Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jan 14;78(Pt 2):179–183. doi: 10.1107/S2056989022000275

Crystal structure, DFT and Hirshfeld surface analysis of N-acetyl-t-3-methyl-r-2,c-6-di­phenyl­piperidine

P Periyannan a, M Beemarao a, K Karthik b, S Ponnuswamy b, K Ravichandran a,*
PMCID: PMC8819451  PMID: 35145747

In the title compound, C20H23NO, the piperidine ring adopts a distorted boat conformation, while the phenyl rings subtend a dihedral angle 65.1 (2)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains extending along the b-axis direction.

Keywords: crystal structure; 2,6-substituted piperidine; hydrogen bonds; DFT

Abstract

In the title compound [systematic name: 1-(3-methyl-2,6-diphenylpiperidin-1-yl)ethanone], C20H23NO, the piperidine ring adopts a distorted boat conformation, while the phenyl rings subtend a dihedral angle 65.1 (2)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains extending along the b-axis direction. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. A Hirshfeld surface analysis was conducted to verify the contributions of the different inter­molecular inter­actions, indicating that the important contributions to the crystal packing are from H⋯H (73.2%), C⋯H (18.4%) and O⋯H (8.4%) inter­actions.

Chemical context

The structures of a wide array of heterocyclic derivatives have been analysed for their pharma-potentiality over the past three decades (Katritzky, 2010). Among these, derivatives of the six-membered heterocyclic base piperidine have proven to be successful pharmacophores. 2,6-Substituted piperidine derivatives have been found to be useful as tranquilizers and possess a wide range of biological activities such as anti-tumor (Vinaya et al., 2009), anti­viral, anti­malarial, anti­bacterial and anti­fungal activities (Aridoss et al., 2009; Mobio et al., 1989). These have spurred considerable awareness of the synthetic arena based on their structure, reactivity, synthesis and biological properties. We report herein the crystal structure, Hirshfeld surface analysis and DFT computational calculations of the title compound. graphic file with name e-78-00179-scheme1.jpg

Structural commentary

The methyl-substituted piperidine title compound crystallizes in the monoclinic space group P21. A perspective view of the mol­ecule is shown in Fig. 1. The bond lengths and angles are well within the expected limits (Roques et al., 1981), and agree with values observed in related structures (Sekar et al., 1990).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level.

The piperidine ring adopts a distorted boat conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983): q 2 = 0.720 (2) Å, q 3 = −0.004 (3) Å, Φ(2) = 108.5 (2)°, ΔCs(C3) and ΔCs(C6) = 14.5 (2)°, and with maximum deviations of 0.406 (3) and 0.409 (2) Å, respectively, for atoms C3 and C6 from the best plane of the piperidine ring. The title mol­ecule contains three chiral centres viz., C2, C5 and C6. The absolute configuration of the chiral centres is assigned as C2 (R), C5 (S) and C6 (S). The parent mol­ecule itself is chiral and the configuration cannot be changed during the substitution of acetyl group at the nitro­gen.

The sum of the bond angles (358.2°) at atom N1 of the piperidine ring is in accordance with the sp 2 hybridization state (Beddoes et al., 1986). The phenyl rings at the 2 and 6-positions of the piperidine ring occupy equatorial and axial orientations. The corresponding torsion angles are C4—C3—C2—C13 = −178.8 (2)° and C4—C5—C6—C7 = −74.5 (3)°.

The piperidine ring [N1/C2–C6] makes dihedral angles of 82.0 (1) and 58.4 (1)°, respectively, with the C13–C18 and C7–C12 phenyl rings, and confirms the fact that the moieties are in axial and equatorial orientations. It is to be noted that there is a possibility of resonance between atoms N1, C19 and O1 as a result of the delocalization of the hetero π electrons of the carbonyl group, which is also confirmed by the torsion angles C2—N1—C19—O1 = 177.7 (2)° and C6—N1—C19—O1 = 13.0 (3)°.

The methyl group substituted at the 5-position of the piperidine ring is axially oriented, as confirmed by the torsion angles N1—C6—C5—C21 = −68.0 (3)° and C3—C4—C5—C21 = 112.4 (3)°, whereas the methyl group substituted at C19 is oriented equatorially with torsion angle C20—C19—N1—C6 = −166.3 (2)° and C20—C19—N1—C2 = −1.7 (3)°.

Supra­molecular features

The crystal packing features C—H⋯O inter­actions (Table 1). Atom C20 of the mol­ecule at (x, y, z) donates a proton to atom O1 of the mol­ecule at (−x + 1, y +  Inline graphic , −z + 1), forming a C4 zigzag chain (Bernstein et al., 1995) running along the b-axis direction as shown in Fig. 2. The overall packing is shown in Fig. 3.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O1i 0.96 2.44 3.292 (3) 148

Symmetry code: (i) -x+1, y+{\script{1\over 2}}, -z+1.

Figure 2.

Figure 2

A partial view along the b axis of the crystal packing of the title compound, showing the formation of a mol­ecular chain by C—H⋯O inter­actions (dotted lines).

Figure 3.

Figure 3

The overall crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines, and only the H atoms involved in hydrogen bonding have been included.

Density functional theory (DFT) study

The optimized mol­ecular structure and frontier mol­ecular orbitals (FMOs) (Figs. 4 and 5, respectively) were calculated using the DFT/B3LYP/6-311G(d,p) basis set implemented in the GAUSSIAN09 program package (Frisch et al., 2009). The highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO) are called frontier mol­ecular orbitals (FMOs) as they lie at the outermost boundaries of the electrons of the mol­ecule. The electron distribution (ED) of the HOMO−1, HOMO, LUMO and LUMO+1 energy levels and the energy values are shown in Fig. 5. The positive and negative phases are represented in green and red, respectively.

Figure 4.

Figure 4

The optimized mol­ecular structure of the title compound.

Figure 5.

Figure 5

The frontier mol­ecular orbitals (FMOs) of the title compound.

The HOMO of the title mol­ecule is localized on one aromatic ring and the C=O group, while the LUMO is located over the whole mol­ecule with the exception of the CH3 group and some carbon and hydrogen atoms in the piperidine ring. Thus the HOMO/LUMO implies an ED transfer to the C=O group from the ring. The energy band gap (ΔE = E HOMO − E LUMO) of the mol­ecule is 3.165 eV and the calculated frontier mol­ecular orbital energies, E HOMO and E LUMO, are −5.212 and −2.047 eV, respectively. The title compound has a small frontier orbital gap, hence the mol­ecule has high chemical reactivity and low kinetic stability. The electron affinity (A) and ionization potential (I) of the mol­ecule were calculated using the DFT/B3LYP/6- 311++G(d,p) basis set. The values of the hardness (η), softness (σ), electronegativity (χ) and electrophilicity index (ω) for the title compound are given in Table 2.

Table 2. Physico-chemical properties.

Parameter Value
E HOMO (eV) −5.212
E LUMO (eV) −2.047
E HOMO − E LUMO energy gap (eV) 3.165
E HOMO−1 (eV) −5.851
E LUMO+1 (eV) −2.248
E HOMO−1 − E LUMO+1 energy gap (eV) 3.603
Ionization potential I (eV) 5.212
Electron affinity (A) 2.047
Electrophilicity Index (ω) 4.163
Chemical Potential (μ) 3.629
Electro negativity (χ) −3.630
Hardness (η) 1.583
Softness (σ) 0.316

Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated using CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface mapped over d norm using a standard surface resolution with a fixed colour scale of −0.2 (red) to 1.3 (blue) a.u. is shown in Fig. 6 a. The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The most important red spots on the d norm surface represent C—H⋯O inter­actions.

Figure 6.

Figure 6

Hirshfeld surfaces mapped over (a) d norm, (b) shape-index, (c) curvedness and (d) fragment patches.

The HS mapped over curvedness and shape-index, introduced by Koendrink (Koenderink, 1990; Koenderink & van Doorn, 1992), give further chemical insight into mol­ecular packing. A surface with low curvedness designates a flat region and may be indicative of π–π stacking in the crystal. A surface with high curvedness is highlighted as dark blue edges, and is indicative of the absence of π–π stacking (Fig. 6). The nearest neighbour coordination environment of a mol­ecule is identified from the colour patches on the Hirshfeld surface, depending on their closeness to adjacent mol­ecules (Mohamooda Sumaya et al., 2017).

The two-dimensional fingerprint plots of (d i, d e) points of all the contacts contributing to the Hirshfeld surface analysis in normal mode for all the atoms are shown in Fig. 7. The most important inter­molecular inter­actions are H⋯H contacts, contributing 73.2% to the overall crystal packing. Other inter­actions and their respective contributions are C⋯H/H⋯C (18.4%) and O⋯H/H⋯O (8.4%), respectively.

Figure 7.

Figure 7

Two-dimensional fingerprint plot for the title compound showing the contributions of individual types of inter­actions (all inter­molecular contacts, H⋯H contacts, C⋯H/H⋯C contacts and O⋯H/H⋯O contacts).

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and C⋯H/H⋯C inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, update August 2018; Groom et al., 2016) for the 3-methyl-2,6-di­phenyl­piperidine skeleton yielded two hits, methyl 4-oxo-r-2,c-6-di­phenyl­piperidine-3-carboxyl­ate (BIHZEY; Sampath et al., 2004) and r-2,c-6-di­phenyl­piperidine (NIKYEN; Maheshwaran et al., 2013). The piperidine ring has a boat-shaped conformation in both compounds, as in the title compound. The benzene ring and the mean plane of the piperidine ring are inclined to each other by dihedral angles ranging from 19.95 to 29.16°, compared to 22.05 (6)° in the title compound.

Synthesis and crystallization

The compound t-3-methyl-r-2,c-6-di­phenyl­piperidin-4-one was reduced to the corresponding piperidine using the Wolf–Kishner reduction (Ravindran & Jeyaraman, 1992). The piperidine-4-one (10 mmol) was treated with di­ethyl­ene glycol (40 ml), hydrazine hydrate (10 mmol) and KOH pellets (10 mmol) to give t-3-methyl-r-2,c-6-di­phenyl­piperidine. N-Acetyl piperidine was synthesized by the acetyl­ation of the above piperidine. To t-3-methyl-r-2,c-6-di­phenyl­piperidine (5 mmol) dissolved in benzene (50 ml) were added tri­ethyl­amine (20 mmol) and acetyl chloride (20 mmol) to give N-acetyl-t-3-methyl-r-2,c-6-di­phenyl­piperidine, which was crystallized by slow evaporation from a benzene and petroleum ether solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically (N—H = 0.88–0.90 Å and C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with U iso(H) = 1.5Ueq(C) for methyl H and 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C20H23NO
M r 293.39
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 8.3063 (4), 7.5842 (4), 13.8410 (7)
β (°) 104.174 (2)
V3) 845.39 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.697, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 15383, 3447, 2821
R int 0.024
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.101, 1.03
No. of reflections 3447
No. of parameters 201
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.13
Absolute structure Flack x determined using 1136 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.0 (5)

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXS97 and SHELXL97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022000275/jy2013sup1.cif

e-78-00179-sup1.cif (464.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022000275/jy2013Isup2.hkl

e-78-00179-Isup2.hkl (275KB, hkl)

CCDC reference: 2133146

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the SAIF, IIT Madras, India, for the data collection.

supplementary crystallographic information

Crystal data

C20H23NO F(000) = 316
Mr = 293.39 Dx = 1.153 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.3063 (4) Å Cell parameters from 2821 reflections
b = 7.5842 (4) Å θ = 2.6–26.4°
c = 13.8410 (7) Å µ = 0.07 mm1
β = 104.174 (2)° T = 296 K
V = 845.39 (7) Å3 Block, white
Z = 2 0.30 × 0.25 × 0.25 mm

Data collection

Bruker SMART APEXII CCD diffractometer 2821 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
ω and φ scans θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −10→9
Tmin = 0.697, Tmax = 0.745 k = −9→9
15383 measured reflections l = −17→17
3447 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.0626P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.22 e Å3
3447 reflections Δρmin = −0.13 e Å3
201 parameters Absolute structure: Flack x determined using 1136 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.0 (5)
Primary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.3371 (3) 0.2057 (3) 0.31568 (16) 0.0457 (5)
H2 0.377220 0.270737 0.378151 0.055*
C3 0.1580 (3) 0.2626 (4) 0.2699 (2) 0.0565 (6)
H3A 0.155366 0.388579 0.257504 0.068*
H3B 0.117951 0.203547 0.206358 0.068*
C4 0.0435 (3) 0.2199 (4) 0.3367 (2) 0.0679 (7)
H4A −0.070712 0.231457 0.298638 0.081*
H4B 0.061680 0.304992 0.390657 0.081*
C5 0.0700 (3) 0.0344 (4) 0.38074 (17) 0.0567 (6)
H5 −0.038621 −0.023553 0.368498 0.068*
C6 0.1821 (3) −0.0774 (3) 0.33117 (17) 0.0481 (5)
H6 0.209751 −0.182736 0.372930 0.058*
C7 0.1060 (3) −0.1457 (3) 0.22655 (17) 0.0502 (5)
C8 −0.0600 (3) −0.1247 (4) 0.1781 (2) 0.0659 (7)
H8 −0.129032 −0.058009 0.207568 0.079*
C9 −0.1240 (5) −0.2032 (5) 0.0855 (2) 0.0812 (10)
H9 −0.235412 −0.188306 0.053477 0.097*
C10 −0.0235 (6) −0.3020 (5) 0.0415 (2) 0.0890 (11)
H10 −0.066947 −0.354500 −0.020068 0.107*
C11 0.1404 (5) −0.3236 (4) 0.0881 (2) 0.0824 (10)
H11 0.208456 −0.390605 0.058133 0.099*
C12 0.2053 (4) −0.2460 (4) 0.1796 (2) 0.0637 (7)
H12 0.317158 −0.260974 0.210498 0.076*
C13 0.4446 (3) 0.2557 (3) 0.24606 (16) 0.0471 (5)
C14 0.4544 (3) 0.1539 (4) 0.16487 (19) 0.0584 (6)
H14 0.395691 0.048462 0.152879 0.070*
C15 0.5502 (4) 0.2063 (5) 0.1012 (2) 0.0715 (8)
H15 0.555322 0.136101 0.047006 0.086*
C16 0.6372 (4) 0.3607 (5) 0.1175 (2) 0.0783 (9)
H16 0.701865 0.395466 0.074701 0.094*
C17 0.6289 (4) 0.4638 (4) 0.1971 (3) 0.0775 (9)
H17 0.688101 0.568970 0.208368 0.093*
C18 0.5326 (3) 0.4126 (4) 0.2611 (2) 0.0632 (7)
H18 0.526974 0.484386 0.314655 0.076*
C19 0.4825 (3) −0.0674 (3) 0.39016 (16) 0.0476 (5)
C20 0.6396 (3) 0.0380 (4) 0.41982 (19) 0.0617 (7)
H20A 0.724197 −0.031394 0.462980 0.093*
H20B 0.619811 0.142671 0.454141 0.093*
H20C 0.675456 0.070131 0.361322 0.093*
C21 0.1416 (4) 0.0413 (5) 0.4921 (2) 0.0733 (8)
H21A 0.155370 −0.076398 0.518301 0.110*
H21B 0.067488 0.105297 0.522752 0.110*
H21C 0.247396 0.099569 0.506051 0.110*
N1 0.3411 (2) 0.0152 (2) 0.33954 (13) 0.0433 (4)
O1 0.4827 (2) −0.2245 (3) 0.41220 (16) 0.0707 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0422 (11) 0.0485 (13) 0.0457 (11) 0.0023 (10) 0.0097 (9) −0.0057 (10)
C3 0.0478 (13) 0.0552 (14) 0.0642 (14) 0.0106 (11) 0.0097 (11) 0.0003 (12)
C4 0.0484 (14) 0.0814 (19) 0.0771 (17) 0.0154 (14) 0.0216 (13) −0.0054 (15)
C5 0.0388 (12) 0.0813 (18) 0.0536 (13) −0.0051 (12) 0.0180 (10) −0.0059 (13)
C6 0.0379 (11) 0.0585 (13) 0.0484 (11) −0.0038 (10) 0.0117 (9) 0.0029 (11)
C7 0.0493 (13) 0.0504 (12) 0.0509 (12) −0.0083 (11) 0.0123 (10) 0.0014 (11)
C8 0.0556 (15) 0.0738 (19) 0.0623 (15) −0.0092 (14) 0.0029 (12) −0.0028 (14)
C9 0.080 (2) 0.085 (2) 0.0654 (17) −0.0241 (17) −0.0076 (16) 0.0078 (16)
C10 0.122 (3) 0.086 (2) 0.0541 (16) −0.035 (2) 0.0132 (19) −0.0097 (16)
C11 0.109 (3) 0.071 (2) 0.0726 (19) −0.0196 (18) 0.0327 (19) −0.0186 (16)
C12 0.0700 (17) 0.0594 (15) 0.0644 (15) −0.0064 (13) 0.0217 (13) −0.0078 (13)
C13 0.0420 (12) 0.0468 (12) 0.0502 (12) 0.0015 (10) 0.0068 (9) 0.0034 (10)
C14 0.0599 (14) 0.0624 (15) 0.0547 (14) −0.0057 (12) 0.0173 (12) −0.0007 (11)
C15 0.0708 (17) 0.088 (2) 0.0616 (15) 0.0017 (16) 0.0277 (14) 0.0080 (15)
C16 0.0658 (18) 0.092 (2) 0.083 (2) −0.0003 (17) 0.0287 (15) 0.0310 (19)
C17 0.0677 (17) 0.0639 (18) 0.102 (2) −0.0122 (14) 0.0221 (17) 0.0219 (17)
C18 0.0586 (15) 0.0526 (14) 0.0755 (16) −0.0018 (12) 0.0110 (13) 0.0047 (13)
C19 0.0417 (12) 0.0580 (14) 0.0444 (11) 0.0082 (11) 0.0129 (9) 0.0067 (10)
C20 0.0361 (11) 0.0821 (18) 0.0650 (14) 0.0069 (12) 0.0085 (10) 0.0051 (14)
C21 0.0709 (18) 0.091 (2) 0.0638 (15) −0.0030 (16) 0.0278 (13) 0.0006 (16)
N1 0.0335 (9) 0.0520 (10) 0.0445 (9) 0.0014 (8) 0.0100 (7) 0.0023 (8)
O1 0.0595 (12) 0.0657 (12) 0.0843 (13) 0.0117 (9) 0.0125 (10) 0.0206 (10)

Geometric parameters (Å, º)

C2—N1 1.481 (3) C11—C12 1.381 (4)
C2—C13 1.513 (3) C11—H11 0.9300
C2—C3 1.530 (3) C12—H12 0.9300
C2—H2 0.9800 C13—C14 1.382 (4)
C3—C4 1.515 (4) C13—C18 1.386 (4)
C3—H3A 0.9700 C14—C15 1.382 (4)
C3—H3B 0.9700 C14—H14 0.9300
C4—C5 1.528 (4) C15—C16 1.366 (5)
C4—H4A 0.9700 C15—H15 0.9300
C4—H4B 0.9700 C16—C17 1.366 (5)
C5—C21 1.511 (4) C16—H16 0.9300
C5—C6 1.539 (3) C17—C18 1.386 (4)
C5—H5 0.9800 C17—H17 0.9300
C6—N1 1.475 (3) C18—H18 0.9300
C6—C7 1.522 (3) C19—O1 1.230 (3)
C6—H6 0.9800 C19—N1 1.364 (3)
C7—C8 1.387 (3) C19—C20 1.499 (4)
C7—C12 1.394 (4) C20—H20A 0.9600
C8—C9 1.395 (4) C20—H20B 0.9600
C8—H8 0.9300 C20—H20C 0.9600
C9—C10 1.371 (6) C21—H21A 0.9600
C9—H9 0.9300 C21—H21B 0.9600
C10—C11 1.366 (5) C21—H21C 0.9600
C10—H10 0.9300
N1—C2—C13 113.69 (18) C10—C11—C12 120.1 (3)
N1—C2—C3 109.49 (19) C10—C11—H11 119.9
C13—C2—C3 109.34 (19) C12—C11—H11 119.9
N1—C2—H2 108.1 C11—C12—C7 121.2 (3)
C13—C2—H2 108.1 C11—C12—H12 119.4
C3—C2—H2 108.1 C7—C12—H12 119.4
C4—C3—C2 112.3 (2) C14—C13—C18 117.9 (2)
C4—C3—H3A 109.2 C14—C13—C2 122.6 (2)
C2—C3—H3A 109.2 C18—C13—C2 119.4 (2)
C4—C3—H3B 109.2 C15—C14—C13 121.0 (3)
C2—C3—H3B 109.2 C15—C14—H14 119.5
H3A—C3—H3B 107.9 C13—C14—H14 119.5
C3—C4—C5 112.9 (2) C16—C15—C14 120.4 (3)
C3—C4—H4A 109.0 C16—C15—H15 119.8
C5—C4—H4A 109.0 C14—C15—H15 119.8
C3—C4—H4B 109.0 C17—C16—C15 119.6 (3)
C5—C4—H4B 109.0 C17—C16—H16 120.2
H4A—C4—H4B 107.8 C15—C16—H16 120.2
C21—C5—C4 110.9 (2) C16—C17—C18 120.4 (3)
C21—C5—C6 110.1 (2) C16—C17—H17 119.8
C4—C5—C6 111.90 (19) C18—C17—H17 119.8
C21—C5—H5 107.9 C13—C18—C17 120.7 (3)
C4—C5—H5 107.9 C13—C18—H18 119.7
C6—C5—H5 107.9 C17—C18—H18 119.7
N1—C6—C7 113.10 (17) O1—C19—N1 121.4 (2)
N1—C6—C5 109.31 (19) O1—C19—C20 120.0 (2)
C7—C6—C5 117.12 (19) N1—C19—C20 118.5 (2)
N1—C6—H6 105.4 C19—C20—H20A 109.5
C7—C6—H6 105.4 C19—C20—H20B 109.5
C5—C6—H6 105.4 H20A—C20—H20B 109.5
C8—C7—C12 118.0 (2) C19—C20—H20C 109.5
C8—C7—C6 123.5 (2) H20A—C20—H20C 109.5
C12—C7—C6 118.3 (2) H20B—C20—H20C 109.5
C7—C8—C9 120.3 (3) C5—C21—H21A 109.5
C7—C8—H8 119.8 C5—C21—H21B 109.5
C9—C8—H8 119.8 H21A—C21—H21B 109.5
C10—C9—C8 120.3 (3) C5—C21—H21C 109.5
C10—C9—H9 119.8 H21A—C21—H21C 109.5
C8—C9—H9 119.8 H21B—C21—H21C 109.5
C11—C10—C9 120.1 (3) C19—N1—C6 117.61 (18)
C11—C10—H10 120.0 C19—N1—C2 122.16 (19)
C9—C10—H10 120.0 C6—N1—C2 118.46 (17)
N1—C2—C3—C4 56.0 (3) N1—C2—C13—C18 −141.6 (2)
C13—C2—C3—C4 −178.8 (2) C3—C2—C13—C18 95.7 (3)
C2—C3—C4—C5 −45.0 (3) C18—C13—C14—C15 0.6 (4)
C3—C4—C5—C21 112.4 (3) C2—C13—C14—C15 178.1 (2)
C3—C4—C5—C6 −11.0 (3) C13—C14—C15—C16 0.0 (5)
C21—C5—C6—N1 −68.0 (3) C14—C15—C16—C17 −0.2 (5)
C4—C5—C6—N1 55.8 (3) C15—C16—C17—C18 0.0 (5)
C21—C5—C6—C7 161.7 (2) C14—C13—C18—C17 −0.8 (4)
C4—C5—C6—C7 −74.5 (3) C2—C13—C18—C17 −178.4 (2)
N1—C6—C7—C8 −133.9 (2) C16—C17—C18—C13 0.6 (4)
C5—C6—C7—C8 −5.4 (4) O1—C19—N1—C6 13.1 (3)
N1—C6—C7—C12 51.0 (3) C20—C19—N1—C6 −166.3 (2)
C5—C6—C7—C12 179.5 (2) O1—C19—N1—C2 177.7 (2)
C12—C7—C8—C9 0.3 (4) C20—C19—N1—C2 −1.7 (3)
C6—C7—C8—C9 −174.8 (3) C7—C6—N1—C19 −108.2 (2)
C7—C8—C9—C10 0.1 (5) C5—C6—N1—C19 119.4 (2)
C8—C9—C10—C11 −0.3 (5) C7—C6—N1—C2 86.6 (2)
C9—C10—C11—C12 0.1 (5) C5—C6—N1—C2 −45.8 (2)
C10—C11—C12—C7 0.4 (5) C13—C2—N1—C19 64.0 (3)
C8—C7—C12—C11 −0.6 (4) C3—C2—N1—C19 −173.40 (18)
C6—C7—C12—C11 174.8 (2) C13—C2—N1—C6 −131.6 (2)
N1—C2—C13—C14 40.9 (3) C3—C2—N1—C6 −8.9 (3)
C3—C2—C13—C14 −81.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C20—H20B···O1i 0.96 2.44 3.292 (3) 148

Symmetry code: (i) −x+1, y+1/2, −z+1.

Funding Statement

This work was funded by University Grants Commission.

References

  1. Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592. [DOI] [PubMed]
  2. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  10. Katritzky, A. (2010). Adv. Heterocycl. Chem. pp. 42–89.
  11. Koenderink, J. J. (1990). Solid Shape. Cambridge MA: MIT Press.
  12. Koenderink, J. J. & van Doorn, A. J. (1992). Image Vis. Comput. 10, 557–564.
  13. Maheshwaran, V., Abdul Basheer, S., Akila, A., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o1371. [DOI] [PMC free article] [PubMed]
  14. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  15. Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & &Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421–427.
  16. Mohamooda Sumaya, U., Reuben Jonathan, D., Era, D. T., Gomathi, S. & Usha, G. (2017). IUCrData, 2, x170813.
  17. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  18. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  19. Ravindran, T. & Jeyaraman, R. (1992). Indian J. Chem. B31, 677–682.
  20. Roques, R., Declercq, J. P., Germain, G., Graffin, P., Kamenka, J. M. & Geneste, P. (1981). Acta Cryst. B37, 712–714.
  21. Sampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105–o2106.
  22. Sekar, K., Parthasarathy, S. & Radhakrishnan, T. R. (1990). Acta Cryst. C46, 1338–1340.
  23. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  24. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  25. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  26. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  27. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.
  28. Vinaya, K., Kavitha, R., Ananda Kumar, C. S., Benaka Prasad, S. B., Chandrappa, S., Deepak, S. A., NanjundaSwamy, S., Umesha, S. & Rangappa, K. S. (2009). Arch. Pharm. Res. 32, 1, 33–41. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022000275/jy2013sup1.cif

e-78-00179-sup1.cif (464.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022000275/jy2013Isup2.hkl

e-78-00179-Isup2.hkl (275KB, hkl)

CCDC reference: 2133146

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES