Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jan 25;78(Pt 2):220–224. doi: 10.1107/S2056989022000378

Crystal structure and Hirshfeld surface analysis of 2-{[7-acetyl-4-cyano-6-hy­droxy-8-(4-meth­oxyphen­yl)-1,6-dimethyl-5,6,7,8-tetra­hydro­isoquinolin-3-yl­]sulfan­yl}acetic acid ethyl ester

Elham A Al-Taifi a,*, Islam S Marae b, Yasser A El-Ossaily c, Shaaban K Mohamed d,e,*, Joel T Mague f, Mehmet Akkurt g, Etify A Bakhite b
PMCID: PMC8819445  PMID: 35145755

The 4-meth­oxy­phenyl group is disposed on one side of the bicyclic core and the oxygen atoms of the hydroxyl and acetyl groups are disposed on the other. The unsaturated portion of the core adopts an envelope conformation. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds form chains extending along the a-axis direction. These are linked into layers parallel to the ac plane by additional C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions.

Keywords: crystal structure, tetra­hydro­iso­quinoline, ethyl ester, hydrogen bond, C—H⋯π(ring)

Abstract

In the title mol­ecule, C25H28N2O5S, (alternative name ethyl 2-{[7-acetyl-4-cyano-6-hy­droxy-8-(4-meth­oxy­phen­yl)-1,6-dimethyl-5,6,7,8-tetra­hydro­isoquinolin-3-yl]sulfanyl}­acetate) the 4-meth­oxy­phenyl group is disposed on one side of the bicyclic core and the oxygen atoms of the hydroxyl and acetyl groups are disposed on the other side. In the crystal, a layered structure parallel to the ac plane is generated by O—H⋯O and C—H⋯O hydrogen bonds plus C—H⋯π(ring) inter­actions.

Chemical context

Some tetra­hydro­iso­quinoline (THISQ) based compounds are of medicinal and biological importance, being used as anti­tumoral (Pingaew et al., 2014; Castillo et al., 2018), anti­fungal (Scott et al., 2002) and anti-inflammatory agents (Siegfried et al., 1989). Other tetra­hydro­iso­quinolines were used as inhibitors including B-rafV600E or p38 kinase inhibitors (Lu et al., 2016; Rosales et al., 2007). The THISQ core can easily be functionalized to build other heterocyclic rings on the carbocyclic ring (Xu et al., 2002; Carroll et al., 2007; Demers et al., 2008, Marae et al., 2021a ). Recently, we have used some compounds related to THISQ as durable fluorescent dyes for cotton (Marae et al., 2021b ). The widespread importance of these compounds motivated us to further study the THISQ core. Here we report the synthesis and crystal structure determination of the title compound. graphic file with name e-78-00220-scheme1.jpg

Structural commentary

The ethyl sulfanyl­acetate, acetyl and cyano groups and both methyl groups (C19 and C21) are in equatorial positions with respect to the bicyclic core, while the hydroxyl and anisole groups on the cyclo­hexane ring occupy an axial and bis­ectional position, respectively (Fig. 1). The C10–C15 benzene ring is inclined to the N1/C5–C9 pyridine ring by 82.57 (6)°. The C1–C5/C9 cyclo­hexane ring is in an envelope conformation, with atom C3 at the flap position [deviation from best plane = 0.367 (1) Å] and puckering parameters (Cremer & Pople, 1975) Q T = 0.5180 (12) Å, θ = 53.85 (13)° and φ = 109.07 (17)°.

Figure 1.

Figure 1

The title mol­ecule with labelling scheme and 50% probability ellipsoids.

Supra­molecular features

In the crystal of the title compound, chains of mol­ecules extending along the a-axis direction are formed by O3—H3⋯O1 and C16—H16C⋯O2 hydrogen bonds (Table 1 and Fig. 2). These are connected into layers parallel to the ac plane by C21—H21A⋯O2, C22—H22A⋯O3 and C24—H24B⋯O4 hydrogen bonds as well as C22—H22BCg1 inter­actions (Table 1 and Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C5–C9 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.90 (2) 2.05 (2) 2.9283 (12) 164 (2)
C16—H16C⋯O2ii 0.98 2.47 3.1566 (15) 127
C21—H21A⋯O2iii 0.98 2.51 3.3956 (15) 150
C22—H22A⋯O3iv 0.99 2.44 3.1815 (15) 131
C22—H22BCg1iv 0.99 2.58 3.4559 (15) 147
C24—H24B⋯O4v 0.99 2.52 3.442 (2) 154

Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+1.

Figure 2.

Figure 2

A portion of one chain viewed along the b-axis direction. O—H⋯O and C—H⋯O hydrogen bonds are depicted by red and black dashed lines, respectively.

Figure 3.

Figure 3

Packing viewed along the c-axis direction giving an elevation view of one layer. Hydrogen bonds are depicted as in Fig. 2 while C—H⋯π(ring) inter­actions are indicated by green dashed lines.

Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). The Hirshfeld surface and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the title compound. In the Hirshfeld surface plotted over d norm in the range −0.4903 (red) to +1.6396 (blue) a.u. (Fig. 4), the white areas indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue areas indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors.

Figure 4.

Figure 4

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm, with a fixed colour scale of −0.4903 (red) to +1.6396 (blue) a.u.

Fingerprint plots (Fig. 5 be; Table 2) reveal that H⋯H (47.6%), O⋯H/H⋯O (19.7%), C⋯H/H⋯C (12.5%) and N⋯H/H⋯N (11.6%) inter­actions make the greatest contributions to the surface contacts. S⋯H/H⋯S (6.4%), N⋯C/C⋯N (0.7%), O⋯C/C⋯O (0.5%), O⋯O (0.5%) and C⋯C (0.4%) contacts also contribute to the overall crystal packing of the title compound. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, O⋯H, C⋯H and N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 5.

Figure 5

Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) N⋯H/H⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
O1⋯H3 2.051 (16) −1 + x, y, z
H21A⋯O2 2.51 1 − x, 1 − y, −z
H22A⋯O3 2.44 1 − x, 1 − y, 1 − z
O4⋯H16A 2.60 x, y, 1 + z
H24B⋯H24B 2.44 x, 1 − y, 1 − z
H11⋯N2 2.61 1 − x, − y, 1 − z
H18B⋯H2 2.49 1 − x, − y, −z
H21C⋯H16B 2.51 x, 1 − y, −z
H25B⋯H25B 2.34 x, 2 − y, 1 − z

Database survey

A search of the Cambridge Structural Database (CSD version 5.42, updated September 2021; Groom et al., 2016) for tetra­hydro­iso­quinoline derivatives gave nine compounds very similar to the title compound. In the crystal of NAQRIJ (Mague et al., 2017), dimers form through complementary sets of inversion-related O—H⋯O and C—H⋯O hydrogen bonds. These are connected into zigzag chains along the c-axis direction by pairwise C—H⋯N inter­actions that also form inversion dimers. In KUGLIK (Langenohl et al., 2020), the heterocyclic amines are alternately connected to the hydrogen-bonding system along the c axis, which leads to the formation of syndiotactic polymer chains in this direction. In the crystal of DUSVIZ (Selvaraj et al., 2020), mol­ecules are linked via C—H⋯O hydrogen bonds. In AKIVUO (Al-Taifi et al., 2021), a layered structure with layers parallel to (10 Inline graphic ) is generated by O—H⋯O and C—H⋯O hydrogen bonds. In ULUTAZ (Naghiyev et al., 2021), mol­ecules are linked via N—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network, and the crystal packing is dominated by C—H⋯π bonds. In CARCOQ (Lehmann et al., 2017), mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to the ab plane. In POPYEB (Ben Ali et al., 2019), mol­ecules are packed in a herringbone manner parallel to (103) and (10 Inline graphic ) via weak C—H⋯O and C—H⋯π(ring) inter­actions. In ENOCIU (Naicker et al., 2011) various C—H⋯π and C—H⋯O bonds link the mol­ecules together. In NIWPAL (Bouasla et al., 2008), the mol­ecules are linked by N—H⋯O inter­molecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.

Synthesis and crystallization

7-Acetyl-4-cyano-1,6-dimethyl-6-hy­droxy-8-(4-meth­oxy­phen­yl)-5,6,7,8-tetra­hydro-iso­quinoline-3(2H)-thione (5 mmol, 1.91 g) and sodium acetate trihydrate (1.36 g, 10 mmol) were suspended in 50 ml of absolute ethanol, then 0.55 ml of ethyl chloro­acetate (5.3 mmol) were added and the mixture was refluxed for one h. During reflux, the yellow colour disappeared gradually over time to afford a colourless reaction mixture. The reaction mixture was then left to cool at room temperature and the formed precipitate was collected by fiitration, washed with water, dried in air and recystallized from ethanol to give the title compound as cubic crystals, yield 2.11 g (94%); m.p. 453–455 K. IR (cm−1): 3454 (O—H); 3048 (C—H aromatic); 2970, 2913 (C—H aliphatic); 2215 (C≡N); 1743 (C=O, ester); 1697 (C=O, acet­yl). 1H NMR (CDCl3, 400 MHz) δ: 6.80–6.86 (dd, J = 8 Hz, 4H, ArH), 4.24–4.26 (d, J = 8 Hz, 1H, C8H), 4.12–4.15 (q, J = 6 Hz, 2H, OCH2), 3.89–3.92 (dd, 2H, SCH2), 3.78 (s, 3H, OCH3), 3.38 (s, 1H, OH), 3.09–3.12 (d, J = 12 Hz, 1H, C5H), 3.03–3.05 (d, J = 8 Hz, 1H, C7H), 2.89–2.92 (d, J = 12 Hz, 1H, C5H), 1. 90 (s, 3H, CH3 at C-1), 1.80 (s, 3H, COCH3), 1.34 (s, 3H, CH3 at C-6), 1.18–1.21 (t, J = 6 Hz, 3H, CH3 of ester group).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while the hydrogen atom attached to O3 was found from a difference map, and was subsequently refined isotropically [O3—H3 = 0.903 (17) Å] with U iso(H) = 1.5U eq(O). All C-bound H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the parent atoms (1.5 for methyl groups).

Table 3. Experimental details.

Crystal data
Chemical formula C25H28N2O5S
M r 468.55
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 150
a, b, c (Å) 10.0643 (6), 10.3592 (7), 12.0685 (8)
α, β, γ (°) 83.296 (1), 80.770 (1), 75.638 (1)
V3) 1199.23 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.35 × 0.29 × 0.27
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.82, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 22695, 6509, 5177
R int 0.023
(sin θ/λ)max−1) 0.695
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.133, 1.11
No. of reflections 6509
No. of parameters 305
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.71, −0.22

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989022000378/vm2259sup1.cif

e-78-00220-sup1.cif (676.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022000378/vm2259Isup2.hkl

e-78-00220-Isup2.hkl (517.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022000378/vm2259Isup3.cml

CCDC reference: 2141278

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows: synthesis and organic chemistry parts preparation, EAA, YAE, ISM; conceptualization and study guide, EAB, SKM; financial support, EAA; crystal data production and validation, JTM; paper preparation and Hirshfeld study, MA.

supplementary crystallographic information

Crystal data

C25H28N2O5S Z = 2
Mr = 468.55 F(000) = 496
Triclinic, P1 Dx = 1.298 Mg m3
a = 10.0643 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.3592 (7) Å Cell parameters from 9995 reflections
c = 12.0685 (8) Å θ = 2.5–29.5°
α = 83.296 (1)° µ = 0.17 mm1
β = 80.770 (1)° T = 150 K
γ = 75.638 (1)° Block, colourless
V = 1199.23 (13) Å3 0.35 × 0.29 × 0.27 mm

Data collection

Bruker SMART APEX CCD diffractometer 6509 independent reflections
Radiation source: fine-focus sealed tube 5177 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 8.3333 pixels mm-1 θmax = 29.6°, θmin = 1.7°
φ and ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −14→14
Tmin = 0.82, Tmax = 0.96 l = −16→16
22695 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.0389P] where P = (Fo2 + 2Fc2)/3
6509 reflections (Δ/σ)max < 0.001
305 parameters Δρmax = 0.71 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give O—H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.40179 (4) 0.33194 (3) 0.67126 (2) 0.02919 (11)
O1 −0.01601 (8) 0.26808 (9) −0.00282 (7) 0.0261 (2)
O2 0.65454 (10) 0.31103 (10) −0.03628 (7) 0.0325 (2)
O3 0.76674 (8) 0.24179 (8) 0.18545 (7) 0.02199 (18)
H3 0.8202 (16) 0.2524 (10) 0.1190 (13) 0.033*
O4 0.08897 (11) 0.46076 (12) 0.66388 (9) 0.0455 (3)
O5 0.13749 (11) 0.65264 (10) 0.58156 (8) 0.0357 (2)
N1 0.35085 (10) 0.41231 (10) 0.46279 (8) 0.0208 (2)
N2 0.67128 (14) 0.03469 (14) 0.60676 (11) 0.0424 (3)
C1 0.46954 (11) 0.29768 (11) 0.16884 (9) 0.0159 (2)
H1 0.500590 0.379658 0.134272 0.019*
C2 0.57706 (11) 0.17513 (11) 0.12120 (9) 0.0173 (2)
H2 0.531350 0.098468 0.129582 0.021*
C3 0.70498 (11) 0.13262 (11) 0.18391 (9) 0.0193 (2)
C4 0.65493 (12) 0.09343 (12) 0.30675 (10) 0.0223 (2)
H4A 0.620266 0.011333 0.310543 0.027*
H4B 0.734138 0.072924 0.350225 0.027*
C5 0.54209 (11) 0.20148 (11) 0.35998 (9) 0.0179 (2)
C6 0.52467 (11) 0.20985 (12) 0.47729 (9) 0.0199 (2)
C7 0.42631 (12) 0.31658 (12) 0.52466 (9) 0.0205 (2)
C8 0.36570 (11) 0.40524 (11) 0.35083 (9) 0.0177 (2)
C9 0.45724 (11) 0.29873 (11) 0.29599 (9) 0.0166 (2)
C10 0.33305 (11) 0.30117 (11) 0.12715 (9) 0.0176 (2)
C11 0.24375 (12) 0.22431 (12) 0.18378 (9) 0.0206 (2)
H11 0.263234 0.176107 0.253526 0.025*
C12 0.12671 (12) 0.21705 (12) 0.13990 (10) 0.0227 (2)
H12 0.065702 0.165748 0.180301 0.027*
C13 0.09882 (11) 0.28515 (12) 0.03646 (9) 0.0200 (2)
C14 0.18526 (12) 0.36397 (12) −0.02017 (9) 0.0225 (2)
H14 0.165733 0.412138 −0.089914 0.027*
C15 0.30109 (12) 0.37198 (12) 0.02605 (9) 0.0212 (2)
H15 0.359409 0.427055 −0.012431 0.025*
C16 −0.03346 (13) 0.32073 (14) −0.11635 (10) 0.0267 (3)
H16A 0.052176 0.288044 −0.166573 0.040*
H16B −0.054905 0.418620 −0.120457 0.040*
H16C −0.109566 0.291484 −0.139534 0.040*
C17 0.61828 (12) 0.20825 (12) −0.00420 (10) 0.0227 (2)
C18 0.60948 (18) 0.11357 (16) −0.08583 (12) 0.0404 (4)
H18A 0.654485 0.138974 −0.160555 0.061*
H18B 0.512060 0.117187 −0.089559 0.061*
H18C 0.656149 0.022519 −0.060849 0.061*
C19 0.81182 (13) 0.01430 (13) 0.13312 (11) 0.0280 (3)
H19A 0.849094 0.041750 0.056329 0.042*
H19B 0.767456 −0.059489 0.131300 0.042*
H19C 0.887278 −0.015108 0.179227 0.042*
C20 0.60828 (13) 0.11221 (13) 0.54794 (10) 0.0258 (3)
C21 0.27853 (12) 0.52205 (12) 0.29046 (10) 0.0236 (2)
H21A 0.327912 0.540938 0.215809 0.035*
H21B 0.259623 0.600477 0.333793 0.035*
H21C 0.190956 0.501257 0.282226 0.035*
C22 0.31143 (14) 0.50489 (13) 0.67068 (10) 0.0286 (3)
H22A 0.305095 0.534976 0.746654 0.034*
H22B 0.366449 0.558138 0.617296 0.034*
C23 0.16744 (14) 0.53363 (14) 0.63858 (10) 0.0303 (3)
C24 0.00183 (17) 0.68891 (18) 0.54348 (14) 0.0490 (4)
H24A −0.072036 0.696185 0.608938 0.059*
H24B −0.007797 0.619864 0.497063 0.059*
C25 −0.0099 (3) 0.8197 (2) 0.4757 (3) 0.0934 (9)
H25A 0.062343 0.810824 0.410224 0.140*
H25B 0.001445 0.886882 0.522048 0.140*
H25C −0.101112 0.847711 0.450117 0.140*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0375 (2) 0.03615 (19) 0.01391 (15) −0.00874 (14) −0.00410 (13) −0.00088 (12)
O1 0.0185 (4) 0.0418 (5) 0.0196 (4) −0.0100 (4) −0.0083 (3) 0.0052 (4)
O2 0.0360 (5) 0.0411 (6) 0.0226 (5) −0.0181 (4) 0.0007 (4) 0.0018 (4)
O3 0.0192 (4) 0.0271 (4) 0.0219 (4) −0.0090 (3) −0.0012 (3) −0.0056 (3)
O4 0.0337 (6) 0.0612 (7) 0.0426 (6) −0.0229 (5) −0.0002 (5) 0.0106 (5)
O5 0.0392 (5) 0.0333 (5) 0.0325 (5) −0.0047 (4) −0.0021 (4) −0.0057 (4)
N1 0.0213 (5) 0.0254 (5) 0.0155 (4) −0.0052 (4) −0.0023 (4) −0.0012 (4)
N2 0.0461 (7) 0.0444 (7) 0.0312 (6) −0.0021 (6) −0.0128 (6) 0.0117 (5)
C1 0.0158 (5) 0.0182 (5) 0.0142 (5) −0.0049 (4) −0.0033 (4) 0.0001 (4)
C2 0.0163 (5) 0.0195 (5) 0.0168 (5) −0.0050 (4) −0.0017 (4) −0.0027 (4)
C3 0.0171 (5) 0.0204 (5) 0.0206 (5) −0.0041 (4) −0.0022 (4) −0.0033 (4)
C4 0.0207 (5) 0.0217 (6) 0.0214 (6) −0.0006 (4) −0.0038 (4) 0.0020 (4)
C5 0.0174 (5) 0.0193 (5) 0.0177 (5) −0.0061 (4) −0.0037 (4) 0.0013 (4)
C6 0.0188 (5) 0.0237 (6) 0.0171 (5) −0.0059 (4) −0.0049 (4) 0.0034 (4)
C7 0.0230 (5) 0.0254 (6) 0.0145 (5) −0.0091 (5) −0.0029 (4) 0.0008 (4)
C8 0.0158 (5) 0.0223 (5) 0.0154 (5) −0.0053 (4) −0.0023 (4) −0.0012 (4)
C9 0.0154 (5) 0.0203 (5) 0.0153 (5) −0.0064 (4) −0.0030 (4) −0.0002 (4)
C10 0.0168 (5) 0.0206 (5) 0.0151 (5) −0.0031 (4) −0.0032 (4) −0.0018 (4)
C11 0.0194 (5) 0.0267 (6) 0.0156 (5) −0.0060 (4) −0.0050 (4) 0.0033 (4)
C12 0.0183 (5) 0.0314 (6) 0.0193 (5) −0.0099 (5) −0.0038 (4) 0.0048 (5)
C13 0.0152 (5) 0.0271 (6) 0.0175 (5) −0.0030 (4) −0.0040 (4) −0.0020 (4)
C14 0.0216 (5) 0.0291 (6) 0.0157 (5) −0.0045 (5) −0.0054 (4) 0.0031 (4)
C15 0.0218 (5) 0.0250 (6) 0.0175 (5) −0.0086 (4) −0.0036 (4) 0.0034 (4)
C16 0.0222 (6) 0.0387 (7) 0.0197 (6) −0.0058 (5) −0.0095 (5) 0.0020 (5)
C17 0.0189 (5) 0.0308 (6) 0.0182 (5) −0.0050 (5) −0.0016 (4) −0.0040 (5)
C18 0.0571 (10) 0.0423 (8) 0.0242 (7) −0.0115 (7) −0.0059 (6) −0.0121 (6)
C19 0.0229 (6) 0.0268 (6) 0.0309 (7) 0.0021 (5) −0.0023 (5) −0.0085 (5)
C20 0.0283 (6) 0.0292 (6) 0.0191 (6) −0.0073 (5) −0.0042 (5) 0.0043 (5)
C21 0.0238 (6) 0.0243 (6) 0.0194 (5) 0.0011 (5) −0.0040 (5) −0.0011 (4)
C22 0.0335 (7) 0.0344 (7) 0.0209 (6) −0.0127 (5) −0.0005 (5) −0.0081 (5)
C23 0.0315 (7) 0.0387 (7) 0.0197 (6) −0.0099 (6) 0.0045 (5) −0.0059 (5)
C24 0.0383 (8) 0.0555 (10) 0.0449 (9) 0.0022 (7) −0.0026 (7) −0.0031 (8)
C25 0.0751 (16) 0.0498 (12) 0.139 (3) 0.0112 (11) −0.0281 (16) 0.0228 (14)

Geometric parameters (Å, º)

S1—C7 1.7672 (11) C10—C11 1.3927 (15)
S1—C22 1.7966 (14) C11—C12 1.3882 (16)
O1—C13 1.3742 (14) C11—H11 0.9500
O1—C16 1.4355 (14) C12—C13 1.3940 (15)
O2—C17 1.2116 (15) C12—H12 0.9500
O3—C3 1.4223 (14) C13—C14 1.3863 (16)
O3—H3 0.903 (17) C14—C15 1.3944 (16)
O4—C23 1.2046 (17) C14—H14 0.9500
O5—C23 1.3298 (17) C15—H15 0.9500
O5—C24 1.457 (2) C16—H16A 0.9800
N1—C7 1.3240 (15) C16—H16B 0.9800
N1—C8 1.3439 (14) C16—H16C 0.9800
N2—C20 1.1443 (17) C17—C18 1.4956 (18)
C1—C9 1.5206 (14) C18—H18A 0.9800
C1—C10 1.5278 (15) C18—H18B 0.9800
C1—C2 1.5501 (15) C18—H18C 0.9800
C1—H1 1.0000 C19—H19A 0.9800
C2—C17 1.5258 (15) C19—H19B 0.9800
C2—C3 1.5421 (15) C19—H19C 0.9800
C2—H2 1.0000 C21—H21A 0.9800
C3—C4 1.5290 (16) C21—H21B 0.9800
C3—C19 1.5311 (15) C21—H21C 0.9800
C4—C5 1.5028 (16) C22—C23 1.5093 (19)
C4—H4A 0.9900 C22—H22A 0.9900
C4—H4B 0.9900 C22—H22B 0.9900
C5—C9 1.3941 (15) C24—C25 1.488 (3)
C5—C6 1.4087 (15) C24—H24A 0.9900
C6—C7 1.3972 (16) C24—H24B 0.9900
C6—C20 1.4369 (16) C25—H25A 0.9800
C8—C9 1.4053 (15) C25—H25B 0.9800
C8—C21 1.4957 (15) C25—H25C 0.9800
C10—C15 1.3893 (15)
C7—S1—C22 98.39 (6) C13—C14—C15 119.48 (10)
C13—O1—C16 116.26 (9) C13—C14—H14 120.3
C3—O3—H3 109.5 C15—C14—H14 120.3
C23—O5—C24 115.10 (12) C10—C15—C14 121.43 (11)
C7—N1—C8 119.27 (10) C10—C15—H15 119.3
C9—C1—C10 113.57 (9) C14—C15—H15 119.3
C9—C1—C2 113.46 (9) O1—C16—H16A 109.5
C10—C1—C2 106.92 (8) O1—C16—H16B 109.5
C9—C1—H1 107.5 H16A—C16—H16B 109.5
C10—C1—H1 107.5 O1—C16—H16C 109.5
C2—C1—H1 107.5 H16A—C16—H16C 109.5
C17—C2—C3 111.24 (9) H16B—C16—H16C 109.5
C17—C2—C1 108.37 (9) O2—C17—C18 121.16 (12)
C3—C2—C1 112.73 (9) O2—C17—C2 120.04 (11)
C17—C2—H2 108.1 C18—C17—C2 118.78 (11)
C3—C2—H2 108.1 C17—C18—H18A 109.5
C1—C2—H2 108.1 C17—C18—H18B 109.5
O3—C3—C4 106.22 (9) H18A—C18—H18B 109.5
O3—C3—C19 110.37 (9) C17—C18—H18C 109.5
C4—C3—C19 109.61 (10) H18A—C18—H18C 109.5
O3—C3—C2 111.05 (9) H18B—C18—H18C 109.5
C4—C3—C2 107.54 (9) C3—C19—H19A 109.5
C19—C3—C2 111.84 (9) C3—C19—H19B 109.5
C5—C4—C3 112.68 (9) H19A—C19—H19B 109.5
C5—C4—H4A 109.1 C3—C19—H19C 109.5
C3—C4—H4A 109.1 H19A—C19—H19C 109.5
C5—C4—H4B 109.1 H19B—C19—H19C 109.5
C3—C4—H4B 109.1 N2—C20—C6 177.83 (14)
H4A—C4—H4B 107.8 C8—C21—H21A 109.5
C9—C5—C6 118.33 (10) C8—C21—H21B 109.5
C9—C5—C4 121.92 (10) H21A—C21—H21B 109.5
C6—C5—C4 119.67 (10) C8—C21—H21C 109.5
C7—C6—C5 119.09 (10) H21A—C21—H21C 109.5
C7—C6—C20 119.89 (10) H21B—C21—H21C 109.5
C5—C6—C20 121.00 (11) C23—C22—S1 114.39 (9)
N1—C7—C6 122.29 (10) C23—C22—H22A 108.7
N1—C7—S1 116.98 (9) S1—C22—H22A 108.7
C6—C7—S1 120.69 (9) C23—C22—H22B 108.7
N1—C8—C9 122.66 (10) S1—C22—H22B 108.7
N1—C8—C21 113.87 (10) H22A—C22—H22B 107.6
C9—C8—C21 123.45 (10) O4—C23—O5 124.65 (13)
C5—C9—C8 118.17 (10) O4—C23—C22 124.79 (13)
C5—C9—C1 121.80 (10) O5—C23—C22 110.53 (11)
C8—C9—C1 119.86 (9) O5—C24—C25 107.60 (17)
C15—C10—C11 118.27 (10) O5—C24—H24A 110.2
C15—C10—C1 120.46 (10) C25—C24—H24A 110.2
C11—C10—C1 121.02 (9) O5—C24—H24B 110.2
C12—C11—C10 121.02 (10) C25—C24—H24B 110.2
C12—C11—H11 119.5 H24A—C24—H24B 108.5
C10—C11—H11 119.5 C24—C25—H25A 109.5
C11—C12—C13 119.91 (10) C24—C25—H25B 109.5
C11—C12—H12 120.0 H25A—C25—H25B 109.5
C13—C12—H12 120.0 C24—C25—H25C 109.5
O1—C13—C14 124.12 (10) H25A—C25—H25C 109.5
O1—C13—C12 116.04 (10) H25B—C25—H25C 109.5
C14—C13—C12 119.84 (10)
C9—C1—C2—C17 −159.86 (9) C21—C8—C9—C5 174.35 (10)
C10—C1—C2—C17 74.15 (10) N1—C8—C9—C1 −179.57 (10)
C9—C1—C2—C3 −36.30 (12) C21—C8—C9—C1 −0.96 (16)
C10—C1—C2—C3 −162.29 (9) C10—C1—C9—C5 125.98 (11)
C17—C2—C3—O3 67.55 (12) C2—C1—C9—C5 3.61 (14)
C1—C2—C3—O3 −54.40 (12) C10—C1—C9—C8 −58.88 (13)
C17—C2—C3—C4 −176.63 (9) C2—C1—C9—C8 178.74 (9)
C1—C2—C3—C4 61.42 (12) C9—C1—C10—C15 143.67 (11)
C17—C2—C3—C19 −56.24 (13) C2—C1—C10—C15 −90.40 (12)
C1—C2—C3—C19 −178.19 (9) C9—C1—C10—C11 −42.15 (14)
O3—C3—C4—C5 64.88 (12) C2—C1—C10—C11 83.77 (12)
C19—C3—C4—C5 −175.88 (10) C15—C10—C11—C12 0.81 (17)
C2—C3—C4—C5 −54.09 (12) C1—C10—C11—C12 −173.49 (10)
C3—C4—C5—C9 23.77 (15) C10—C11—C12—C13 1.36 (18)
C3—C4—C5—C6 −153.08 (10) C16—O1—C13—C14 9.11 (16)
C9—C5—C6—C7 −1.73 (16) C16—O1—C13—C12 −170.76 (10)
C4—C5—C6—C7 175.24 (10) C11—C12—C13—O1 177.43 (10)
C9—C5—C6—C20 179.59 (11) C11—C12—C13—C14 −2.44 (18)
C4—C5—C6—C20 −3.44 (17) O1—C13—C14—C15 −178.52 (11)
C8—N1—C7—C6 2.08 (18) C12—C13—C14—C15 1.34 (18)
C8—N1—C7—S1 179.98 (8) C11—C10—C15—C14 −1.94 (17)
C5—C6—C7—N1 −1.67 (18) C1—C10—C15—C14 172.40 (10)
C20—C6—C7—N1 177.03 (11) C13—C14—C15—C10 0.87 (18)
C5—C6—C7—S1 −179.50 (8) C3—C2—C17—O2 −73.61 (14)
C20—C6—C7—S1 −0.80 (16) C1—C2—C17—O2 50.84 (14)
C22—S1—C7—N1 −15.41 (11) C3—C2—C17—C18 107.90 (13)
C22—S1—C7—C6 162.54 (10) C1—C2—C17—C18 −127.65 (12)
C7—N1—C8—C9 0.94 (17) C7—S1—C22—C23 69.08 (10)
C7—N1—C8—C21 −177.79 (10) C24—O5—C23—O4 −3.71 (19)
C6—C5—C9—C8 4.47 (16) C24—O5—C23—C22 178.31 (11)
C4—C5—C9—C8 −172.42 (10) S1—C22—C23—O4 36.21 (17)
C6—C5—C9—C1 179.69 (10) S1—C22—C23—O5 −145.80 (9)
C4—C5—C9—C1 2.79 (16) C23—O5—C24—C25 −176.43 (17)
N1—C8—C9—C5 −4.26 (16)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C5–C9 pyridine ring.

D—H···A D—H H···A D···A D—H···A
O3—H3···O1i 0.90 (2) 2.05 (2) 2.9283 (12) 164 (2)
C16—H16C···O2ii 0.98 2.47 3.1566 (15) 127
C21—H21A···O2iii 0.98 2.51 3.3956 (15) 150
C22—H22A···O3iv 0.99 2.44 3.1815 (15) 131
C22—H22B···Cg1iv 0.99 2.58 3.4559 (15) 147
C24—H24B···O4v 0.99 2.52 3.442 (2) 154

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1.

References

  1. Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121–125. [DOI] [PMC free article] [PubMed]
  2. Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399–1402. [DOI] [PMC free article] [PubMed]
  3. Bouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Carroll, F. I., Robinson, T. P., Brieaddy, L. E., Atkinson, R. N., Mascarella, S. W., Damaj, M. I., Martin, B. R. & Navarro, H. A. (2007). J. Med. Chem. 50, 6383–6391. [DOI] [PubMed]
  7. Castillo, J.-C., Jiménez, E., Portilla, J., Insuasty, B., Quiroga, J., Moreno-Fuquen, R., Kennedy, A. R. & Abonia, R. (2018). Tetrahedron, 74, 932–947.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Demers, S., Stevenson, H., Candler, J., Bashore, C. G., Arnold, E. P., O’Neill, B. T. & Coe, J. W. (2008). Tetrahedron Lett. 49, 3368–3371.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298–302. [DOI] [PMC free article] [PubMed]
  14. Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867–870. [DOI] [PMC free article] [PubMed]
  15. Lu, B., Cao, H., Cao, J., Huang, S., Hu, Q., Liu, D., Shen, R., Shen, X., Tao, W., Wan, H., Wang, D., Yan, Y., Yang, L., Zhang, J., Zhang, L., Zhang, L. & Zhang, M. (2016). Bioorg. Med. Chem. Lett. 26, 819–823. [DOI] [PubMed]
  16. Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390.
  17. Marae, I. S., Bakhite, E. A., Moustafa, O. S., Abbady, M. S., Mohamed, S. K. & Mague, J. T. (2021a). ACS Omega, 6, 8706–8716. [DOI] [PMC free article] [PubMed]
  18. Marae, I. S., Sharmoukh, W., Bakhite, E. A., Moustafa, O. S., Abbady, M. S. & Emam, H. (2021b). Cellulose, 28, 5937–5956.
  19. Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. [DOI] [PMC free article] [PubMed]
  20. Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100–o103. [DOI] [PubMed]
  21. Pingaew, R., Mandi, P., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2014). Eur. J. Med. Chem. 81, 192–203. [DOI] [PubMed]
  22. Rosales, A. & Bernado, V. (2007). Pyrazoloisoquinoline Derivatives. WIPO Patent WO2007/060198A12007.
  23. Scott, J. D. & Williams, R. (2002). Chem. Rev. 102, 1669–1730. [DOI] [PubMed]
  24. Selvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548–1550. [DOI] [PMC free article] [PubMed]
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Siegfried, L., Helmut, V., Guenther, W., Thomas, S., Eckart, S., Dieter, L., Gunter, L. & Ger East, D. D. (1989). Chem. Abstr. 110, 75554g.
  29. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  30. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.
  31. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625–636. [DOI] [PubMed]
  32. Xu, R., Dwoskin, L. P., Grinevich, V., Sumithran, S. P. & Crooks, P. A. (2002). Drug Dev. Res. 55, 173–186.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989022000378/vm2259sup1.cif

e-78-00220-sup1.cif (676.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022000378/vm2259Isup2.hkl

e-78-00220-Isup2.hkl (517.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022000378/vm2259Isup3.cml

CCDC reference: 2141278

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES