Skip to main content
. 2022 Feb 3;27(3):1039. doi: 10.3390/molecules27031039

Table 3.

The performance of different models on the balanced test set.

Partition Criterion MODEL AUC ACC MCC
SRP:2 DNN-PCD1 0.576 0.511 0.044
SRP:2 RF-PCD2 0.632 0.592 0.183
SRP:2 CMPNN 0.784 0.711 0.423
SRP:2 DNN-ECFP3 0.72 0.667 0.333
SRP:2 SYBA 0.491 0.505 0.02
SRP:2 SYBA-24 0.739 0.668 0.343
SRP:2 SAScore 0.535 0.501 −0.003
SRP: 2 SCScore 0.613 0.55 0.128
SRP:3 DNN-PCD1 0.615 0.584 0.168
SRP:3 RF-PCD2 0.627 0.588 0.177
SRP:3 CMPNN 0.791 0.715 0.434
SRP:3 DNN-ECFP3 0.751 0.687 0.373
SRP:3 SYBA 0.465 0.496 −0.012
SRP:3 SYBA-24 0.76 0.69 0.382
SRP:3 SAScore 0.513 0.5 −0.011
SRP: 3 SCScore 0.621 0.543 0.116
SRP:4 DNN-PCD1 0.6 0.565 0.132
SRP:4 RF-PCD2 0.627 0.583 0.168
SRP:4 CMPNN 0.814 0.733 0.466
SRP:4 DNN-ECFP3 0.802 0.732 0.465
SRP:4 SYBA 0.448 0.491 −0.061
SRP:4 SYBA-24 0.8 0.727 0.453
SRP:4 SAScore 0.45 0.512 −0.021
SRP:4 SCScore 0.591 0.517 0.082

DNN-PCD1: DNN classifier built according to physicochemical descriptors. RF-PCD2: RF classifier built on physicochemical descriptor. DNN-ECFP3: DNN classifier built on ECFP4 descriptor. SYBA-24: retrained the SYBA model on our own dataset.