Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jan 25;65(3):630–640. doi: 10.1007/s11426-021-1169-1

An automated nucleic acid detection platform using digital microfluidics with an optimized Cas12a system

Zhen Sun 1,#, Kang-Feng Lin 1,#, Ze-Hang Zhao 1,#, Yang Wang 2, Xin-Xin Hong 1, Jian-Guang Guo 1, Qing-Yu Ruan 2, Lian-Yu Lu 2, Xiao Li 1, Rui Zhang 3,, Chao-Yong Yang 2,, Bo-An Li 1,2,
PMCID: PMC8809245  PMID: 35126481

Abstract

Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics (DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection. The RCD platform demonstrated a high level of sensitivity, specificity (no false positives or negatives), speed (≤30 min), automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of qPCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics. graphic file with name 11426_2021_1169_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material is available in the online version of this article at 10.1007/s11426-021-1169-1.

Keywords: nucleic acid detection, digital microfluidics, Cas12a, influenza virus, SARS-CoV-2

Acknowledgements

This work was supported by the Science and Technology Program of Fujian Province (2018Y4013 to B.-A.L.), the Science and Technology Project of Xiamen Science and Technology Bureau (3502Z20193023 to B.-A.L.), the Health-Education Joint Research Project of Fujian Province (2019-WJ-34 to B.-A.L. and Z.-M.Z), the COVID-19 Emergency Research Project of Xiamen Science and Technology Bureau (3502Z2020YJ21 to BioDetect (Xiamen) Biotechnology Co., Ltd.), the COVID-19 Emergency Research Project of Xiamen University (X2106103 to B.-A.L.), the National Natural Science Foundation of China (U1705284, 81972458, and 81772958 to B.-A.L.) and Project 111 sponsored by the State Bureau of Foreign Experts and Ministry of Education (B06016).

Supplemental information

Download video file (2.7MB, mp4)

Supplementary material, approximately 2.66 MB.

11426_2021_1169_MOESM2_ESM.docx (4.1MB, docx)

An automated nucleic acid detection platform using digital microfluidics with an optimized Cas12a system

Footnotes

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

These authors contributed equally to this work.

Contributor Information

Rui Zhang, Email: raissarui@foxmail.com.

Chao-Yong Yang, Email: cyyang@xmu.edu.cn.

Bo-An Li, Email: bali@xmu.edu.cn.

References

  • 1.Waggoner JJ, Pinsky BA. J Clin Microbiol. 2016;54:860–867. doi: 10.1128/JCM.00279-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Falsey AR, Murata Y, Walsh EE. Arch Intern Med. 2007;167:354. doi: 10.1001/archinte.167.4.ioi60207. [DOI] [PubMed] [Google Scholar]
  • 3.Bi Y, Chen Q, Wang Q, Chen J, Jin T, Wong G, Quan C, Liu J, Wu J, Yin R, Zhao L, Li M, Ding Z, Zou R, Xu W, Li H, Wang H, Tian K, Fu G, Huang Y, Shestopalov A, Li S, Xu B, Yu H, Luo T, Lu L, Xu X, Luo Y, Liu Y, Shi W, Liu D, Gao GF. Cell Host Microbe. 2016;20:810–821. doi: 10.1016/j.chom.2016.10.022. [DOI] [PubMed] [Google Scholar]
  • 4.Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG. Science. 1997;275:1793–1796. doi: 10.1126/science.275.5307.1793. [DOI] [PubMed] [Google Scholar]
  • 5.V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Nat Rev Microbiol. 2021;19:155–170. doi: 10.1038/s41579-020-00468-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Day MJ. Top Companion Anim Med. 2015;30:128–131. doi: 10.1053/j.tcam.2015.12.001. [DOI] [PubMed] [Google Scholar]
  • 7.Compton J. Nature. 1991;350:91–92. doi: 10.1038/350091a0. [DOI] [PubMed] [Google Scholar]
  • 8.Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Nucl Acids Res. 1992;20:1691–1696. doi: 10.1093/nar/20.7.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Nucl Acids Res. 2000;28:63. doi: 10.1093/nar/28.12.e63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Piepenburg O, Williams CH, Stemple DL, Armes NA. PLoS Biol. 2006;4:e204. doi: 10.1371/journal.pbio.0040204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Aebischer A, Wernike K, Hoffmann B, Beer M. J Clin Microbiol. 2014;52:1883–1892. doi: 10.1128/JCM.00167-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Song J, Liu C, Mauk MG, Rankin SC, Lok JB, Greenberg RM, Bau HH. Clin Chem. 2017;63:714–722. doi: 10.1373/clinchem.2016.263665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. Science. 2018;360:436–439. doi: 10.1126/science.aar6245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Teng F, Guo L, Cui T, Wang XG, Xu K, Gao Q, Zhou Q, Li W. Genome Biol. 2019;20:132. doi: 10.1186/s13059-019-1742-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F. Science, 2016, 353 [DOI] [PMC free article] [PubMed]
  • 16.Aquino-Jarquin G. Nanomed-Nanotechnol. 2019;18:428–431. doi: 10.1016/j.nano.2019.03.006. [DOI] [PubMed] [Google Scholar]
  • 17.Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Science. 2017;356:438–442. doi: 10.1126/science.aam9321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Li L, Li S, Wu N, Wu J, Wang G, Zhao G, Wang J. ACS Synth Biol. 2019;8:2228–2237. doi: 10.1021/acssynbio.9b00209. [DOI] [PubMed] [Google Scholar]
  • 19.Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA. Science. 2018;362:839–842. doi: 10.1126/science.aav4294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, Zorn K, Gopez A, Hsu E, Gu W, Miller S, Pan CY, Guevara H, Wadford DA, Chen JS, Chiu CY. Nat Biotechnol. 2020;38:870–874. doi: 10.1038/s41587-020-0513-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Ding X, Yin K, Li Z, Lalla RV, Ballesteros E, Sfeir MM, Liu C. Nat Commun. 2020;11:4711. doi: 10.1038/s41467-020-18575-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Park JS, Hsieh K, Chen L, Kaushik A, Trick AY, Wang TH. Adv Sci. 2021;8:2003564. doi: 10.1002/advs.202003564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Chen FE, Lee PW, Trick AY, Park JS, Chen L, Shah K, Mostafa H, Carroll KC, Hsieh K, Wang TH. Biosens Bioelectron. 2021;190:113390. doi: 10.1016/j.bios.2021.113390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Cho SK, Moon HJ, Kim CJ. J Microelectromech Syst. 2003;12:70–80. doi: 10.1109/JMEMS.2002.807467. [DOI] [Google Scholar]
  • 25.Squires TM, Quake SR. Rev Mod Phys. 2005;77:977–1026. doi: 10.1103/RevModPhys.77.977. [DOI] [Google Scholar]
  • 26.Choi K, Ng AHC, Fobel R, Wheeler AR. Annu Rev Anal Chem. 2012;5:413–440. doi: 10.1146/annurev-anchem-062011-143028. [DOI] [PubMed] [Google Scholar]
  • 27.Kumar PT, Toffalini F, Witters D, Vermeir S, Rolland F, Hertog MLATM, Nicolaï BM, Puers R, Geeraerd A, Lammertyn J. Sens Actuat B-Chem. 2014;199:479–487. doi: 10.1016/j.snb.2014.04.018. [DOI] [Google Scholar]
  • 28.Fan X, Li L, Zhao Y, Liu Y, Liu C, Wang Q, Dong Y, Wang S, Chi T, Song F, Sun C, Wang Y, Ha D, Zhao Y, Bao J, Wu X, Wang Z. Front Microbiol. 2020;11:1696. doi: 10.3389/fmicb.2020.01696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Science. 2018;360:439–444. doi: 10.1126/science.aaq0179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J. Cell Res. 2018;28:491–493. doi: 10.1038/s41422-018-0022-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Wang Y, Ruan Q, Lei ZC, Lin SC, Zhu Z, Zhou L, Yang C. Anal Chem. 2018;90:5224–5231. doi: 10.1021/acs.analchem.8b00002. [DOI] [PubMed] [Google Scholar]
  • 32.Au SH, Kumar P, Wheeler AR. Langmuir. 2011;27:8586–8594. doi: 10.1021/la201185c. [DOI] [PubMed] [Google Scholar]
  • 33.Zhu Z, Guan Z, Liu D, Jia S, Li J, Lei Z, Lin S, Ji T, Tian Z, Yang CJ. Angew Chem Int Ed. 2015;54:10448–10453. doi: 10.1002/anie.201503963. [DOI] [PubMed] [Google Scholar]
  • 34.Zheng M, Luo J, Chen Z. Infection. 2014;42:251–262. doi: 10.1007/s15010-013-0546-4. [DOI] [PubMed] [Google Scholar]
  • 35.Taubenberger JK, Kash JC. Cell Host Microbe. 2010;7:440–451. doi: 10.1016/j.chom.2010.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Webster RG, Peiris M, Chen H, Guan Y. Emerg Infect Dis. 2006;12:3–8. doi: 10.3201/eid1201.051024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y. N Engl J Med. 2013;368:1888–1897. doi: 10.1056/NEJMoa1304459. [DOI] [PubMed] [Google Scholar]
  • 38.Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW. Science. 2006;311:1576–1580. doi: 10.1126/science.1121586. [DOI] [PubMed] [Google Scholar]
  • 39.Ghebremedhin B, Engelmann I, König W, König B. J Med Microbiol. 2009;58:365–370. doi: 10.1099/jmm.0.004358-0. [DOI] [PubMed] [Google Scholar]
  • 40.Aijian AP, Garrell RL. J Lab Autom. 2015;20:283–295. doi: 10.1177/2211068214562002. [DOI] [PubMed] [Google Scholar]

Articles from Science China. Chemistry are provided here courtesy of Nature Publishing Group

RESOURCES