Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2020 Aug 25;49(4):524–530. [Article in Chinese] doi: 10.3785/j.issn.1008-9292.2020.08.12

复髓鞘机制及其在多发性硬化症脱髓鞘模型中的研究进展

Mechanisms underlying remyelination with special focus on demyelination models of multiple sclerosis

Shuangshuang ZHENG 1, Jingwei ZHAO 1,2,3,*
PMCID: PMC8800757  PMID: 32985167

Abstract

在多发性硬化症患者的中枢神经系统中,脱髓鞘的轴突难以有效复髓鞘是治疗疾病的主要障碍,而髓鞘再生失败的瓶颈问题是少突胶质细胞前体细胞(OPC)不能分化为成熟的少突胶质细胞。复髓鞘是继脱髓鞘后自然发生的再生反应,包括OPC的激活、迁移和分化;具有保护神经轴突、进而避免神经元变性坏死的作用。近年来在体脱髓鞘模型研究发现,二甲双胍、氯马斯汀能有效加强复髓鞘,鉴定了髓鞘转录因子1样蛋白(Myt1L)、 N-甲基- D-天门冬氨酸(NMDA)受体、星形细胞连接蛋白43(Cx43)、G蛋白偶联受体17(GPR17)、κ阿片受体(KOR)、甾醇14α-脱甲基化酶(CYP51)、脱氢胆固醇还原酶14(TM7SF2)和3-β-羟基类固醇-8,7-异构酶(EBP)等促进OPC分化的潜在药物靶点。本文基于对复髓鞘机制的理解,讨论了促进OPC分化和增强复髓鞘的研究进展,这些进展为进一步研发治疗多发性硬化症的新方法提供了思路。


神经系统的运动、感觉和认知等正常功能的发挥依赖于神经冲动的快速传导。在脊椎动物中,轴突的髓鞘化实现了神经冲动的跳跃式传导,大大加快了神经冲动的传导速度 [ 1] 。髓鞘是包裹在有髓轴突外的多层紧密脂质膜,其主要生理功能是保护神经轴突、为神经冲动的跳跃式传导提供结构基础,并为轴突代谢提供营养支持 [ 2] 。复髓鞘是成年中枢神经系统自然发生的再生过程,具有防止神经变性和维持正常神经功能的作用 [ 3- 4] ,可以促使患有多发性硬化症(multiple sclerosis,MS)等脱髓鞘疾病的患者神经冲动正常传导和维持正常的轴突功能。但是随着衰老或者MS疾病进展,髓鞘修复效率逐渐降低 [ 4] ,导致髓鞘再生不完全甚至复髓鞘失败。如果不能有效复髓鞘,轴突会进一步变性,最终导致神经元变性坏死进而引发相关的神经或精神症状。鉴于成年后中枢神经系统内神经元几乎没有再生能力,因而髓鞘的这种再生潜力备受关注。

少突胶质细胞是中枢神经系统中一群高度特化的胶质细胞,其主要功能是形成髓鞘,为轴突提供能量,且维持轴突的完整性 [ 5] 。少突胶质细胞前体细胞(oligodendrocyte progenitor cell,OPC)是可分化为少突胶质细胞的前体细胞,在胚胎阶段增殖并迁移到整个中枢神经系统,到成年占脑内细胞总数的5%~8% [ 6] 。当发生脱髓鞘时,OPC会被激活,开始增殖和迁移,募集到脱髓鞘区域,随后分化为成熟的少突胶质细胞,形成新的髓鞘以包裹神经元的轴突,从而达到髓鞘再生的目的。基于OPC是负责受损髓鞘修复的关键角色,靶向OPC和增强复髓鞘的策略成为探索MS等脱髓鞘疾病新的治疗方法研究的焦点。本文首先从OPC的激活、迁移和分化三个方面介绍复髓鞘的机制,接着重点阐述近些年在MS模型中加强复髓鞘的研究进展,期望为临床治疗MS提供新的思路。

1 复髓鞘的机制

当髓鞘变性或受损后,病变区附近的成年OPC会被激活,改变其形状和基因表达。通过扩散和迁移,成年OPC募集到病变区,进而分化、成熟形成少突胶质细胞,最终形成新的髓鞘,这个过程称为复髓鞘 [ 7- 8] 。复髓鞘涉及OPC的激活、募集(增殖和迁移)以及分化为成熟的可形成髓鞘的少突胶质细胞三个不同阶段,并且每个阶段都由复杂的细胞和信号分子调控。通过研究转基因小鼠细胞遗传命运图谱可进一步证明脱髓鞘病变后新的少突胶质细胞是由成年OPC生成 [ 8]

1.1 OPC的激活

基因谱分析揭示成年OPC在脱髓鞘病变之后会被重新激活到新生OPC状态,通过产生多种细胞因子改善炎症环境,并增强复髓鞘能力,促进髓鞘修复 [ 7]

已证明转录因子TCF7L2、HES5和ID2/4在OPC激活过程中表达增加,通过组蛋白修饰酶募集到髓鞘基因启动子区上游而抑制髓鞘基因表达,从而抑制OPC的分化 [ 9- 10] 。同时发现Sox2在脱髓鞘后被激活的成年OPC中表达上调,在MS病变区也能检测到,但在正常中枢神经系统中的成年OPC和少突胶质细胞中没有表达。体外培养过表达Sox2能促进成年OPC的增殖,而 Sox2敲除造成OPC增殖下降,数量减少 [ 11] 。由此可见,Sox2表达模式改变对成年OPC的激活和复髓鞘具有重要的调控作用,其表达模式与TCF7L2等OPC的转录因子表达模式相似。

1.2 OPC的迁移

为了使轴突髓鞘化,在中枢神经系统的发育过程中OPC需要从其原始位置迁移到白质中。在大脑和脊髓的发育过程中,OPC自出现后开始大量迁移到中枢神经系统各处,实现均匀分布 [ 6] 。在胚胎小鼠的脑和脊髓中,OPC以一种跳跃或爬行模式沿血管迁移,Wnt-Cxcr4信号参与调节OPC迁移过程中与血管内皮细胞的相互作用,并且在血管结构受损的小鼠中OPC的迁移也会随之受到影响,不能正常迁移 [ 12] 。这一研究首次提示了血管作为OPC迁移的支架这一结论。

目前,有关OPC在髓鞘形成过程中迁移机制的研究大多是揭示其在发育过程中的规律,鲜有脱髓鞘病变条件下的研究,但已有的研究结果为研究复髓鞘过程中OPC迁移到脱髓鞘区域提供了重要线索和启发。

1.3 OPC的分化和髓鞘再生

OPC向少突胶质细胞的分化和进一步发生的髓鞘再生受到时间和空间的调节。当OPC迁移到病变区开始分化的同时,它从细胞周期退出,因为控制OPC增殖的机制与控制其分化的机制之间存在排他性 [ 13] 。细胞周期蛋白依赖性激酶抑制剂p27Kip1在OPC退出细胞周期中起决定作用 [ 13]

OPC分化为成熟的少突胶质细胞后便开始形成新的髓鞘。形成髓鞘时,髓鞘的厚度与轴突直径存在明显的相关性 [ 14] 。在复髓鞘时,新生髓鞘往往比原来的髓鞘更薄 [ 14] 。这个特征也被广泛用于区分新生髓鞘和正常髓鞘,尤其在电镜下观察更加直观。在周围神经系统中,神经调节蛋白1(neuregulin-1,Nrg1)与髓鞘厚度密切相关,Nrg1表达减少导致髓鞘变薄和神经传导变慢,过表达则髓鞘过多,可见Nrg1对周围神经系统的髓鞘形成至关重要 [ 15] 。但Nrg1在中枢神经系统复髓鞘过程中并不发挥作用,发育过程中的髓鞘形成也不是必需的,缺乏Nrg1的少突胶质细胞依旧可以产生髓鞘 [ 16]

近年来,很多研究揭示了髓鞘形成过程的分子机制和信号传导通路。其中,Wnt/β-catenin、PI3K/AKT/mTOR和ERK/MAPK是三个高度保守的细胞内信号通路,不论在发育期间还是在复髓鞘过程中,均参与调控了OPC分化和髓鞘形成 [ 17] 。Wnt信号通路是控制少突胶质细胞生长发育等方面的关键信号传导机制,包括OPC的特化、分化、髓鞘化以及复髓鞘 [ 18- 19] 。蛋白激酶ERK1和ERK2的信号通路在控制髓鞘形成中发挥着重要作用,体外研究表明,ERK1/2信号通路可促进OPC分化,且其持续激活能够在脱髓鞘损伤的小鼠模型中促进髓鞘修复,增加新生髓鞘厚度 [ 17, 20] 。AKT信号通路在复髓鞘过程中维持OPC的生长和分化,而在 PIEK敲除突变体的大脑中,溶血卵磷脂诱导的脱髓鞘损伤区髓鞘修复延迟 [ 21]

2 基于加强复髓鞘的多发性硬化症治疗策略

MS是中枢神经系统典型的脱髓鞘疾病,是一种免疫介导的慢性炎性脱髓鞘疾病,会造成脑和脊髓正常白质的组织损伤和灰质损伤,并且几乎所有的MS患者都可发生功能性皮质改变 [ 22] 。鉴于对复髓鞘机制的认识,提高复髓鞘效率最直接的途径是促进OPC的分化。在MS病变区阴影斑块的出现代表复髓鞘,OPC迁移到病变区分化成熟为少突胶质细胞,促进髓鞘再生。在20%的MS患者中,复髓鞘活跃,在斑块中最终会产生新的髓鞘 [ 23- 24] 。在衰老或持续炎症等情况下,更多的是髓鞘再生失败或者不完全,因为脱髓鞘和复髓鞘的重复周期耗尽了组织修复能力 [ 25] 。因此,本文重点关注如何促进OPC分化和提高复髓鞘效率。

2.1 开发促进髓鞘修复的新药

由于MS致残率高而致死率低,从患者首次发病起,病程迁延长达数十年,且患者神经系统复髓鞘的效率和成败取决于病程阶段 [ 26] 。在病程初期,复髓鞘效率较高,因而可以自愈。然而,到了病程晚期,尤其是在进展期,随着患者年龄衰老,如同其他的再生过程一样,复髓鞘效率自然随衰老而下降 [ 27] 。因此,采用老年动物脱髓鞘模型的研究对于探索增强复髓鞘效率的新策略更为有效。Ruckh等 [ 28] 首次揭示了年轻机体的血液能够使老年脑内OPC的修复能力增强至年轻的水平,改善老年小鼠体内的OPC局部微环境,扭转了因年龄增长造成的复髓鞘效率下降的现象,提示即使在老年阶段,给予合适的药物仍然能够促进损伤的髓鞘得到修复。这一结果为开发新药促进老年OPC的修复效率带来希望。Neumann等 [ 29] 研究证实,常用于降低血糖、改善代谢的药物二甲双胍和间断节食通过增强线粒体功能有效恢复了老年大鼠体内OPC的分化能力,从而促进髓鞘再生。这一老药新用的研究成果提示二甲双胍和间断节食有望用于治疗慢性脱髓鞘疾病,是迄今髓鞘再生领域最重要的进展之一。Lu等 [ 30] 首次报道莽草酸通过PI3K/Akt/mTOR信号通路促进OPC分化和成熟,减轻了炎性MS动物模型实验性变态反应性脑脊髓炎(experimental allergic encephalomyelitis,EAE)评分,并且提高了体内溶血卵磷脂诱导的脱髓鞘损伤后的复髓鞘效率,提示了莽草酸在MS上的治疗潜力。

Mei等 [ 31] 采用治疗MS药物的新型高通量筛选平台鉴定了包括clemastine在内的8种经过食品药品监督管理局批准的具有抗毒蕈碱特性的化合物,均可有效促进OPC分化和复髓鞘。Wang等 [ 32] 采用多种荧光报告小鼠模型进一步实验发现,敲除OPC中的 Chrm1或用氯马斯汀处理增强衰老小鼠复髓鞘,可以改善衰老引起的记忆功能下降,另有研究显示,其在慢性缺氧后有助于脑白质功能恢复 [ 33] ,证实了新型治疗MS的药物筛选和鉴定策略的可行性。

目前,临床上治疗MS的重点是减少免疫细胞浸润、降低炎症和自身免疫反应。针对脱髓鞘这一核心病理目前尚无有效药物。其中,针对特异表达于成熟淋巴细胞T细胞和B细胞上的CD52人源化的单克隆抗体阿仑珠单抗是最为有效的Ⅲ期临床试验药物之一。接受阿仑珠单抗治疗的复发-缓解型MS患者中,71%的患者病情得到改善或残疾缓解,且疗效维持12年以上,患者自身CD4 +T淋巴细胞的免疫重建得以加强,故而阻止疾病复发、减轻残疾 [ 34- 35] 。这一结果为人源化单克隆抗体通过免疫重塑治疗MS带来了新的疗法。

2.2 识别促进OPC分化的靶点

慢性脱髓鞘病变区通常包含OPC和停滞在分化阶段的早期少突胶质细胞 [ 36] 。复髓鞘失败的关键原因是OPC不能分化为成熟的可形成髓鞘的少突胶质细胞,从而产生新的髓鞘 [ 37] 。因此,促进OPC的分化对于治疗MS至关重要。髓鞘转录因子1样蛋白(Myt1L)是调节中枢神经系统发育的重要转录因子之一,Shi等 [ 38] 发现在溶血卵磷脂诱导的体内脱髓鞘后,Myt1L有效提高复髓鞘效率,ChIP测序分析表明Myt1L与Olig1的启动子结合并转录调控Olig1的表达,由此证明了Myt1L是OPC分化的重要调节剂,提示了Myt1L可作为髓鞘修复的潜在治疗靶点。Li等 [ 39] 阐明了 N-甲基- D-天门冬氨酸(NMDA)受体在OPC分化和复髓鞘的关键性作用,鉴定NMDA受体是OPC分化和复髓鞘的调控因子,依赖mTOR信号通路发挥作用。星形细胞连接蛋白43(Cx43)参与维持星形胶质细胞网络稳态、影响少突胶质细胞的发育,并与中枢神经系统病变以及损伤进展有关。Li等 [ 40] 首次阐明Cx43在复髓鞘中的作用,通过Cx43半通道促进局部炎症而负向调控复髓鞘过程。这一结果提示,抑制Cx43半通道功能可能是MS的治疗靶点。

促进复髓鞘的另一个潜在靶点是G蛋白偶联受体17(GPR17),它参与调控少突胶质细胞的生成和髓鞘形成,在病理条件下复髓鞘过程中也发挥重要作用 [ 41- 42] ,在体外可直接介导小胶质细胞的激活 [ 43] 。同样作为治疗MS的潜在药物靶点κ阿片受体是G蛋白偶联受体家族成员,对OPC向少突胶质细胞的分化非常重要,是促进生成少突胶质细胞和复髓鞘的激动剂。值得注意的是,κ阿片受体对于人iPSC来源的OPC具有相同的促分化作用 [ 44] ,提示了κ阿片受体在MS临床治疗中的前景。

脂类和蛋白分别占髓鞘重量的70%和30%,而胆固醇是髓鞘的重要脂性成份 [ 1] 。Cantuti-Castelvetri等 [ 45] 首次发现在髓鞘遭受破坏之后,胆固醇的积累造成持续性炎症,进而阻止髓鞘再生,且年龄越大,吞噬细胞清除胆固醇的能力越差,慢性炎症越严重。这一结果提示,可利用有效促进细胞转运胆固醇的药物减轻炎症的发生程度,实现髓鞘再生。Hubler等 [ 46] 鉴定了8, 9-不饱和甾醇促进复髓鞘的关键机制,抑制胆固醇合成途径的甾醇14α-脱甲基化酶(CYP51)、脱氢胆固醇还原酶14(TM7SF2)和3-β-羟基类固醇-8,7-异构酶(EBP)三种酶引起8, 9-不饱和甾醇的蓄积,其中间体含量随之提升,最终加强OPC分化和复髓鞘效率。选择性雌激素受体调节剂增强髓鞘再生的目标靶点之一是EBP [ 47] ,进一步证明胆固醇合成途径在OPC分化过程有着独特研究意义,为开发MS的治疗方案提供了新的药物靶标。

2.3 其他加强复髓鞘的策略

Miron等 [ 48] 揭示了小胶质细胞/巨噬细胞的极化状态从M1型到M2型的转换可促进OPC分化,通过联体共生技术进一步证明年轻小鼠的小胶质细胞/巨噬细胞能改善老年小鼠的脱髓鞘病变环境,增加老年小鼠中枢神经系统中M2型小胶质细胞的数量,并最终增强复髓鞘能力 [ 48] 。这一结果提示促进小胶质细胞/巨噬细胞向M2型极化是促进髓鞘修复效率的新策略。深入探索如何增强中枢神经系统复髓鞘能力,对研发更多直接加强髓鞘修复和保护轴突的神经修复治疗方法具有重要意义。

3 展望

MS的治疗目前仅限于控制炎症和对症治疗,缺乏针对脱髓鞘这一核心病理机制的有效促进复髓鞘的治疗方法。在中枢神经系统发生脱髓鞘后,可自发产生补偿性修复机制以保护受损的轴突免于进一步受损。一般在疾病早期复髓鞘相对有效,到了晚期,许多病变区持续且长期脱髓鞘,髓鞘再生严重受阻,最终导致神经退行病变。由此可见,针对促进复髓鞘效率的研究十分急迫,如何有效治疗MS尚且任重道远。目前的瓶颈问题是,在慢性脱髓鞘情况下,不能在裸露的轴突周围有效形成新的髓鞘。MS疾病病程复杂,近年来在MS治疗方面取得了诸多进展,普遍的治疗方法是以免疫系统为目标,降低新病变的发生率,阻止免疫介导的髓鞘损伤,但是尚不能促进髓鞘完全再生 [ 49] 。因此,以OPC为靶点促进髓鞘再生过程为治疗中枢和外周神经系统脱髓鞘疾病提供了一种关键途径。随着MS和复髓鞘研究的深入,开发直接促进髓鞘修复的新药物是一种有效可行的策略,鉴定促进OPC分化的关键靶点,将为治疗MS带来新的治疗方法。

Funding Statement

国家重点研发计划(2017YFA0104900);国家自然科学基金(81971144,81571170);后勤保障部重点项目(BZZ19J005);宁夏回族自治区重点研发计划(2019BFH02012)

References

  • 1.NAVE K A, WERNER H B. Myelination of the nervous system:mechanisms and functions. Annu Rev Cell Dev Biol. 2014;30:503–533. doi: 10.1146/annurev-cellbio-100913-013101. [NAVE K A, WERNER H B. Myelination of the nervous system:mechanisms and functions[J]. Annu Rev Cell Dev Biol, 2014, 30:503-533. DOI:10.1146/annurev-cellbio-100913-013101. ] [DOI] [PubMed] [Google Scholar]
  • 2.NAVE K A. Myelination and the trophic support of long axons. Nat Rev Neurosci. 2010;11(4):275–283. doi: 10.1038/nrn2797. [NAVE K A. Myelination and the trophic support of long axons[J]. Nat Rev Neurosci, 2010, 11(4):275-283. DOI:10.1038/nrn2797. ] [DOI] [PubMed] [Google Scholar]
  • 3.DUNCAN I D, BROWER A, KONDO Y, et al. Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci U S A. 2009;106(16):6832–6836. doi: 10.1073/pnas.0812500106. [DUNCAN I D, BROWER A, KONDO Y, et al. Extensive remyelination of the CNS leads to functional recovery[J]. Proc Natl Acad Sci U S A, 2009, 106(16):6832-6836. DOI:10.1073/pnas.0812500106. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.FRANKLIN R, FFRENCH-CONSTANT C. Regenerating CNS myelin-from mechanisms to experimental medicines. Nat Rev Neurosci. 2017;18(12):753–769. doi: 10.1038/nrn.2017.136. [FRANKLIN R, FFRENCH-CONSTANT C. Regenerating CNS myelin-from mechanisms to experimental medicines[J]. Nat Rev Neurosci, 2017, 18(12):753-769. DOI:10.1038/nrn.2017.136. ] [DOI] [PubMed] [Google Scholar]
  • 5.FVNFSCHILLING U, SUPPLIE L M, MAHAD D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485(7399):517–521. doi: 10.1038/nature11007. [FVNFSCHILLING U, SUPPLIE L M, MAHAD D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity[J]. Nature, 2012, 485(7399):517-521. DOI:10.1038/nature11007. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.HUGHES E G, KANG S H, FUKAYA M, et al. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci. 2013;16(6):668–676. doi: 10.1038/nn.3390. [HUGHES E G, KANG S H, FUKAYA M, et al. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain[J]. Nat Neurosci, 2013, 16(6):668-676. DOI:10.1038/nn.3390. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.MOYON S, DUBESSY A L, AIGROT M S, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci. 2015;35(1):4–20. doi: 10.1523/JNEUROSCI.0849-14.2015. [MOYON S, DUBESSY A L, AIGROT M S, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration[J]. J Neurosci, 2015, 35(1):4-20. DOI:10.1523/JNEUROSCI.0849-14.2015. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.ZAWADZKA M, RIVERS L E, FANCY S P, et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell. 2010;6(6):578–590. doi: 10.1016/j.stem.2010.04.002. [ZAWADZKA M, RIVERS L E, FANCY S P, et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination[J]. Cell Stem Cell, 2010, 6(6):578-590. DOI:10.1016/j.stem.2010.04.002. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.SHEN S, SANDOVAL J, SWISS V A, et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci. 2008;11(9):1024–1034. doi: 10.1038/nn.2172. [SHEN S, SANDOVAL J, SWISS V A, et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency[J]. Nat Neurosci, 2008, 11(9):1024-1034. DOI:10.1038/nn.2172. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.YE F, CHEN Y, HOANG T, et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci. 2009;12(7):829–838. doi: 10.1038/nn.2333. [YE F, CHEN Y, HOANG T, et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction[J]. Nat Neurosci, 2009, 12(7):829-838. DOI:10.1038/nn.2333. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.ZHAO C, MA D, ZAWADZKA M, et al. Sox2 sustains recruitment of oligodendrocyte progenitor cells following CNS demyelination and primes them for differentiation during remyelination. J Neurosci. 2015;35(33):11482–11499. doi: 10.1523/JNEUROSCI.3655-14.2015. [ZHAO C, MA D, ZAWADZKA M, et al. Sox2 sustains recruitment of oligodendrocyte progenitor cells following CNS demyelination and primes them for differentiation during remyelination[J]. J Neurosci, 2015, 35(33):11482-11499. DOI:10.1523/JNEUROSCI.3655-14.2015. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.TSAI H H, NIU J, MUNJI R, et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science. 2016;351(6271):379–384. doi: 10.1126/science.aad3839. [TSAI H H, NIU J, MUNJI R, et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system[J]. Science, 2016, 351(6271):379-384. DOI:10.1126/science.aad3839. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.CASACCIA-BONNEFIL P, TIKOO R, KIYOKAWA H, et al. Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev. 1997;11(18):2335–2346. doi: 10.1101/gad.11.18.2335. [CASACCIA-BONNEFIL P, TIKOO R, KIYOKAWA H, et al. Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1[J]. Genes Dev, 1997, 11(18):2335-2346. DOI:10.1101/gad.11.18.2335. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.POWERS B E, SELLERS D L, LOVELETT E A, et al. Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin. Proc Natl Acad Sci U S A. 2013;110(10):4075–4080. doi: 10.1073/pnas.1210293110. [POWERS B E, SELLERS D L, LOVELETT E A, et al. Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin[J]. Proc Natl Acad Sci U S A, 2013, 110(10):4075-4080. DOI:10.1073/pnas.1210293110. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.MICHAILOV G V, SEREDA M W, BRINKMANN B G, et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science. 2004;304(5671):700–703. doi: 10.1126/science.1095862. [MICHAILOV G V, SEREDA M W, BRINKMANN B G, et al. Axonal neuregulin-1 regulates myelin sheath thickness[J]. Science, 2004, 304(5671):700-703. DOI:10.1126/science.1095862. ] [DOI] [PubMed] [Google Scholar]
  • 16.BRINKMANN B G, AGARWAL A, SEREDA M W, et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron. 2008;59(4):581–595. doi: 10.1016/j.neuron.2008.06.028. [BRINKMANN B G, AGARWAL A, SEREDA M W, et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system[J]. Neuron, 2008, 59(4):581-595. DOI:10.1016/j.neuron.2008.06.028. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.GAESSER J M, FYFFE-MARICICH S L. Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp Neurol. 2016;283(Pt B):501–511. doi: 10.1016/j.expneurol.2016.03.008. [GAESSER J M, FYFFE-MARICICH S L. Intracellular signaling pathway regulation of myelination and remyelination in the CNS[J]. Exp Neurol, 2016, 283(Pt B):501-511. DOI:10.1016/j.expneurol.2016.03.008. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.GUO F, LANG J, SOHN J, et al. Canonical Wnt signaling in the oligodendroglial lineage--puzzles remain. Glia. 2015;63(10):1671–1693. doi: 10.1002/glia.22813. [GUO F, LANG J, SOHN J, et al. Canonical Wnt signaling in the oligodendroglial lineage--puzzles remain[J]. Glia, 2015, 63(10):1671-1693. DOI:10.1002/glia.22813. ] [DOI] [PubMed] [Google Scholar]
  • 19.XIE C, LI Z, ZHANG G X, et al. Wnt signaling in remyelination in multiple sclerosis:friend or foe? Mol Neurobiol. 2014;49(3):1117–1125. doi: 10.1007/s12035-013-8584-6. [XIE C, LI Z, ZHANG G X, et al. Wnt signaling in remyelination in multiple sclerosis:friend or foe?[J]. Mol Neurobiol, 2014, 49(3):1117-1125. DOI:10.1007/s12035-013-8584-6. ] [DOI] [PubMed] [Google Scholar]
  • 20.FYFFE-MARICICH S L, SCHOTT A, KARL M, et al. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system. J Neurosci. 2013;33(47):18402–18408. doi: 10.1523/JNEUROSCI.2381-13.2013. [FYFFE-MARICICH S L, SCHOTT A, KARL M, et al. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system[J]. J Neurosci, 2013, 33(47):18402-18408. DOI:10.1523/JNEUROSCI.2381-13.2013. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.CHAN C B, LIU X, ZHAO L, et al. PIKE is essential for oligodendroglia development and CNS myelination. Proc Natl Acad Sci U S A. 2014;111(5):1993–1998. doi: 10.1073/pnas.1318185111. [CHAN C B, LIU X, ZHAO L, et al. PIKE is essential for oligodendroglia development and CNS myelination[J]. Proc Natl Acad Sci U S A, 2014, 111(5):1993-1998. DOI:10.1073/pnas.1318185111. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.FILIPPI M, ROCCA M A. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol. 2005;252(Suppl 5):v16–24. doi: 10.1007/s00415-005-5004-5. [FILIPPI M, ROCCA M A. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system[J]. J Neurol, 2005, 252 Suppl 5:v16-24. DOI:10.1007/s00415-005-5004-5. ] [DOI] [PubMed] [Google Scholar]
  • 23.REYNOLDS R, RONCAROLI F, NICHOLAS R, et al. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol. 2011;122(2):155–170. doi: 10.1007/s00401-011-0840-0. [REYNOLDS R, RONCAROLI F, NICHOLAS R, et al. The neuropathological basis of clinical progression in multiple sclerosis[J]. Acta Neuropathol, 2011, 122(2):155-170. DOI:10.1007/s00401-011-0840-0. ] [DOI] [PubMed] [Google Scholar]
  • 24.PATRIKIOS P, STADELMANN C, KUTZELNIGG A, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129(Pt 12):3165–3172. doi: 10.1093/brain/awl217. [PATRIKIOS P, STADELMANN C, KUTZELNIGG A, et al. Remyelination is extensive in a subset of multiple sclerosis patients[J]. Brain, 2006, 129(Pt 12):3165-3172. DOI:10.1093/brain/awl217. ] [DOI] [PubMed] [Google Scholar]
  • 25.COMPSTON A, COLES A. Multiple sclerosis. Lancet. 2008;372(9648):1502–1517. doi: 10.1016/S0140-6736(08)61620-7. [COMPSTON A, COLES A. Multiple sclerosis[J]. Lancet, 2008, 372(9648):1502-1517. DOI:10.1016/S0140-6736(08)61620-7. ] [DOI] [PubMed] [Google Scholar]
  • 26.HEß K, STAROST L, KIERAN N W, et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 2020;140(3):359–375. doi: 10.1007/s00401-020-02189-9. [HEß K, STAROST L, KIERAN N W, et al. Lesion stage-dependent causes for impaired remyelination in MS[J]. Acta Neuropathol, 2020, 140(3):359-375. DOI:10.1007/s00401-020-02189-9. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.NEUMANN B, SEGEL M, CHALUT K J, et al. Remyelination and ageing:Reversing the ravages of time. Mult Scler. 2019;25(14):1835–1841. doi: 10.1177/1352458519884006. [NEUMANN B, SEGEL M, CHALUT K J, et al. Remyelination and ageing:Reversing the ravages of time[J]. Mult Scler, 2019, 25(14):1835-1841. DOI:10.1177/1352458519884006. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.RUCKH J M, ZHAO J W, SHADRACH J L, et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell. 2012;10(1):96–103. doi: 10.1016/j.stem.2011.11.019. [RUCKH J M, ZHAO J W, SHADRACH J L, et al. Rejuvenation of regeneration in the aging central nervous system[J]. Cell Stem Cell, 2012, 10(1):96-103. DOI:10.1016/j.stem.2011.11.019. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.NEUMANN B, BAROR R, ZHAO C, et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell. 2019;25(4):473–485. doi: 10.1016/j.stem.2019.08.015. [NEUMANN B, BAROR R, ZHAO C, et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells[J]. Cell Stem Cell, 2019, 25(4):473-485.e8. DOI:10.1016/j.stem.2019.08.015. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.LU F, YIN D, PU Y, et al. Shikimic acid promotes oligodendrocyte precursor cell differentiation and accelerates remyelination in mice. Neurosci Bull. 2019;35(3):434–446. doi: 10.1007/s12264-018-0322-7. [LU F, YIN D, PU Y, et al. Shikimic acid promotes oligodendrocyte precursor cell differentiation and accelerates remyelination in mice[J]. Neurosci Bull, 2019, 35(3):434-446. DOI:10.1007/s12264-018-0322-7. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.MEI F, FANCY S, SHEN Y A, et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med. 2014;20(8):954–960. doi: 10.1038/nm.3618. [MEI F, FANCY S, SHEN Y A, et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis[J]. Nat Med, 2014, 20(8):954-960. DOI:10.1038/nm.3618. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.WANG F, REN S Y, CHEN J F, et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat Neurosci. 2020;23(4):481–486. doi: 10.1038/s41593-020-0588-8. [WANG F, REN S Y, CHEN J F, et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory[J]. Nat Neurosci, 2020, 23(4):481-486. DOI:10.1038/s41593-020-0588-8. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.WANG F, YANG Y J, YANG N, et al. Enhancing oligodendrocyte myelination rescues synaptic loss and improves functional recovery after chronic hypoxia. Neuron. 2018;99(4):689–701. doi: 10.1016/j.neuron.2018.07.017. [WANG F, YANG Y J, YANG N, et al. Enhancing oligodendrocyte myelination rescues synaptic loss and improves functional recovery after chronic hypoxia[J]. Neuron, 2018, 99(4):689-701.e5. DOI:10.1016/j.neuron.2018.07.017. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.STEINGO B, AL MALIK Y, BASS A D, et al. Long-term efficacy and safety of alemtuzumab in patients with RRMS:12-year follow-up of CAMMS223. J Neurol. 2020 doi: 10.1007/s00415-020-09983-1. [STEINGO B, AL MALIK Y, BASS A D, et al. Long-term efficacy and safety of alemtuzumab in patients with RRMS:12-year follow-up of CAMMS223[J]. J Neurol, 2020. DOI:10.1007/s00415-020-09983-1. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.ROLLA S, MAGLIONE A, DE MERCANTI S F, et al. The meaning of immune reconstitution after alemtuzumab therapy in multiple sclerosis. Cells. 2020;9(6):1396–1413. doi: 10.3390/cells9061396. [ROLLA S, MAGLIONE A, DE MERCANTI S F, et al. The meaning of immune reconstitution after alemtuzumab therapy in multiple sclerosis[J]. Cells, 2020, 9(6):1396-1413. DOI:10.3390/cells9061396. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.FRANKLIN R J, FFRENCH-CONSTANT C, EDGAR J M, et al. Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol. 2012;8(11):624–634. doi: 10.1038/nrneurol.2012.200. [FRANKLIN R J, FFRENCH-CONSTANT C, EDGAR J M, et al. Neuroprotection and repair in multiple sclerosis[J]. Nat Rev Neurol, 2012, 8(11):624-634. DOI:10.1038/nrneurol.2012.200. ] [DOI] [PubMed] [Google Scholar]
  • 37.KUHLMANN T, MIRON V, CUI Q, et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008;131(Pt 7):1749–1758. doi: 10.1093/brain/awn096. [KUHLMANN T, MIRON V, CUI Q, et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis[J]. Brain, 2008, 131(Pt 7):1749-1758. DOI:10.1093/brain/awn096. ] [DOI] [PubMed] [Google Scholar]
  • 38.SHI Y, SHAO Q, LI Z, et al. Myt1L promotes differentiation of oligodendrocyte precursor cells and is necessary for remyelination after lysolecithin-induced demyelination. Neurosci Bull. 2018;34(2):247–260. doi: 10.1007/s12264-018-0207-9. [SHI Y, SHAO Q, LI Z, et al. Myt1L promotes differentiation of oligodendrocyte precursor cells and is necessary for remyelination after lysolecithin-induced demyelination[J]. Neurosci Bull, 2018, 34(2):247-260. DOI:10.1007/s12264-018-0207-9. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.LI C, XIAO L, LIU X, et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia. 2013;61(5):732–749. doi: 10.1002/glia.22469. [LI C, XIAO L, LIU X, et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination[J]. Glia, 2013, 61(5):732-749. DOI:10.1002/glia.22469. ] [DOI] [PubMed] [Google Scholar]
  • 40.LI T, NIU J, YU G, et al. Connexin 43 deletion in astrocytes promotes CNS remyelination by modulating local inflammation. Glia. 2020;68(6):1201–1212. doi: 10.1002/glia.23770. [LI T, NIU J, YU G, et al. Connexin 43 deletion in astrocytes promotes CNS remyelination by modulating local inflammation[J]. Glia, 2020, 68(6):1201-1212. DOI:10.1002/glia.23770. ] [DOI] [PubMed] [Google Scholar]
  • 41.LECCA D, RAFFAELE S, ABBRACCHIO M P, et al. Regulation and signaling of the GPR17 receptor in oligodendroglial cells. Glia. 2020;68(10):1957–1967. doi: 10.1002/glia.23807. [LECCA D, RAFFAELE S, ABBRACCHIO M P, et al. Regulation and signaling of the GPR17 receptor in oligodendroglial cells[J]. Glia, 2020, 68(10):1957-1967. DOI:10.1002/glia.23807. ] [DOI] [PubMed] [Google Scholar]
  • 42.DZIEDZIC A, MILLER E, SALUK-BIJAK J, et al. The GPR17 receptor-A promising goal for therapy and a potential marker of the neurodegenerative process in multiple sclerosis. Int J Mol Sci. 2020;21(5):1852–1868. doi: 10.3390/ijms21051852. [DZIEDZIC A, MILLER E, SALUK-BIJAK J, et al. The GPR17 receptor-A promising goal for therapy and a potential marker of the neurodegenerative process in multiple sclerosis[J]. Int J Mol Sci, 2020, 21(5):1852-1868. DOI:10.3390/ijms21051852. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.ZHAO B, WANG H, LI C X, et al. GPR17 mediates ischemia-like neuronal injury via microglial activation. Int J Mol Med. 2018;42(5):2750–2762. doi: 10.3892/ijmm.2018.3848. [ZHAO B, WANG H, LI C X, et al. GPR17 mediates ischemia-like neuronal injury via microglial activation[J]. Int J Mol Med, 2018, 42(5):2750-2762. DOI:10.3892/ijmm.2018.3848. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.MEI F, MAYORAL S R, NOBUTA H, et al. Identification of the Kappa-opioid receptor as a therapeutic target for oligodendrocyte remyelination. J Neurosci. 2016;36(30):7925–7935. doi: 10.1523/JNEUROSCI.1493-16.2016. [MEI F, MAYORAL S R, NOBUTA H, et al. Identification of the Kappa-opioid receptor as a therapeutic target for oligodendrocyte remyelination[J]. J Neurosci, 2016, 36(30):7925-7935. DOI:10.1523/JNEUROSCI.1493-16.2016. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.CANTUTI-CASTELVETRI L, FITZNER D, BOSCH-QUERALT M, et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science. 2018;359(6376):684–688. doi: 10.1126/science.aan4183. [CANTUTI-CASTELVETRI L, FITZNER D, BOSCH-QUERALT M, et al. Defective cholesterol clearance limits remyelination in the aged central nervous system[J]. Science, 2018, 359(6376):684-688. DOI:10.1126/science.aan4183. ] [DOI] [PubMed] [Google Scholar]
  • 46.HUBLER Z, ALLIMUTHU D, BEDERMAN I, et al. Accumulation of 8, 9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature. 2018;560(7718):372–376. doi: 10.1038/s41586-018-0360-3. [HUBLER Z, ALLIMUTHU D, BEDERMAN I, et al. Accumulation of 8, 9-unsaturated sterols drives oligodendrocyte formation and remyelination[J]. Nature, 2018, 560(7718):372-376. DOI:10.1038/s41586-018-0360-3. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.RANKIN KA, MEI F, KIM K, et al. Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors. J Neurosci. 2019;39(12):2184–2194. doi: 10.1523/JNEUROSCI.1530-18.2019. [RANKIN KA, MEI F, KIM K, et al. Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors[J]. J Neurosci, 2019, 39(12):2184-2194. DOI:10.1523/JNEUROSCI.1530-18.2019. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.MIRON V E, BOYD A, ZHAO J W, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–1218. doi: 10.1038/nn.3469. [MIRON V E, BOYD A, ZHAO J W, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination[J]. Nat Neurosci, 2013, 16(9):1211-1218. DOI:10.1038/nn.3469. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.XIAO J. Perspectives on neuroreparative therapies for treating multiple sclerosis. Neural Regen Res. 2015;10(11):1759–1760. doi: 10.4103/1673-5374.169610. [XIAO J. Perspectives on neuroreparative therapies for treating multiple sclerosis[J]. Neural Regen Res, 2015, 10(11):1759-1760. DOI:10.4103/1673-5374.169610. ] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES