Correspondence
The Omicron (B.1.1.529/BA.1) variant of concern (VOC) emerged in Southern Africa in November 2021, and rapidly overtook Delta (B.1.617.2) as the predominant SARS-CoV-2 variant globally [1]. The mutations in the Omicron spike rendered ineffective the monoclonal antibody therapies casirivimab/imdevimab (REGEN—COV, Regeneron) and bamlanivimab/etesevimab (Lilly) [2]. In addition, the surge in positive cases overwhelmed genomic sequencing capacity, resulting in delayed variant reporting. To inform monoclonal antibody selection and support epidemiologic surveillance, we developed a reverse-transcription quantitative PCR (RT-qPCR) for the sensitive and specific detection of Omicron VOC.
This assay targets an Omicron-specific Spike (S) insertion-deletion mutation (indel_211–214) found in the B.1.1.529/BA.1 lineage and BA.1.1 sublineage, accounting for 99.9% of Omicron sequences in the U.S., and 96.6% of sequences worldwide as of 29 January 2022 [3]. The forward primer covers the deletion at amino acid position 211 (NL211I), while the probe interrogates the insertion at amino acid position 214 (ins214EPE) [4]. This indel_211–214 assay was combined in multiplex with envelope (E) primers/probe as internal control (Table 1 ) [5]. A limitation of this RT-qPCR is that the BA.2 and BA.3 Omicron lineages do not have indel_211–214 and only the E target would be detected. Though as of this writing, BA.2 and BA.3 account for ∼0.1% of Omicron sequences in the U.S., BA.2 increased substantially in other countries during the last three weeks of January 2022. Notably, 72.5% (18,030/24,863) of global BA.2 sequences are currently submitted from Denmark [3]. Depending on local/regional prevalence, as well as the potential for further spread, the addition of primers/probes targeting BA.2 and/or BA.3 lineage-specific mutations may be warranted [6].
Table 1.
Name | Sequence (5′ to 3′) | Final concentration |
---|---|---|
Omicron F Primer | TTCTAAGCACACGCCTATTATAGTG | 300 nM |
Omicron R Primer | GGCAAATCTACCAATGGTTCTA | 300 nM |
Omicron Probe | CY5-CGTGAGCCAGAAGATCTCCCTCAG-BHQ2 | 100 nM |
E gene F Primer | ACAGGTACGTTAATAGTTAATAGCGT | 300 nM |
E gene R Primer | ATATTGCAGCAGTACGCACACA | 300 nM |
E gene Probe | FAM-ACACTAGCCATCCTTACTGCGCTTCG-BHQ1 | 100 nM |
E, Envelope; F, Forward; R, Reverse; Cy5, Cyanine-5; FAM, 6-Carboxyfluorescein; BHQ, Black Hole Quencher.
Each 20 µL reaction using SuperScript III Platinum One-Step qRT-PCR Kit (Invitrogen) contained 10µL of 2X reaction mix, 0.4µL enzyme mix, 1µL primer-probe mix, 3.6µL nuclease-free water, and 5µL nucleic acid eluate. All experiments were conducted on a QuantStudio7 Pro real-time PCR instrument (Applied Biosystems). Cycling conditions were: 52 °C for 15:00, 94 °C for 2:00, and then 45 cycles of 94 °C for 00:15, 55.0 °C for 00:40, and 68 °C for 00:20. Fluorescence thresholds were manually set at 2000 ΔRn for S:indel_211–214 (CY5) and 5000 for E (FAM). Thresholds were selected to fall in the middle of the exponential-phase of the amplification curve, though values may be adjusted to account for variation in baseline or maximum fluorescence.
To determine analytical sensitivity, single-stranded DNA comprised of either the Omicron S or E target sequences (Table 2 ) were diluted to 10, 5, 4, 3, and 1 copies/µL in buffer AVE (Qiagen). Twenty replicates at each dilution were tested. Probit regression analysis determined the 95% Lower Limit of Detection was 1.3 copies/µL [95% confidence interval (CI) 1.0 - 1.6] for S:indel_211–214 and 4.3 copies/µL (95% CI 3.8 - 5.1) for E.
Table 2.
Name | Sequence (5′ to 3′) |
---|---|
Omicron ssDNA | TTCTAAGCACACGCCTATTATAGTGCGTGAGCCAGAAGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGCC |
E gene ssDNA | TTCGGAAGAGACAGGTACGTTAATAGTTAATAGCGTACTTCTTTTTCTTGCTTTCGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAATATTGTTAACGTG |
E, envelope; ssDNA, single-stranded DNA.
To determine clinical performance, total nucleic acids were extracted from 94 SARS-CoV-2 positive upper respiratory specimens in 300 µL transport media using the Chemagic Viral DNA/RNA 300 Kit automated on the Janus G3 Primary Sample Reformatter and Chemagic 360 extraction instrument (PerkinElmer). Specimens were collected December 8–23, 2021, consisting of a convenience set of 47 Omicron and 47 Delta variants confirmed by SARS-CoV-2 whole genome sequencing (WGS) (Supplemental Table 1) [7]. RT-qPCR was set-up using the Janus G3 PCR Workstation (PerkinElmer).
The Omicron-specific RT-qPCR detected S:indel_211–214 and E in 100% (47/47; 95%CI: 95.1–100) of Omicron specimens. Similarly, S:indel_211–214 was not detected in 100% (47/47; 95%CI: 95.1–100) of Delta specimens. Initially, one Delta failed to amplify E, but amplification was observed upon repeat testing of the original eluate, as well as the re-extracted specimen.
In summary, we describe an accurate RT-qPCR for rapid identification of the Omicron VOC (B.1.1.529/BA.1, BA.1.1), suitable for clinical decision-making, near real-time variant surveillance, and triage of samples for WGS.
Declaration of Competing Interest
The authors declare no conflicts of interest.
Footnotes
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jcv.2022.105101.
Appendix. Supplementary materials
References
- 1.Viana R., Moyo S., Amoako D.G., Tegally H., Scheepers C., Althaus C.L., Anyaneji U.J., Bester P.A., Boni M.F., Chand M., Choga W.T., Colquhoun R., Davids M., Deforche K., Doolabh D., Engelbrecht S., Everatt J., Giandhari J., Giovanetti M., Hardie D., Hill V., Hsiao N.-.Y., Iranzadeh A., Ismail A., Joseph C., Joseph R., Koopile L., Pond S.L.K., Kraemer M.U., Kuate-Lere L., Laguda-Akingba O., Lesetedi-Mafoko O., Lessells R.J., Lockman S., Lucaci A.G., Maharaj A., Mahlangu B., Maponga T., Mahlakwane K., Makatini Z., Marais G., Maruapula D., Masupu K., Matshaba M., Mayaphi S., Mbhele N., Mbulawa M.B., Mendes A., Mlisana K., Mnguni A., et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. medRxiv. 2021 doi: 10.1101/2021.12.19.21268028:2021.12.19.21268028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Planas D., Saunders N., Maes P., Guivel-Benhassine F., Planchais C., Buchrieser J., Bolland W.-.H., Porrot F., Staropoli I., Lemoine F., Péré H., Veyer D., Puech J., Rodary J., Baele G., Dellicour S., Raymenants J., Gorissen S., Geenen C., Vanmechelen B., Wawina -Bokalanga T., Martí-Carreras J., Cuypers L., Sève A., Hocqueloux L., Prazuck T., Rey F., Simon-Loriere E., Bruel T., Mouquet H., André E., Schwartz O. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 2021 doi: 10.1038/s41586-021-04389-z. [DOI] [PubMed] [Google Scholar]
- 3.Latif A.A., Mullen J.L., Alkuzweny M., Tsueng G., Cano M., Haag E., Zhou J., Zeller M., Hufbauer E., Matteson N., Wu C., Andersen K.G., Su A.I., Gangavarapu K., Hughes L.D. The center for viral systems biology. Omicron Variant Rep. 2022 https://outbreak.info/situation-reports/omicron. Accessed 29 January. [Google Scholar]
- 4.Gerdol M., Dishnica K., Giorgetti A. Emergence of a recurrent insertion in the N-terminal domain of the SARS-CoV-2 spike glycoprotein. Virus Res. 2022;310 doi: 10.1016/j.virusres.2022.198674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Corman V.M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D.K., Bleicker T., Brunink S., Schneider J., Schmidt M.L., Mulders D.G., Haagmans B.L., van der Veer B., van den Brink S., Wijsman L., Goderski G., Romette J.L., Ellis J., Zambon M., Peiris M., Goossens H., Reusken C., Koopmans M.P., Drosten C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020:25. doi: 10.2807/1560-7917.ES.2020.25.3.2000045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Bacterial and Viral Bioinformatics Resource Center. Real-time tracking and early warning system for SARS-CoV-2 variants and lineages of concern. https://www.bv-brc.org/view/VariantLineage. Accessed 27 January 2022.
- 7.Wang H., Miller J.A., Verghese M., Sibai M., Solis D., Mfuh K.O., Jiang B., Iwai N., Mar M., Huang C., Yamamoto F., Sahoo M.K., Zehnder J., Pinsky B.A. Multiplex SARS-CoV-2 genotyping reverse transcriptase PCR for population-level variant screening and epidemiologic surveillance. J. Clin. Microbiol. 2021;59 doi: 10.1128/JCM.00859-21. e0085921. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.