Abstract
With the expansion of coronavirus in the World, the search for technology solutions based on the analysis and prospecting of diseases has become constant. The paper addresses a machine learning algorithms analysis used to predict and identify infected patients. For analysis, we use a multicriteria approach using the PROMETHEE-GAIA method, providing the structuring of alternatives respective to a set of criteria, thus enabling the obtaining of their importance degree under the perspective of multiple criteria. The study approaches a sensitivity analysis, evaluating the alternatives using the PROMETHEE I and II methods, along with the GAIA plan, both implemented by the Visual PROMETHEE computational tool, exploring numerical and graphical resources. The analysis model proves to be effective, guaranteeing the ranking of alternatives by inter criterion evaluation and local results with intra criterion evaluation, providing a transparent analysis concerning the selection of prediction algorithms to combat the COVID-19 pandemic.
Keywords: Predicition Algorithms, COVID-19, Multiple Criteria Decision Analysis, PROMETHEE method
References
- 1.Lalmuanawma S., Hussain J., Chhakchhuak L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review, Chaos. Solitons and Fractals. 2020;139:110059. doi: 10.1016/j.chaos.2020.110059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Davenport T., Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare Journal. 2019;6:94–98. doi: 10.7861/futurehosp.6-2-94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Pinter G., Felde I., Mosavi A., Ghamisi P., Gloaguen R. COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach. SSRN Electronic Journal. 2020 doi: 10.2139/ssrn.3590821. [DOI] [Google Scholar]
- 4.Srinivasa Rao A.S.R., Vazquez J.A. Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine. Infection Control and Hospital Epidemiology. 2020;41:826–830. doi: 10.1017/ice.2020.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Kushwaha S., Bahl S., Bagha A.K., Parmar K.S., Javaid M., Haleem A., Singh R.P. Significant applications of machine learning for covid-19 pandemic. Journal of Industrial Integration and Management. 2020;5:453–479. [Google Scholar]
- 6.Ali R., Lee S., Chung T.C. Accurate multi-criteria decision making methodology for recommending machine learning algorithm. Expert Systems with Applications. 2017;71:257–278. doi: 10.1016/j.eswa.2016.11.034. [DOI] [Google Scholar]
- 7.Costa I.P.A., Maêda S.M.D.N., Teixeira L.F.H.S.B., Gomes C.F.S., Santos M.D. Choosing a hospital assistance ship to fight the covid-19 pandemic. Revista de Saude Publica. 2020;54:79. doi: 10.11606/s1518-8787.2020054002792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.M.Â.L. Moreira, C.F.S. Gomes, M. dos Santos, M. do Carmo Silva, J.V.G.A. Araujo, PROMETHEE-SAPEVO-M1 a Hybrid Modeling Proposal: Multicriteria Evaluation of Drones for Use in Naval Warfare, in: Springer Proceedings in Mathematics & Statistics, 1st ed., Springer, Cham, 2020: pp. 381–393. 10.1007/978-3-030-56920-4_31 [DOI]
- 9.Gomes C.F.S., dos Santos M., de S. de B. Teixeira L.F.H., Sanseverino A.M., Barcelos M. SAPEVO-M a group multicriteria ordinal ranking method. Pesquisa Operacional. 2020;40:1–20. doi: 10.1590/0101-7438.2020.040.00226524. [DOI] [Google Scholar]
- 10.J.-P. Brans, Y. De Smet, PROMETHEE methods, in: Multiple Criteria Decision Analysis: State of the Art Surveys, (2016).
- 11.Ishizaka A., Resce G., Mareschal B. Visual management of performance with PROMETHEE productivity analysis. Soft Computing. 2018;22:7325–7338. doi: 10.1007/s00500-017-2884-0. [DOI] [Google Scholar]
- 12.Doan N.A.V., De Smet Y. An alternative weight sensitivity analysis for PROMETHEE II rankings. Omega (United Kingdom) 2018;80:166–174. doi: 10.1016/j.omega.2017.08.017. [DOI] [Google Scholar]
- 13.Brans J.P., Vincke P., Mareschal B. How to select and how to rank projects: The Promethee method. European Journal of Operational Research. 1986;24:228–238. doi: 10.1016/0377-2217(86)90044-5. [DOI] [Google Scholar]
- 14.Brans J.P., Mareschal B. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decision Support Systems. 1994;12:297–310. doi: 10.1016/0167-9236(94)90048-5. [DOI] [Google Scholar]
- 15.Moreira M.Â., de Araújo Costa I.P., Pereira M.T., dos Santos M., Gomes C.F., Muradas F.M. PROMETHEE-SAPEVO-M1 a Hybrid Approach Based on Ordinal and Cardinal Inputs: Multi-Criteria Evaluation of Helicopters to Support Brazilian Navy Operations. Algorithms. 2021;14 doi: 10.3390/a14050140. [DOI] [Google Scholar]
- 16.de Oliveira A.O., Oliveira H.L.S., Gomes C.F.S., Ribeiro P.C.C. Quantitative analysis of RFID’ publications from 2006 to 2016. International Journal of Information Management. 2019;48:185–192. doi: 10.1016/j.ijinfomgt.2019.02.001. https://doi.org/ [DOI] [Google Scholar]
- 17.Shinde G.R., Kalamkar A.B., Mahalle P.N., Dey N., Chaki J., Hassanien A.E. Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art. SN Computer Science. 2020;1:1–15. doi: 10.1007/s42979-020-00209-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Kuhn M., Johnson K. Applied predictive modeling. 2013 doi: 10.1007/978-1-4614-6849-3. [DOI] [Google Scholar]
- 19.S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng, B. Xu, A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19), MedRxiv. (2020). 10.1101/2020.02.14.20023028 [DOI] [PMC free article] [PubMed]
- 20.B. Mareschal, Visual PROMETHEE, (2011).