Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2020 Oct 25;49(5):644–650. [Article in Chinese] doi: 10.3785/j.issn.1008-9292.2020.07.03

病毒感染性眼病病原学诊断的研究进展

Research progress on etiologic diagnosis of ocular viral diseases

Runping DUAN 1, Yesheng XU 1, Libin ZHENG 1, Yufeng YAO 1,*
PMCID: PMC8800737  PMID: 33210494

Abstract

多种病毒可导致眼部疾病,包括腺病毒、人类疱疹病毒、人类T淋巴细胞白血病病毒1型(HTLV-1)及新发现的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)等。这类疾病的鉴别诊断较困难,容易被误诊和漏诊,导致严重的组织损伤和视觉损伤。腺病毒、单纯疱疹病毒1型和水痘-带状疱疹病毒相关眼病的诊断中,病原学诊断可作为一种强有力的辅助诊断工具;而在单纯疱疹病毒2型、巨细胞病毒、EB病毒、人类疱疹病毒6型和7型、人类疱疹病毒8型、HTLV-1和SARS-CoV-2相关眼病的诊断中,病原学诊断则发挥着主导作用。病毒培养、免疫组织化学或免疫荧光法及以PCR为代表的病毒基因诊断法是三种主要的病原检测手段,其中PCR技术检测快速、操作便捷、敏感度和特异度高,成为眼科病毒学诊断中最重要的工具。


病毒作为一种常见的病原体,可以感染眼部多种组织,引起结膜炎、角膜炎、葡萄膜炎和视网膜炎等眼部疾病 [ 1- 4] ,造成不同程度的视觉损害,甚至失明。迄今,已发现多种与眼部损伤相关的病毒,包括腺病毒、人类疱疹病毒、人类T淋巴细胞白血病病毒1型(human T lymphotropic virus type-1,HTLV-1)和严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)等 [ 5- 8] ,其中腺病毒和人类疱疹病毒是最常见的病原体,HTLV-1感染较少,SARS-CoV-2则是最近引起2019冠状病毒病(coronavirus disease 2019,COVID-19)大流行的病原体,也可导致眼部损伤。病毒感染性眼病的临床表现容易与细菌、真菌感染性眼病混淆,不同病原的病毒感染性眼病又常具有相似的临床表现,因此其鉴别诊断较为困难。在我国,眼科医生多基于临床经验诊断,相关实验室检查开展较少,诊疗过程中缺乏有效的病原学诊断依据,使得该类疾病很容易被漏诊或误诊,造成严重的组织损伤和视觉损伤。如何提供有效的病原学依据,对病毒感染性眼病做出快速、准确的诊断,一直是研究者关注的重点。本文对腺病毒、人类疱疹病毒、HTLV-1和SARS-CoV-2导致的病毒感染性眼病的流行病学进行简述,总结并分析了病毒感染性眼病的病原学诊断研究进展,以期为疾病的诊断提供参考。

1 腺病毒相关眼病

腺病毒是一种DNA病毒,感染眼部后引起的最常见的疾病为流行性角结膜炎和咽结膜热 [ 9] 。流行性角结膜炎主要发生在20~40岁人群,常表现为“红眼”、畏光流泪、异物感,严重者可见角膜上皮下浸润,视力下降;咽结膜热主要见于儿童,表现为发热、咽炎、双眼急性滤泡性结膜炎和耳廓淋巴结肿大。腺病毒是导致感染性结膜炎最主要的病原体,具有较高的传染性。在日本,每年约有100万结膜炎患者为腺病毒感染所致 [ 10]

腺病毒相关结膜炎的诊断主要基于临床表现,相关病原学诊断技术可为疾病的确诊提供证据支持,避免无效抗菌药物和不必要抗病毒药物的使用 [ 11] 。腺病毒相关结膜炎的病原学诊断技术主要包括病毒分离培养、免疫荧光法和病毒基因诊断法。病毒分离培养可以直接观察腺病毒,但对于设备和技术要求高,检测结果具有滞后性,因此很少使用;免疫荧光法可以直接检测结膜细胞内的腺病毒抗原,但其敏感度低且结果受技术人员经验的影响较大 [ 12] 。相较于前两者,PCR用于检测结膜样本中的腺病毒DNA片段更具有优势,具有耗时短、操作便捷、敏感性和特异性较高等优点。El-Sayed Zaki等 [ 13] 对36例腺病毒性结膜炎患者的标本进行实验室检测,PCR检测阳性率为83.3%,高于培养法的77.8%和抗原检测的72.2%;Koidl等 [ 14] 则利用PCR技术实现了腺病毒DNA的定量检测。

2 人类疱疹病毒相关眼病

人类疱疹病毒是一类DNA病毒,包括8种亚型,分别为单纯疱疹病毒1型和2型(herpes simplex virus 1/2,HSV-1/2)、水痘-带状疱疹病毒(varicella-zoster virus,VZV)、EB病毒(Epstein-Barrvirus,EBV)、巨细胞病毒(cytomegalovirus,CMV)、人类疱疹病毒6型和7型(human herpesvirus 6/7,HHV-6/7)及人类疱疹病毒8型(human herpesvirus 8,HHV-8)。人类疱疹病毒在人群中广泛存在,14~49岁人群中HSV-1和HSV-2的血清学阳性率分别为53.9%和16.0%左右,50岁以上人群中HSV的血清学阳性率高达90% [ 15- 18] ;VZV在人群中的感染比例为20%~30% [ 19- 20] ;EBV的感染率则超过90% [ 21] ;西方国家,CMV的血清学阳性率为41.9%~57.0%,而在亚洲人群中为69.1%~98.6% [ 22] ;HHV-6/7在发展中国家的感染率已超过90% [ 23- 24] ;HHV-8在北美和欧洲的感染率为1%~25%,在非洲则高达80% [ 25] 。HHV长期潜伏于人体内,通常为无症状携带状态,再激活后可导致多种眼部疾病。基于人群中如此高的感染率,临床上应高度警惕这类感染性眼病的发生。

HSV是引起眼部疾病最常见的病毒,相关的眼部疾病以HSV-1感染为主,所致疾病类型多样,包括结膜炎、角膜炎、葡萄膜炎和视网膜炎等 [ 4, 26] 。VZV引起的眼部疾病具有特异性的沿三叉神经眼支走行分布的单侧皮肤水泡,且伴明显疼痛;疾病进展至后期可引起结膜炎、角膜炎、葡萄膜炎和急性视网膜坏死等多种眼部并发症 [ 27] 。CMV相关眼病常发生于免疫缺陷患者中,以视网膜炎最为常见,还包括角膜内皮炎和前葡萄膜炎 [ 28] 。HSV-2、EBV、HHV-6/7和HHV-8引起的眼部疾病虽不多见,但可导致严重的眼部损害,如视网膜炎、急性视网膜坏死、葡萄膜炎和结膜卡波西肉瘤 [ 29- 33]

人类疱疹病毒相关眼病的诊断依据因病毒亚型或疾病类型而异。HSV相关角膜炎的诊断主要基于临床表现,病原学诊断可作为辅助工具用于疾病的诊断;HSV相关葡萄膜炎和视网膜炎等的诊断则主要依靠病原学诊断方法。病毒分离培养是诊断的金标准,但耗时长、敏感度低;免疫组织化学或免疫荧光法检测病毒的抗原具有较高敏感度,但假阳性率高;这两者目前均很少在临床中应用。PCR具有操作简便,敏感度和特异度高的优点,目前已经成为实验室中使用最广泛的HSV检测手段 [ 29, 34] 。Pramod等 [ 35] 研究表明,PCR诊断HSV相关角膜炎的阳性率可达66.7%,而病毒分离培养和抗原检测的阳性率仅为22.4%和39.8%。Yamamoto等 [ 36] 利用PCR技术检测12例上皮型病毒性角膜炎患者泪液中的HSV,阳性率为100.0%;而阴性对照样本中HSV的DNA阳性率为0。VZV相关眼病的诊断主要基于其特异性的临床表现,但当临床表现不典型或伴葡萄膜炎等眼后节并发症时,病原学诊断方法则能够提供有效的诊断依据。早在1986年,Culbertson等 [ 37] 便成功地从一例急性视网膜坏死综合征患者的标本中分离培养到VZV,第一次证实了VZV可引起急性视网膜坏死综合征。至今,VZV相关眼病的病原学诊断已发展成以PCR技术为主导的检测体系 [ 29, 34] 。CMV相关眼病的发病人群以免疫功能缺陷者居多,PCR结果是诊断CMV相关眼病的重要诊断依据,通过PCR在房水中检测到CMV的DNA是诊断CMV角膜内皮炎、前葡萄膜炎和视网膜炎的必要条件 [ 6, 38] ;而病毒培养、免疫法因其自身的技术局限性,并未被推广应用于该类疾病的诊断,相关报道也较少。EBV [ 31, 39] 、HSV-2 [ 29, 30] 、HHV-6 [ 32, 40] 、HHV-7 [ 41- 42] 和HHV-8 [ 33, 43] 相关眼病的发病率较低,其诊断主要依赖PCR技术在标本中检测到相应病毒核酸片段,而未见这几种病毒从眼部标本中成功分离培养的报道。

3 人类T淋巴细胞白血病病毒1型相关眼病

HTLV-1是一种RNA病毒,可通过逆转录的方式将遗传物质整合至宿主的基因组中,导致疾病的发生。HTLV-1的血清学阳性率在我国福建东部沿海地区人群为0.06%~0.58%,在日本为0.08%~3.00%,全世界约有2000万人携带HTLV-1,且携带者的比例还在进一步上升 [ 44- 47] 。研究表明,HTLV-1感染可导致葡萄膜炎、角结膜炎等眼部疾病 [ 5] ,实验室检查方法包括免疫法和基因诊断法。Mochizuki等 [ 48] 发现,相比于病因明确的葡萄膜炎患者,病因未明的葡萄膜炎患者中,HTLV-1的血清学阳性率较高。通过PCR技术,Ono等 [ 49] 在HTLV-1血清学阳性的葡萄膜炎患者的眼部标本中检测到HTLV-1原病毒的DNA;Sagawa等 [ 50] 则在葡萄膜炎患者的克隆T细胞(来源于眼部浸润细胞)中检测到HTLV-1的mRNA。通过血清学阳性率来诊断这一类疾病显得证据不足,而PCR技术的应用则为诊断提供了更加直接并可靠的依据。目前,HTLV-1相关眼病的报道仍较少,除了该病的发病率低以外,还可能与多数医疗机构缺乏有效的实验室检查手段,导致相关眼病无法确诊有关。而PCR技术可提供有效的病原学依据,帮助眼科医生确诊这类罕见的疾病,达到精准医疗的目的。

4 严重急性呼吸综合征冠状病毒2相关眼病

SARS-CoV-2是一种RNA病毒,感染人体后主要引起发热、乏力和干咳,重症患者表现为呼吸困难、低氧血症、急性呼吸窘迫综合征和脓毒症休克等,部分COVID-19患者则会出现结膜炎的临床表现,甚至以结膜炎为首发症状 [ 8] 。李雪杰等 [ 51] 通过对92例COVID-19患者进行观察,发现以结膜炎为首发症状者1例,COVID-19并发结膜炎4例;Xia等 [ 52] 对30例COVID-19患者的结膜拭子样本进行病毒核酸检测,发现伴有结膜炎症状的患者1例,其标本检测结果为阳性,而其他无结膜炎表现的患者检测结果全部为阴性。病毒核酸检测(荧光定量PCR技术)仍然是COVID-19患者确诊的主要依据,SARS-CoV-2相关眼病的诊断也高度依赖于PCR检测结果;而外周血特异性IgM/IgG抗体检测和胸部影像学(首选胸部高分辨率CT)两种方法在COVID-19患者的诊断和检测上虽然具有重要价值,但只能为眼部疾病提供间接的诊断依据 [ 53] 。有研究表明,SARS-CoV-2可以通过与血管紧张素转换酶2(angiotension-converting enzyme-2, ACE-2)受体结合,感染进入靶细胞 [ 54] ,而人结膜组织中也有ACE-2受体的表达 [ 55- 56] ,这为SARS-CoV-2感染眼部组织中的细胞提供了生理基础。目前,患者眼部标本中的SARS-CoV-2检测阳性率较低,SARS-CoV-2是否可以通过结膜途径传播仍不明确,但所有眼科医务人员在接诊期间仍应做好防护,仔细鉴别结膜炎患者,不能忽视患者SARS-CoV-2感染的可能。

5 结语

病毒是感染性眼病的常见病原体之一。腺病毒、HSV-1和VZV相关眼病的诊断中,病原学诊断可作为一种强有力的辅助诊断工具;而在HSV-2、CMV、EBV、HHV-6/7、HHV-8、HTLV-1和SARS-CoV-2相关眼病的诊断中,病原学诊断则发挥着主导作用( 表 1)。病毒培养、免疫组织化学或免疫荧光法及以PCR为代表的病毒基因诊断法是三种主要的病原检测手段,其中PCR技术作为一种快速、操作便捷、高敏感度和高特异度的病原学诊断方法,已经成为眼科病毒学诊断中最重要的工具。

表1 11种病毒的相关眼部疾病及其病原学诊断方法

Table 1 Ocular diseases associated with 11 kinds of viruses and their etiologic diagnoses

病毒名称

眼部疾病

病原学诊断方法

参考文献序号

腺病毒

角结膜炎、咽结膜热

病毒分离培养、免疫荧光、PCR

12

人类疱疹病毒

  单纯疱疹病毒1型

角膜炎、葡萄膜炎、视网膜炎

病毒分离培养、免疫荧光、PCR

4, 26

  单纯疱疹病毒2型

急性视网膜坏死、葡萄膜炎

PCR

29-30

  水痘-带状疱疹病毒

角膜炎、葡萄膜炎、急性视网膜坏死

病毒分离培养、PCR

20

  EB病毒

结膜良性肿瘤、葡萄膜炎、视网膜炎

PCR

31, 39

  巨细胞病毒

视网膜炎、角膜内皮炎、葡萄膜炎

PCR

6, 22, 28

  人类疱疹病毒6型

角膜炎、葡萄膜炎

PCR

32, 40

  人类疱疹病毒7型

角膜内皮炎、眼部附属器淋巴瘤

PCR

41-42

  人类疱疹病毒8型

结膜卡波西肉瘤、葡萄膜炎

PCR

33, 43

人类T淋巴细胞白血病病毒1型

葡萄膜炎、角结膜干燥征、角膜炎

PCR

5

严重急性呼吸综合征冠状病毒2

结膜炎

PCR

8

为了促进PCR技术在感染性眼病诊断中的临床应用,未来的工作可考虑从以下几个方面开展:第一,通过会议或学习班的形式,对眼科医生进行相关知识培训,促进今后诊疗中运用这一技术辅助疾病诊断;第二,目前多数PCR技术只能检测一种或少数几种病毒,开发一种能够同时检测上述11种甚至更多类型病毒的PCR技术,将其制作成试剂盒,有利于该技术的推广使用,提高病毒感染性眼病的诊断准确率;第三,规范化、标准化PCR技术操作流程,逐步从定性检测向定量检测发展,通过病毒拷贝量的变化来指导个体诊疗方案的制订,达到个体化的精准治疗。

Funding Statement

浙江省重点研发计划(2018C03082)

References

  • 1.TULLO A B, HIGGINS P G. Epidemic adenovirus keratoconjunctivitis. Lancet (London, England) 1978;1:442–443. doi: 10.1016/S0140-6736(78)91229-1. [TULLO A B, HIGGINS P G. Epidemic adenovirus keratoconjunctivitis[J]. Lancet (London, England), 1978, 1:442-443. DOI:10.1016/S0140-6736(78)91229-1. ] [DOI] [PubMed] [Google Scholar]
  • 2.ROWE A M, ST LEGER A J, JEON S, et al. Herpes keratitis. Prog Retin Eye Res. 2013;32:88–101. doi: 10.1016/j.preteyeres.2012.08.002. [ROWE A M, ST LEGER A J, JEON S, et al. Herpes keratitis[J]. Prog Retin Eye Res, 2013, 32:88-101. DOI:10.1016/j.preteyeres.2012.08.002. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.PATHANAPITOON K, TESAVIBUL N, CHOOPONG P, et al. Clinical manifestations of cytomegalovirus-associated posterior uveitis and panuveitis in patients without human immunodeficiency virus infection. JAMA Ophthalmol. 2013;131(5):638–645. doi: 10.1001/jamaophthalmol.2013.2860. [PATHANAPITOON K, TESAVIBUL N, CHOOPONG P, et al. Clinical manifestations of cytomegalovirus-associated posterior uveitis and panuveitis in patients without human immunodeficiency virus infection[J]. JAMA Ophthalmol, 2013, 131(5):638-645. DOI:10.1001/jamaophthalmol.2013.2860. ] [DOI] [PubMed] [Google Scholar]
  • 4.WALTERS G, JAMES T E. Viral causes of the acute retinal necrosis syndrome. Curr Opin Ophthalmol. 2001;12(3):191–195. doi: 10.1097/00055735-200106000-00008. [WALTERS G, JAMES T E. Viral causes of the acute retinal necrosis syndrome[J]. Curr Opin Ophthalmol, 2001, 12(3):191-195. DOI:10.1097/00055735-200106000-00008. ] [DOI] [PubMed] [Google Scholar]
  • 5.TERADA Y, KAMOI K, KOMIZO T, et al. Human T cell leukemia virus type 1 and eye diseases. J Ocul Pharmacol Ther. 2017;33(4):216–223. doi: 10.1089/jop.2016.0124. doi: 10.1089/jop.2016.0124. [TERADA Y, KAMOI K, KOMIZO T, et al. Human T cell leukemia virus type 1 and eye diseases[J]. J Ocul Pharmacol Ther, 2017, 33(4):216-223. DOI:10.1089/jop.2016.0124. ] [DOI] [PubMed] [Google Scholar]
  • 6.KOIZUMI N, INATOMI T, SUZUKI T, et al. Clinical features and management of cytomegalovirus corneal endotheliitis:analysis of 106 cases from the Japan corneal endotheliitis study. Br J Ophthalmol. 2015;99(1):54–58. doi: 10.1136/bjophthalmol-2013-304625. [KOIZUMI N, INATOMI T, SUZUKI T, et al. Clinical features and management of cytomegalovirus corneal endotheliitis: analysis of 106 cases from the Japan corneal endotheliitis study[J]. Br J Ophthalmol, 2015, 99(1):54-58. DOI:10.1136/bjophthalmol-2013-304625. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.SUGITA S, OGAWA M, SHIMIZU N, et al. Use of a comprehensive polymerase chain reaction system for diagnosis of ocular infectious diseases. Ophthalmology. 2013;120(9):1761–1768. doi: 10.1016/j.ophtha.2013.02.020. [SUGITA S, OGAWA M, SHIMIZU N, et al. Use of a comprehensive polymerase chain reaction system for diagnosis of ocular infectious diseases[J]. Ophthalmology, 2013, 120(9):1761-1768. DOI:10.1016/j.ophtha.2013.02.020. ] [DOI] [PubMed] [Google Scholar]
  • 8.周 翔天, 瞿 佳. 新型冠状病毒与眼, 我们所知道的与我们应该做的. 中华眼视光学与视觉科学杂志. 2020;22(4):241–246. doi: 10.3760/cma.j.cn115909-20200213-00035. [周翔天, 瞿佳.新型冠状病毒与眼, 我们所知道的与我们应该做的[J]. 中华眼视光学与视觉科学杂志, 2020, 22(4):241-246. DOI:10.3760/cma.j.cn115909-20200213-00035. ] [DOI] [Google Scholar]
  • 9.RADKE J R, COOK J L. Human adenovirus infections:update and consideration of mechanisms of viral persistence. Curr Opin Infect Dis. 2018;31(3):251–256. doi: 10.1097/QCO.0000000000000451. [RADKE J R, COOK J L. Human adenovirus infections: update and consideration of mechanisms of viral persistence[J]. Curr Opin Infect Dis, 2018, 31(3):251-256. DOI:10.1097/QCO.0000000000000451. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.KANEKO H, SUZUTANI T, AOKI K, et al. Epidemiological and virological features of epidemic keratoconjunctivitis due to new human adenovirus type 54 in Japan. Br J Ophthalmol. 2011;95(1):32–36. doi: 10.1136/bjo.2009.178772. [KANEKO H, SUZUTANI T, AOKI K, et al. Epidemiological and virological features of epidemic keratoconjunctivitis due to new human adenovirus type 54 in Japan[J]. Br J Ophthalmol, 2011, 95(1):32-36. DOI:10.1136/bjo.2009.178772. ] [DOI] [PubMed] [Google Scholar]
  • 11.UDEH B L, SCHNEIDER J E, OHSFELDT R L. Cost effectiveness of a point-of-care test for adenoviral conjunctivitis. Am J Med Sci. 2008;336(3):254–264. doi: 10.1097/MAJ.0b013e3181637417. [UDEH B L, SCHNEIDER J E, OHSFELDT R L. Cost effectiveness of a point-of-care test for adenoviral conjunctivitis[J]. Am J Med Sci, 2008, 336(3):254-264. DOI:10.1097/MAJ.0b013e3181637417. ] [DOI] [PubMed] [Google Scholar]
  • 12.JHANJI V, CHAN T C, LI E Y, et al. Adenoviral keratoconjunctivitis. Surv Ophthalmol. 2015;60(5):435–443. doi: 10.1016/j.survophthal.2015.04.001. [JHANJI V, CHAN T C, LI E Y, et al. Adenoviral keratoconjunctivitis[J]. Surv Ophthalmol, 2015, 60(5):435-443. DOI:10.1016/j.survophthal.2015.04.001. ] [DOI] [PubMed] [Google Scholar]
  • 13.EL-SAYED ZAKI M, ABD-EL FATAH G A. Rapid detection of oculopathogenic adenovirus in conjunctivitis. Curr Microbiol. 2008;56(2):105–109. doi: 10.1007/s00284-007-9054-z. [EL-SAYED ZAKI M, ABD-EL FATAH G A. Rapid detection of oculopathogenic adenovirus in conjunctivitis[J]. Curr Microbiol, 2008, 56(2):105-109. DOI:10.1007/s00284-007-9054-z. ] [DOI] [PubMed] [Google Scholar]
  • 14.KOIDL C, BOZIC M, MOSSBÖCK G, et al. Rapid diagnosis of adenoviral keratoconjunctivitis by a fully automated molecular assay. Ophthalmology. 2005;112(9):1521–1528. doi: 10.1016/j.ophtha.2005.04.011. [KOIDL C, BOZIC M, MOSSBÖCK G, et al. Rapid diagnosis of adenoviral keratoconjunctivitis by a fully automated molecular assay[J]. Ophthalmology, 2005, 112(9):1521-1528. DOI:10.1016/j.ophtha.2005.04.011. ] [DOI] [PubMed] [Google Scholar]
  • 15.BRADLEY H, MARKOWITZ L E, GIBSON T, et al. Seroprevalence of herpes simplex virus types 1 and 2——United States, 1999-2010. J Infect Dis. 2014;209(3):325–333. doi: 10.1093/infdis/jit458. [BRADLEY H, MARKOWITZ L E, GIBSON T, et al. Seroprevalence of herpes simplex virus types 1 and 2--United States, 1999-2010[J]. J Infect Dis, 2014, 209(3):325-333. DOI:10.1093/infdis/jit458. ] [DOI] [PubMed] [Google Scholar]
  • 16.TSATSOS M, MACGREGOR C, ATHANASIADIS I, et al. Herpes simplex virus keratitis:an update of the pathogenesis and current treatment with oral and topical antiviral agents. Clin Exp Ophthalmol. 2016;44(9):824–837. doi: 10.1111/ceo.12785. [TSATSOS M, MACGREGOR C, ATHANASIADIS I, et al. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents[J]. Clin Exp Ophthalmol, 2016, 44(9):824-837. DOI:10.1111/ceo.12785. ] [DOI] [PubMed] [Google Scholar]
  • 17.YOUNG R C, HODGE D O, LIESEGANG T J, et al. Incidence, recurrence, and outcomes of herpes simplex virus eye disease in Olmsted County, Minnesota, 1976-2007:the effect of oral antiviral prophylaxis. Arch Ophthalmol. 2010;128(9):1178–1183. doi: 10.1001/archophthalmol.2010.187. [YOUNG R C, HODGE D O, LIESEGANG T J, et al. Incidence, recurrence, and outcomes of herpes simplex virus eye disease in Olmsted County, Minnesota, 1976-2007: the effect of oral antiviral prophylaxis[J]. Arch Ophthalmol, 2010, 128(9):1178-1183. DOI:10.1001/archophthalmol.2010.187. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.LOOKER K J, GARNETT G P, SCHMID G P. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull World Health Organ. 2008;86(10):805–812, A. doi: 10.2471/blt.07.046128. [LOOKER K J, GARNETT G P, SCHMID G P. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection[J]. Bull World Health Organ, 2008, 86(10):805-812, A. DOI:10.2471/blt.07.046128. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.OXMAN M N, LEVIN M J, JOHNSON G R, et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med. 2005;352(22):2271–2284. doi: 10.1056/NEJMoa051016. [OXMAN M N, LEVIN M J, JOHNSON G R, et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults[J]. N Engl J Med, 2005, 352(22):2271-2284. DOI:10.1056/NEJMoa051016. ] [DOI] [PubMed] [Google Scholar]
  • 20.LIESEGANG T J. Herpes zoster ophthalmicus natural history, risk factors, clinical presentation, and morbidity. Ophthalmology. 2008;115(2 Suppl):S3–S12. doi: 10.1016/j.ophtha.2007.10.009. [LIESEGANG T J. Herpes zoster ophthalmicus natural history, risk factors, clinical presentation, and morbidity[J]. Ophthalmology, 2008, 115(2 Suppl):S3-S12. DOI:10.1016/j.ophtha.2007.10.009. ] [DOI] [PubMed] [Google Scholar]
  • 21.COHEN J I. Epstein-Barr virus infection. N Engl J Med. 2000;343(7):481–492. doi: 10.1056/NEJM200008173430707. [COHEN J I. Epstein-Barr virus infection[J]. N Engl J Med, 2000, 343(7):481-492. DOI:10.1056/NEJM200008173430707. ] [DOI] [PubMed] [Google Scholar]
  • 22.CHAN N S, CHEE S P, CASPERS L, et al. Clinical features of CMV-associated anterior uveitis. Ocul Immunol Inflamm. 2018;26(1):107–115. doi: 10.1080/09273948.2017.1394471. [CHAN N S, CHEE S P, CASPERS L, et al. Clinical features of CMV-associated anterior uveitis[J]. Ocul Immunol Inflamm, 2018, 26(1):107-115. DOI:10.1080/09273948.2017.1394471. ] [DOI] [PubMed] [Google Scholar]
  • 23.AGUT H, BONNAFOUS P, GAUTHERET-DEJEAN A. Update on infections with human herpesviruses 6A, 6B, and 7. Med Mal Infect. 2017;47(2):83–91. doi: 10.1016/j.medmal.2016.09.004. [AGUT H, BONNAFOUS P, GAUTHERET-DEJEAN A. Update on infections with human herpesviruses 6A, 6B, and 7[J]. Med Mal Infect, 2017, 47(2):83-91. DOI:10.1016/j.medmal.2016.09.004. ] [DOI] [PubMed] [Google Scholar]
  • 24.AGUT H, BONNAFOUS P, GAUTHERET-DEJEAN A. Human herpesviruses 6A, 6B, and 7. Microbiol Spectr. 2016;4(3) doi: 10.1128/microbiolspec.DMIH2-0007-2015. [AGUT H, BONNAFOUS P, GAUTHERET-DEJEAN A. Human herpesviruses 6A, 6B, and 7[J]. Microbiol Spectr, 2016, 4(3). DOI:10.1128/microbiolspec.DMIH2-0007-2015. ] [DOI] [PubMed] [Google Scholar]
  • 25.AUTEN M, KIM A S, BRADLEY K T, et al. Human herpesvirus 8-related diseases:histopathologic diagnosis and disease mechanisms. Semin Diagn Pathol. 2017;34(4):371–376. doi: 10.1053/j.semdp.2017.04.004. [AUTEN M, KIM A S, BRADLEY K T, et al. Human herpesvirus 8-related diseases: histopathologic diagnosis and disease mechanisms[J]. Semin Diagn Pathol, 2017, 34(4):371-376. DOI:10.1053/j.semdp.2017.04.004. ] [DOI] [PubMed] [Google Scholar]
  • 26.LIESEGANG T J. Herpes simplex virus epidemiology and ocular importance. Cornea. 2001;20(1):1–13. doi: 10.1097/00003226-200101000-00001. [LIESEGANG T J. Herpes simplex virus epidemiology and ocular importance[J]. Cornea, 2001, 20(1):1-13. DOI:10.1097/00003226-200101000-00001. ] [DOI] [PubMed] [Google Scholar]
  • 27.SZETO S K, CHAN T C, WONG R L, et al. Prevalence of ocular manifestations and visual outcomes in patients with herpes zoster ophthalmicus. Cornea. 2017;36(3):338–342. doi: 10.1097/ICO.0000000000001046. [SZETO S K, CHAN T C, WONG R L, et al. Prevalence of ocular manifestations and visual outcomes in patients with herpes zoster ophthalmicus[J]. Cornea, 2017, 36(3):338-342. DOI:10.1097/ICO.0000000000001046. ] [DOI] [PubMed] [Google Scholar]
  • 28.PORT A D, ORLIN A, KISS S, et al. Cytomegalovirus retinitis:a review. J Ocul Pharmacol Ther. 2017;33(4):224–234. doi: 10.1089/jop.2016.0140. [PORT A D, ORLIN A, KISS S, et al. Cytomegalovirus retinitis: a review[J]. J Ocul Pharmacol Ther, 2017, 33(4):224-234. DOI:10.1089/jop.2016.0140. ] [DOI] [PubMed] [Google Scholar]
  • 29.SUGITA S, SHIMIZU N, WATANABE K, et al. Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis. Br J Ophthalmol. 2008;92(7):928–932. doi: 10.1136/bjo.2007.133967. [SUGITA S, SHIMIZU N, WATANABE K, et al. Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis[J]. Br J Ophthalmol, 2008, 92(7):928-932. DOI:10.1136/bjo.2007.133967. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.GROSE C. Acute retinal necrosis caused by herpes simplex virus type 2 in children:reactivation of an undiagnosed latent neonatal herpes infection. Semin Pediatr Neurol. 2012;19(3):115–118. doi: 10.1016/j.spen.2012.02.005. [GROSE C. Acute retinal necrosis caused by herpes simplex virus type 2 in children: reactivation of an undiagnosed latent neonatal herpes infection[J]. Semin Pediatr Neurol, 2012, 19(3):115-118. DOI:10.1016/j.spen.2012.02.005. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.SATO T, KITAMURA R, KABURAKI T, et al. Retinitis associated with double infection of Epstein-Barr virus and varicella-zoster virus: A case report[J/OL]. Medicine (Baltimore), 2018, 97(31): e11663. DOI: .10.1097/MD.0000000000011663. [DOI] [PMC free article] [PubMed]
  • 32.OGATA N, KOIKE N, YOSHIKAWA T, et al. Human herpesvirus 6-associated uveitis with optic neuritis diagnosed by multiplex PCR. Jpn J Ophthalmol. 2011;55(5):502–505. doi: 10.1007/s10384-011-0069-4. [OGATA N, KOIKE N, YOSHIKAWA T, et al. Human herpesvirus 6-associated uveitis with optic neuritis diagnosed by multiplex PCR[J]. Jpn J Ophthalmol, 2011, 55(5):502-505. DOI:10.1007/s10384-011-0069-4. ] [DOI] [PubMed] [Google Scholar]
  • 33.MINODA H, USUI N, SATA T, et al. Human herpesvirus-8 in Kaposi's sarcoma of the conjunctiva in a patient with AIDS. Jpn J Ophthalmol. 2006;50(1):7–11. doi: 10.1007/s10384-005-0268-y. [MINODA H, USUI N, SATA T, et al. Human herpesvirus-8 in Kaposi's sarcoma of the conjunctiva in a patient with AIDS[J]. Jpn J Ophthalmol, 2006, 50(1):7-11. DOI:10.1007/s10384-005-0268-y. ] [DOI] [PubMed] [Google Scholar]
  • 34.BISPO P, DAVOUDI S, SAHM M L, et al. Rapid detection and identification of uveitis pathogens by qualitative multiplex real-time PCR. Invest Ophthalmol Vis Sci. 2018;59(1):582–589. doi: 10.1167/iovs.17-22597. [BISPO P, DAVOUDI S, SAHM M L, et al. Rapid detection and identification of uveitis pathogens by qualitative multiplex real-time PCR[J]. Invest Ophthalmol Vis Sci, 2018, 59(1):582-589. DOI:10.1167/iovs.17-22597. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.PRAMOD N P, THYAGARAJAN S P, MOHAN K V, et al. Polymerase chain reaction in the diagnosis of herpetic keratitis:experience in a developing country. Can J Ophthalmol. 2000;35(3):134–140. doi: 10.1016/s0008-4182(00)80006-x. [PRAMOD N P, THYAGARAJAN S P, MOHAN K V, et al. Polymerase chain reaction in the diagnosis of herpetic keratitis: experience in a developing country[J]. Can J Ophthalmol, 2000, 35(3):134-140. DOI:10.1016/s0008-4182(00)80006-x. ] [DOI] [PubMed] [Google Scholar]
  • 36.YAMAMOTO S, SHIMOMURA Y, KINOSHITA S, et al. Detection of herpes simplex virus DNA in human tear film by the polymerase chain reaction. Am J Ophthalmol. 1994;117(2):160–163. doi: 10.1016/s0002-9394(14)73071-5. [YAMAMOTO S, SHIMOMURA Y, KINOSHITA S, et al. Detection of herpes simplex virus DNA in human tear film by the polymerase chain reaction[J]. Am J Ophthalmol, 1994, 117(2):160-163. DOI:10.1016/s0002-9394(14)73071-5. ] [DOI] [PubMed] [Google Scholar]
  • 37.CULBERTSON W W, BLUMENKRANZ M S, J S PEPOSE J S, et al. Varicella zoster virus is a cause of the acute retinal necrosis syndrome. Ophthalmology. 1986;93(5):559–569. doi: 10.1016/s0161-6420(86)33701-1. [CULBERTSON W W, BLUMENKRANZ M S, J S PEPOSE J S, et al. Varicella zoster virus is a cause of the acute retinal necrosis syndrome[J]. Ophthalmology, 1986, 93(5):559-569. DOI:10.1016/s0161-6420(86)33701-1. ] [DOI] [PubMed] [Google Scholar]
  • 38.MIYAZAKI D, SHIMIZU D, SHIMIZU Y, et al. Diagnostic efficacy of real-time PCR for ocular cytomegalovirus infections. Graefes Arch Clin Exp Ophthalmol. 2018;256(12):2413–2420. doi: 10.1007/s00417-018-4111-9. [MIYAZAKI D, SHIMIZU D, SHIMIZU Y, et al. Diagnostic efficacy of real-time PCR for ocular cytomegalovirus infections[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(12):2413-2420. DOI:10.1007/s00417-018-4111-9. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.DAIBATA M, KOMATSU T, TAGUCHI H. Human herpesviruses in primary ocular lymphoma. Leuk Lymphoma. 2000;37(3-4):361–365. doi: 10.3109/10428190009089436. [DAIBATA M, KOMATSU T, TAGUCHI H. Human herpesviruses in primary ocular lymphoma[J]. Leuk Lymphoma, 2000, 37(3-4):361-365. DOI:10.3109/10428190009089436. ] [DOI] [PubMed] [Google Scholar]
  • 40.BOTO-DE-LOS-BUEIS A, ROMERO GÓMEZ M P, DEL HIERRO ZARZUELO A, et al. Recurrent ocular surface inflammation associated with human herpesvirus 6 infection[J/OL]. Eye Contact Lens, 2015, 41(3): e11-e13. DOI: .10.1097/ICL.0b013e3182a70a1b. [DOI] [PubMed]
  • 41.INOUE T, KANDORI M, TAKAMATSU F, et al. Corneal endotheliitis with quantitative polymerase chain reaction positive for human herpesvirus 7. Arch Ophthalmol. 2010;128(4):502–503. doi: 10.1001/archophthalmol.2010.35. [INOUE T, KANDORI M, TAKAMATSU F, et al. Corneal endotheliitis with quantitative polymerase chain reaction positive for human herpesvirus 7[J]. Arch Ophthalmol, 2010, 128(4):502-503. DOI:10.1001/archophthalmol.2010.35. ] [DOI] [PubMed] [Google Scholar]
  • 42.USUI Y, RAO N A, TAKASE H, et al. Comprehensive polymerase chain reaction assay for detection of pathogenic DNA in lymphoproliferative disorders of the ocular adnexa. Sci Rep. 2016;6:36621. doi: 10.1038/srep36621. [USUI Y, RAO N A, TAKASE H, et al. Comprehensive polymerase chain reaction assay for detection of pathogenic DNA in lymphoproliferative disorders of the ocular adnexa[J]. Sci Rep, 2016, 6:36621. DOI:10.1038/srep36621. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.BRASNU E, WECHSLER B, BRON A, et al. Efficacy of interferon-alpha for the treatment of Kaposi's sarcoma herpesvirus-associated uveitis. Am J Ophthalmol. 2005;140(4):746–748. doi: 10.1016/j.ajo.2005.04.025. [BRASNU E, WECHSLER B, BRON A, et al. Efficacy of interferon-alpha for the treatment of Kaposi's sarcoma herpesvirus-associated uveitis[J]. Am J Ophthalmol, 2005, 140(4):746-748. DOI:10.1016/j.ajo.2005.04.025. ] [DOI] [PubMed] [Google Scholar]
  • 44.UCHIMARU K, NAKAMURA Y, TOJO A, et al. Factors predisposing to HTLV-1 infection in residents of the greater Tokyo area. Int J Hematol. 2008;88(5):565–570. doi: 10.1007/s12185-008-0209-x. [UCHIMARU K, NAKAMURA Y, TOJO A, et al. Factors predisposing to HTLV-1 infection in residents of the greater Tokyo area[J]. Int J Hematol, 2008, 88(5):565-570. DOI:10.1007/s12185-008-0209-x. ] [DOI] [PubMed] [Google Scholar]
  • 45.WATANABE T. Current status of HTLV-1 infection. Int J Hematol. 2011;94(5):430–434. doi: 10.1007/s12185-011-0934-4. [WATANABE T. Current status of HTLV-1 infection[J]. Int J Hematol, 2011, 94(5):430-434. DOI:10.1007/s12185-011-0934-4. ] [DOI] [PubMed] [Google Scholar]
  • 46.王 惠榕, 严 延生, 张 秋文, et al. 福建东部沿海地区人类嗜T淋巴细胞白血病病毒Ⅰ/Ⅱ感染的血清流行病学研究. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhlxbx200405017. 中华流行病学杂志. 2004;25(5):428–430. [王惠榕, 严延生, 张秋文, 等.福建东部沿海地区人类嗜T淋巴细胞白血病病毒Ⅰ/Ⅱ感染的血清流行病学研究[J]. 中华流行病学杂志, 2004, 25(5):428-430. ] [PubMed] [Google Scholar]
  • 47.The T- and B-cell malignancy Study Group: The 4th nation-wide study of adult T-cell leukemia/lymphoma (ATL) in Japan--estimates of risk of ATL and its geographical and clinical features[J]. Gan No Rinsho, 1990, Spec No: 431-441. [PubMed]
  • 48.MOCHIZUKI M, WATANABE T, YAMAGUCHI K, et al. Uveitis associated with human T lymphotropic virus type I:seroepidemiologic, clinical, and virologic studies. J Infect Dis. 1992;166(4):943–944. doi: 10.1093/infdis/166.4.943. [MOCHIZUKI M, WATANABE T, YAMAGUCHI K, et al. Uveitis associated with human T lymphotropic virus type I: seroepidemiologic, clinical, and virologic studies[J]. J Infect Dis, 1992, 166(4):943-944. DOI:10.1093/infdis/166.4.943. ] [DOI] [PubMed] [Google Scholar]
  • 49.ONO A, MOCHIZUKI M, YAMAGUCHI K, et al. Immunologic and virologic characterization of the primary infiltrating cells in the aqueous humor of human T-cell leukemia virus type-1 uveitis. Accumulation of the human T-cell leukemia virus type-1-infected cells and constitutive expression of viral and interleukin-6 messenger ribonucleic acids. http://www.ncbi.nlm.nih.gov/pubmed/9071222. Invest Ophthalmol Vis Sci. 1997;38(3):676–689. [ONO A, MOCHIZUKI M, YAMAGUCHI K, et al. Immunologic and virologic characterization of the primary infiltrating cells in the aqueous humor of human T-cell leukemia virus type-1 uveitis. Accumulation of the human T-cell leukemia virus type-1-infected cells and constitutive expression of viral and interleukin-6 messenger ribonucleic acids[J]. Invest Ophthalmol Vis Sci, 1997, 38(3):676-689. ] [PubMed] [Google Scholar]
  • 50.SAGAWA K, MOCHIZUKI M, MASUOKA K, et al. Immunopathological mechanisms of human T cell lymphotropic virus type 1(HTLV-I) uveitis. Detection of HTLV-I-infected T cells in the eye and their constitutive cytokine production. J Clin Invest. 1995;95(2):852–858. doi: 10.1172/JCI117735. [SAGAWA K, MOCHIZUKI M, MASUOKA K, et al. Immunopathological mechanisms of human T cell lymphotropic virus type 1 (HTLV-I) uveitis. Detection of HTLV-I-infected T cells in the eye and their constitutive cytokine production[J]. J Clin Invest, 1995, 95(2):852-858. DOI:10.1172/JCI117735. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.李 雪杰, 汪 明, 陈 长征, et al. 伴发或首发病毒性结膜炎的新型冠状病毒感染下眼科医师的防控策略. 中华实验眼科杂志. 2020;38(3):276–280. doi: 10.3760/cma.j.issn.2095-0160.2020.0002. [李雪杰, 汪明, 陈长征, 等.伴发或首发病毒性结膜炎的新型冠状病毒感染下眼科医师的防控策略[J]. 中华实验眼科杂志, 2020, 38(3):276-280. DOI:10.3760/cma.j.issn.2095-0160.2020.0002. ] [DOI] [Google Scholar]
  • 52.XIA J, TONG J, LIU M, et al. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol. 2020;92(6):589–594. doi: 10.1002/jmv.25725. [XIA J, TONG J, LIU M, et al. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection[J]. J Med Virol, 2020, 92(6):589-594. DOI:10.1002/jmv.25725. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.徐 凯进, 蔡 洪流, 沈 毅弘, et al. 2019冠状病毒病(COVID-19)诊疗浙江经验. http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.02. 浙江大学学报(医学版) 2020;49(2):147–157. doi: 10.3785/j.issn.1008-9292.2020.02.02. [徐凯进, 蔡洪流, 沈毅弘, 等.2019冠状病毒病(COVID-19)诊疗浙江经验[J]. 浙江大学学报(医学版), 2020, 49(2):147-157. DOI:10.3785/j.issn.1008-9292.2020.02.02. ] [DOI] [Google Scholar]
  • 54.LU R, ZHAO X, LI J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi: 10.1016/S0140-6736(20)30251-8. [LU R, ZHAO X, LI J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395(10224):565-574. DOI:10.1016/S0140-6736(20)30251-8. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.孙 琰, 潘 欣, 柳 林, et al. SARS-CoVS蛋白功能性受体ACE2在人、兔角膜、结膜中的表达. 眼科新进展. 2004;24(5):332–336. doi: 10.3969/j.issn.1003-5141.2004.05.002. [孙琰, 潘欣, 柳林, 等.SARS-CoVS蛋白功能性受体ACE2在人、兔角膜、结膜中的表达[J]. 眼科新进展, 2004, 24(5):332-336. DOI:10.3969/j.issn.1003-5141.2004.05.002. ] [DOI] [Google Scholar]
  • 56.HAMMING I, TIMENS W, BULTHUIS M L, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570. [HAMMING I, TIMENS W, BULTHUIS M L, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis[J]. J Pathol, 2004, 203(2):631-637. DOI:10.1002/path.1570. ] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES