Skip to main content
Data in Brief logoLink to Data in Brief
. 2022 Jan 26;41:107870. doi: 10.1016/j.dib.2022.107870

Dataset on rbcL-based intra-specific diversity of Gongronema latifolium Benth: (Apocynaceae) in South-East Nigeria

Conrad Asotie Omonhinmin 1,, Chinedu Charles Onuselogu 1, Enameguono Olomukoro 1
PMCID: PMC8819100  PMID: 35146092

Abstract

Gongronema latifolium (Apocynaceae) is a versatile plant of nutritional and medicinal value and is widely distributed and endemic to the South-Eastern region of Nigeria. The plant is relatively wild and its natural habitat is threatened by deforestation, excessive exploitation and constant expansion of the urban areas into its endemic space. Hence, there is a need to understand its genetic diversity for breeding and conservation. The data consist of fourteen partial rbcL gene sequences, nucleotide compositions and amino acid profiles of G. latifolium. The data set provides insight on the species genetic diversity and evolution that is important for scientist and breeders alike as well as for conservation efforts of the species.

Keywords: Evolution, Genetic diversity, Gongronema latifolium, Medicinal, Phylogeny, rbcL gene

Specifications Table

Subject Biological Science
Specific subject area Agricultural, Genetic diversity, Phylogenetics, Evolution
Type of data Tables, Figure
How data were acquired Amplification of the rbcL gene through PCR and DNA Sanger sequencing.
Data format Raw, Analyzed
Parameters for data collection Whether the geographical locations of G. latifolium across South- East Nigeria affect intra-specific gene sequence variation in ribulose 1, 5 bisphosphate carboxylase/ oxygenase (rbcL)
Description of data collection Young leaf samples of G. latifolium were collected in South- Eastern Nigeria (Anambra, Ebonyi, Imo, Enugu and Abia) Table 1. All accessions were evaluated using rbcL primers and the population diversity, nucleotide and amino acids compositions of the accessions were estimated using DnaSP 4.5. Codon usage bias and the codon usage indices were estimated using CodonW.
Data source location The data locations are summarized in Table 1.
Data accessibility The sequence data of the accessions have been deposited in NCBI GenBank data base sequence and has the following accession numbers; MH305573.1, MH305574.1, MH305578.1, MH305579.1, MH305580.1, MH305570.1, MH305571.1,
MH305572.1, MH305581.1, MH305582.1, MH305583.1, MH305575.1, MH305576.1, MH305577.1.
https://www.ncbi.nlm.nih.gov/nuccore/?term=Gongronema+latifolium

Value of the Data

  • This data provides information of the genetic diversity of G. latifolium sequences across South-Eastern Nigeria using information from partial rbcL gene sequences, nucleotide polymorphism and amino acids composition.

  • The rbcL gene sequences can be employed by plant taxonomists to trace the molecular phylogeny, evolution and sub-speciation of G. latifolium.

  • This data identifies areas of high genetic diversity of G. latifolium which can be adopted to create germplasm for species conservation.

  • This data presents information on the amino acid composition and codon usage of the species.

1. Data Description

Gongronema latifolium (Benth.) is classified in the family Apocynaceae and is of considerable nutritional and medicinal importance to the people of West Africa [1]. Despite its nutritional and medicinal uses, the plant is still relatively wild and repeatedly plagued by deforestation, excessive exploitation and constant expansion of the urban areas into rural areas as well as general poor land management practices in the distribution of G. latifolium [2]. The management and conservation of G. latifolium genetic resources across South-Eastern Nigeria is lacking, yet there is increased demand for its use for herbal formulations and as a leafy vegetable across the West African region and beyond, particularly with the spread of the Igbo cuisine across the region. Therefore, there is a need to understand the current genetic diversity of this species in Nigeria as well as to possibly create an active germplasm for the conservation and breeding of the species. The study presents the first rbcL gene sequences of G. latifolium from five Nigerian states. Table 1; lists the site collection details and the accessions of fourteen collections of G. latifolium as submitted to NCBI GenBank. Table 2; presents information about the accessions, including the % GC and the sequence length. Table 3, records the within collection area (state) genetic diversity of G. latifolium, which includes: number of segregating sites; within group mean distance; nucleotide diversity; and average number of nucleotide differences (k). Table 4, shows the amino acids and nucleotide compositions of the accessions of G. latifolium. Table 5, records the codon usage frequency table for G. latifolium. The genetic diversity of G. latifolium across the accessions is shown in Table 6. The codon usage indices of the accessions are represented in Table 7. Fig. 1 is the map of the collection sites across the study areas.

Table 1.

Details on Gongronema latifolium accessions as submitted on NCBI GenBank and site collection information.

S/N GenBank accession number ф Locality State Altitude (m) LGA Latitude NS Longitude EW Herbarium number (vouchers)
1 MH305570.1 Aba market Abia 205 Aba South 5° 6′ 55.8072″ N 7° 20′ 35.1852″ E AbaCH001
2 MH305571.1 Ohia Abia 97 Umuahia South 5° 31′ 6.708″ N 7° 27′ 17.64″ E AbaCH002
3 MH305572.1 Asa Abia 23 Ukwa West 4° 54′ 46″ N 7° 19′ 9″ E AbaCH003
4 MH305573.1 Nibo village Anambra 252 Awka South 06° 10′ 19N 7° 4′ 3E AnaCH001
5 MH305574.1 Alor Farm Anambra 160 Idemili South 6° 05′N 6° 57″E AnaCH002
6 MH305575.1 Onueke market Ebonyi 111 Ezza South 6°20′N 8°06′E EboCH001
7 MH305576.1 Nkalagu Ebonyi 126 Ishielu 6° 28′ 42″ N 7° 46′ 44″ E EboCH002
8 MH305577.1 Eke market Ebonyi 106 Afikpo 5° 53′ 2.5008″ N 7° 56′ 34.0008″ E EboCH003
9 MH305578.1 Nsukka Enugu 430 Nsukka 6° 51′24″ N 7°23′45″ E EnuCH001
10 MH305579.1 Ogbete main market Enugu 223 Enugu North 9° 2′44″ N 7° 27′ 54″ E EnuCH002
11 MH305580.1 Abakpa market Enugu 223 Enugu East 6° 28′ 56.2584″ N 7° 30′ 59.4468″ E EnuCH003
12 MH305581.1 Obowo Imo 213 Obowo 5° 33′ 21.0528″ N 7° 21′ 43.3476″ E ImoCH001
13 MH305582.1 Umu Numu Imo 252 Ehime-Mbano 5° 39′ 55.7784″ N 7° 18′ 20.646″ E ImoCH002
14 MH305583.1 Eke Okigwe market Imo 158 Okigwe 5° 49′ 35.1912″ N 7° 20′ 57.3612″ E ImoCH003

*Voucher specimens in form of leaves and seed as herbarium specimens were deposited in the herbarium repository of the Department of Biological Sciences, Covenant University, Ota, Nigeria.

Table 2.

Summary of the rbcL sequences of G. latifolium accessions.

Accession Number State % GC Sequence Length
MH305570.1 Abia 44.10% 521
MH305571.1 Abia 44.60% 514
MH305572.1 Abia 44.20% 529
MH305573.1 Anambra 44.40% 532
MH305574.1 Anambra 44.60% 514
MH305575.1 Ebonyi 44.20% 523
MH305576.1 Ebonyi 44.70% 519
MH305577.1 Ebonyi 44.30% 519
MH305578.1 Enugu 44.40% 525
MH305579.1 Enugu 44.70% 514
MH305580.1 Enugu 44.60% 514
MH305581.1 Imo 44.10% 524
MH305582.1 Imo 44.60% 518
MH305583.1 Imo 44.30% 519

Table 3.

Intra-specific diversity of rbcL G. latifolium accessions.

State No. of accessions No. of segregating sites Within Group Mean Distance Nucleotide Diversity Average no. Nucleotide Differences k
Abia 3 9 0.00247 0.01167 ± 0.00550 6
Anambra 2 0 0 0 0
Ebonyi 3 9 0.00268 0.01258 ± 0.00593 6
Enugu 3 1 0.000265 0.00130 ± 0.00061 0.667
Imo 3 2 0.00053 0.00493 ± 0.00239 2.352

Table 4.

Nucleotide and amino acid compositions for G. latifolium accessions.

Nucleotide/
Amino acid composition
MH305570.1 MH305571.1 MH305572.1 MH305573.1 MH305574.1 MH305575.1 MH305576.1 MH305577.1 MH305578.1 MH305579.1 MH305580.1 MH305581.1 MH305582.1 MH305583.1
T 27.64 27.64 27.85 27.64 27.64 27.64 27.64 27.64 27.64 27.64 27.64 27.64 27.64 27.85
C 22.78 22.78 22.78 22.78 22.78 23 22.78 22.78 22.78 22.78 22.78 22.78 22.78 22.57
A 27.64 27.64 27.85 27.64 27.64 27.85 27.64 27.64 27.64 27.64 27.64 27.64 27.64 27.64
G 21.94 21.94 21.52 21.94 21.94 21.52 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94
Ala 8.23 8.23 7.59 8.23 8.23 7.59 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23
Cys 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27
Asp 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06
Glu 7.59 7.59 7.59 7.59 7.59 7.59 7.59 7.59 7.59 7.59 7.59 7.59 7.59 7.59
Phe 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
Gly 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86
His 0.63 0.63 1.27 0.63 0.63 1.27 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Ile 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06
Lys 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06
Leu 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49
Met 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Asn 2.53 2.53 1.9 2.53 2.53 1.9 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53
Pro 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23
Gln 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53
Arg 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06
Ser 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
Thr 8.86 8.86 9.49 8.86 8.86 9.49 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86
Val 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33
Trp 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27
Tyr 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7

Table 5.

Codon Usage of G. latifolium accessions.

Codon Count RSCU* Codon Count RSCU Codon Count RSCU Codon Count RSCU
UUU(F) 3 1 UCU(S) 3 3 UAU(Y) 5 1.11 UGU(C) 1 1
UUC(F) 3 1 UCC(S) 1 1 UAC(Y) 4 0.89 UGC(C) 1 1
UUA(L) 2 0.8 UCA(S) 1 1 UAA(*) 0 0 UGA(*) 0 0
UUG(L) 5.1 2.06 UCG(S) 0 0 UAG(*) 0 0 UGG(W) 2 1
CUU(L) 4 1.6 CCU(P) 5.8 1.78 CAU(H) 1.1 2 CGU(R) 3 2.25
CUC(L) 0 0 CCC(P) 3.2 0.99 CAC(H) 0 0 CGC(R) 1 0.75
CUA(L) 2 0.8 CCA(P) 3 0.92 CAA(Q) 3 1.5 CGA(R) 3 2.25
CUG(L) 1.9 0.74 CCG(P) 1 0.31 CAG(Q) 1 0.5 CGG(R) 0 0
AUU(I) 4 1.5 ACU(T) 7.1 2.02 AAU(N) 1.1 0.56 AGU(S) 0 0
AUC(I) 4 1.5 ACC(T) 3 0.85 AAC(N) 2.8 1.44 AGC(S) 1 1
AUA(I) 0 0 ACA(T) 3 0.85 AAA(K) 8 2 AGA(R) 1 0.75
AUG(M) 1 1 ACG(T) 1 0.28 AAG(K) 0 0 AGG(R) 0 0
GUU(V) 5 2 GCU(A) 5.9 1.82 GAU(D) 7 1.75 GGU(G) 4 1.14
GUC(V) 0 0 GCC(A) 3 0.93 GAC(D) 1 0.25 GGC(G) 2 0.57
GUA(V) 5 2 GCA(A) 3 0.93 GAA(E) 10 1.67 GGA(G) 4.1 1.18
GUG(V) 0 0 GCG(A) 1 0.31 GAG(E) 2 0.33 GGG(G) 3.9 1.1

*RSCU: Relatively synonymous codon usage.

Table 6.

Genetic diversity of fourteen G. latifolium accessions.

Index Value
Number of haplotypes 4
Haplotype diversity 0.396 ± 0.159
Nucleotide diversity 0.00493 ±0.00239
Average no. Nucleotide Differences (k) 2.352
No. of segregating sites 9

Table 7.

Codon usage indices per accession.

Codon Usage Parameters
Accessions T3s C3s A3s G3s CAI CBI Fop Nc GC3s GC L_sym L_aa
MH305570.1 0.4755 0.2168 0.375 0.1562 0.267 0.136 0.494 51.38 0.3 0.439 170 173
MH305571.1 0.2636 0.2713 0.304 0.4052 0.141 -0.057 0.338 61 0.532 0.451 154 165
MH305572.1 0.4658 0.2329 0.3768 0.1462 0.262 0.14 0.497 50.02 0.306 0.441 173 176
MH305573.1 0.4795 0.2192 0.3669 0.1603 0.273 0.144 0.5 50.69 0.305 0.443 174 177
MH305574.1 0.2636 0.2713 0.304 0.4052 0.141 -0.057 0.338 61 0.532 0.451 154 165
MH305575.1 0.4437 0.2465 0.3957 0.1374 0.258 0.118 0.485 49.9 0.31 0.441 171 174
MH305576.1 0.2595 0.2672 0.2992 0.4153 0.142 -0.061 0.333 61 0.538 0.453 156 167
MH305577.1 0.3116 0.3478 0.3423 0.1881 0.136 0.018 0.426 43.27 0.453 0.465 148 159
MH305578.1 0.2652 0.2652 0.2992 0.4153 0.141 -0.066 0.331 61 0.535 0.45 157 168
MH305579.1 0.2615 0.2692 0.3016 0.4103 0.14 -0.062 0.335 61 0.535 0.453 155 165
MH305580.1 0.2636 0.2713 0.304 0.4052 0.141 -0.057 0.338 61 0.532 0.451 154 165
MH305581.1 0.4722 0.2222 0.375 0.1562 0.269 0.14 0.497 51.45 0.304 0.439 171 174
MH305582.1 0.2615 0.2692 0.3016 0.4103 0.141 -0.059 0.335 61 0.535 0.452 155 166

Fig. 1.

Fig. 1

Species range and collection sites across South-East Nigeria.

2. Experimental Design, Materials and Methods

2.1. Plant material

Specimens of Gongronema latifolium were collected in South-Eastern Nigeria, of five states; (Anambra, Abia, Imo, Enugu, and Ebonyi) (Fig. 1). The fresh leaf samples of the accessions were silica gel dried in labelled air-tight bags, and held at −80° prior to molecular analysis at the Bioscience Laboratory, International Institute of Tropical Agriculture (IITA), Ibadan Nigeria.

2.2. Genomic DNA extraction

Genomic DNA was extracted using the CTAB protocol [3].

2.3. Gene amplification and DNA sequencing

A portion of the chloroplast ribulose 1, 5-bisphosphate carboxylase (rbcL) gene was amplified with the rbcL-F (ATGTCACCACAAACAGAGACTAAAGC) and rbcL-R (GTAAAATCAAGTCCACCRCG) primers [4]. The PCR amplicon were sequenced at Inqaba biotechnical Industries (Pty) Ltd, South Africa.

2.4. Data analysis

Sequences were aligned using the Geneious Basic [5] with default settings to obtain the % GC and sequence lengths.

Population diversity indices such as numbers of segregating sites (S), haplotype number (h), haplotype diversity (Hd), nucleotide diversity (π) and average number of pairwise nucleotide differences within the population (K), were estimated using DnaSP 4.5 [6].

The nucleotide and amino acid compositions and the codon usage frequency table of G. latifolium were estimated using DnaSP 4.5.

Codon usage indices were calculated using CodonW as implemented on a public Galaxy server (https://galaxy.pasteur.fr/).

CRedit Author Statement

Conrad Asotie Omonhinmin: Conceptualization, Methodology, Supervision; Chinedu Charles Onuselogu: Writing – review & editing, Writing – original draft preparation; Enameguono Olomukoro: Sequences submission on GenBank.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests.

Acknowledgments

The authors thank Covenant University, Centre for Research, Innovative and Discovery (CUCRID) for the publication funding and the various farmers and community leaders that assisted in this work.

References

  • 1.Balogun M.E., Besong E.E., Obimma J.N., Mbamalu O.S., Djobissie S.F. Gongronema latifolium. A phytochemical, nutritional and pharmacological review. J. Physiol Pharmacol Adv. 2016;6:811–824. [Google Scholar]
  • 2.Emodi A.I., Akwue C.C., Ehebha E.O. Involvement of Farm Households in Bush Buck (Gongronema latifolium) Production in Anambra State, Nigeria. Asian J. Agric. Extension, Econ. Sociol. 2017:1–9. [Google Scholar]
  • 3.Beed F., Ramathani I. Paper presented at Regional Training Workshop for Disease Surveillance in 7 countries organized by FAO and IITA in Rwanda. 2010. DNA CA extraction using CTAB and DNA capture kits; pp. 1–18. [Google Scholar]
  • 4.Wongsawad P., Peerapornpisal Y. Molecular identification and phylogenetic relationship of green algae, Spirogyra ellipsospora (Chlorophyta) using ISSR and rbcL markers. Saudi J. Biol. Sci. 2014;21(5):505–510. doi: 10.1016/j.sjbs.2014.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;15(12):1647–1649. doi: 10.1093/bioinformatics/bts199. 28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Rozas J. Bioinformatics for DNA sequence analysis. Humana Press; 2009. DNA sequence polymorphism analysis using DnaSP; pp. 337–350. [DOI] [PubMed] [Google Scholar]

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES