, 2019, 5(3):26. DOI:10.3390/ijns5030026. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.GRVNERT S C, WENDEL U, LINDNER M, et al. Clinical and neurocognitive outcome in symptomatic isovaleric acidemia. Orphanet J Rare Dis. 2012;7:9. doi: 10.1186/1750-1172-7-9. [GRVNERT S C, WENDEL U, LINDNER M, et al. Clinical and neurocognitive outcome in symptomatic isovaleric acidemia[J]. Orphanet J Rare Dis, 2012, 7:9. DOI:10.1186/1750-1172-7-9. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.SOLANO A F, LEIPNITZ G, DE BORTOLI G M, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res. 2008;42(8):707–715. doi: 10.1080/10715760802311179. [SOLANO A F, LEIPNITZ G, DE BORTOLI G M, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats[J]. Free Radic Res, 2008, 42(8):707-715. DOI:10.1080/10715760802311179. ] [DOI] [PubMed] [Google Scholar]
- 29.RIBEIRO C A, BALESTRO F, GRANDO V, et al. Isovaleric acid reduces Na +, K +-ATPase activity in synaptic membranes from cerebral cortex of young rats . Cell Mol Neurobiol. 2007;27(4):529–540. doi: 10.1007/s10571-007-9143-3. [RIBEIRO C A, BALESTRO F, GRANDO V, et al. Isovaleric acid reduces Na +, K +-ATPase activity in synaptic membranes from cerebral cortex of young rats[J]. Cell Mol Neurobiol, 2007, 27(4):529-540. DOI:10.1007/s10571-007-9143-3. ] [DOI] [PMC free article] [PubMed] [Google Scholar]