Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Feb 14;60(3):321–334. doi: 10.1007/s12275-022-1621-2

COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity

Mi-Hyun Lee 1,2,6, Bum-Joon Kim 1,2,3,4,5,6,
PMCID: PMC8853094  PMID: 35157221

Abstract

Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), has led to many cases and deaths worldwide. Therefore, a number of vaccine candidates have been developed to control the COVID-19 pandemic. Of these, to date, 21 vaccines have received emergency approval for human use in at least one country. However, the recent global emergence of SARS-CoV-2 variants has compromised the efficacy of the currently available vaccines. To protect against these variants, the use of vaccines that modulate T cell-mediated immune responses or innate immune cell memory function, termed trained immunity, is needed. The major advantage of a vaccine that uses bacteria or viral systems for the delivery of COVID-19 antigens is the ability to induce both T cell-mediated and humoral immune responses. In addition, such vaccine systems can also exert off-target effects via the vector itself, mediated partly through trained immunity; compared to other vaccine platforms, suggesting that this approach can provide better protection against even vaccine escape variants. This review presents the current status of the development of COVID-19 vaccines based on recombinant viral and bacterial delivery systems. We also discuss the current status of the use of licensed live vaccines for other infections, including BCG, oral polio and MMR vaccines, to prevent COVID-19 infections.

Keywords: heterologous vaccine, trained immunity, bacterial vector vaccine, viral vector vaccine, COVID-19

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant No. HV20C0147). The funder was not involved in the analysis, interpretation of data, the writing of this article or the decision for publication.

Footnotes

Conflicts of Interest

The authors declare that the article have no potential conflicts of interest to disclose.

References

  1. Abdulla ZA, Al-Bashir SM, Al-Salih NS, Aldamen AA, Abdulazeez MZ. A summary of the SARS-CoV-2 vaccines and technologies available or under development. Pathogens. 2021;10:788. doi: 10.3390/pathogens10070788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agrawal B. Heterologous immunity: role in natural and vaccine-induced resistance to infections. Front. Immunol. 2019;10:2631. doi: 10.3389/fimmu.2019.02631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altenburg AF, Kreijtz JHCM, De Vries RD, Song F, Fux R, Rimmelzwaan GF, Sutter G, Volz A. Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses. 2014;6:2735–2761. doi: 10.3390/v6072735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Álvarez-Argüelles ME, Rojo-Alba S, Martínez ZP, Negredo L, Riveiro JAB, Álvarez MAA, Súarez JR, de Oña Navarro M, García SM. New clinical and seasonal evidence of infections by Human Parainfluenzavirus. Eur. J. Clin. Microbiol. Infect. Dis. 2018;37:2211–2217. doi: 10.1007/s10096-018-3363-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. An D, Li K, Rowe DK, Diaz MCH, Griffin EF, Beavis AC, Johnson SK, Padykula I, Jones CA, Briggs K, et al. Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5-based COVID-19 vaccine. Sci. Adv. 2021;7:eabi5246. doi: 10.1126/sciadv.abi5246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anbarasu A, Ramaiah S, Livingstone P. Vaccine repurposing approach for preventing COVID 19: can MMR vaccines reduce morbidity and mortality? Hum. Vaccin. Immunother. 2020;16:2217–2218. doi: 10.1080/21645515.2020.1773141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Andersen A, Fisker AB, Rodrigues A, Martins C, Ravn H, Lund N, Biering-Sørensen S, Benn CS, Aaby P. National immunization campaigns with oral polio vaccine reduce all-cause mortality: a natural experiment within seven randomized trials. Front. Public Health. 2018;6:13. doi: 10.3389/fpubh.2018.00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bache BE, Grobusch MP, Agnandji ST. Safety, immunogenicity and risk-benefit analysis of rVSV-ΔG-ZEBOV-GP (V920) Ebola vaccine in Phase I–III clinical trials across regions. Future Microbiol. 2020;15:85–106. doi: 10.2217/fmb-2019-0237. [DOI] [PubMed] [Google Scholar]
  9. Barría MI, Garrido JL, Stein C, Scher E, Ge Y, Engel SM, Kraus TA, Banach D, Moran TM. Localized mucosal response to intranasal live attenuated influenza vaccine in adults. J. Infect. Dis. 2013;207:115–124. doi: 10.1093/infdis/jis641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Barry, M.A., Barry, M., Parrett, B., Lu, S.C., Zell, B., and Matchett, W. 2020. Single-cycle adenoviruses (SC-Ads) as platforms for immunostimulation. J. Immnol.204, Supplement 166.30.
  11. Basak P, Sachdeva N, Dayal D. Can BCG vaccine protect against COVID-19 via trained immunity and tolerogenesis? BioEssays. 2021;43:e2000200. doi: 10.1002/bies.202000200. [DOI] [PubMed] [Google Scholar]
  12. Bezbaruah R, Borah P, Kakoti BB, Al-Shar’I NA, Chandrasekaran B, Jaradat DMM, Al-Zeer MA, Abu-Romman S. Developmental landscape of potential vaccine candidates based on viral vector for prophylaxis of COVID-19. Front. Mol. Biosci. 2021;8:635337. doi: 10.3389/fmolb.2021.635337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bull JJ, Nuismer SL, Antia R. Recombinant vector vaccine evolution. PLoS Comput. Biol. 2019;15:e1006857. doi: 10.1371/journal.pcbi.1006857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Capone S, Raggioli A, Gentile M, Battella S, Lahm A, Sommella A, Contino AM, Urbanowicz RA, Scala R, Barra F. Immunogenicity of a new gorilla adenovirus vaccine candidate for COVID-19. Mol. Ther. 2021;29:2412–2423. doi: 10.1016/j.ymthe.2021.04.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Case JB, Rothlauf PW, Chen RE, Kafai NM, Fox JM, Smith BK, Shrihari S, McCune BT, Harvey IB, Keeler SP, et al. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice. Cell Host Microbe. 2020;28:465–474. doi: 10.1016/j.chom.2020.07.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chamekh, M. 2015. Genetically engineered bacteria in gene therapy—hopes and challenges. In Hashad, D. (ed.), Gene Therapy—Principles and Challenges. IntechOpen, Rijeka, Croatia. doi: 10.5772/61042. Available from: https://www.intechopen.com/chapters/48719.
  17. Chen Z, Gupta T, Xu P, Phan S, Pickar A, Yau W, Karls RK, Quinn FD, Sakamoto K, He B. Efficacy of parainfluenza virus 5 (PIV5)-based tuberculosis vaccines in mice. Vaccine. 2015;33:7217–7224. doi: 10.1016/j.vaccine.2015.10.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chin’ombe N. Recombinant Salmonella enterica serovar Typhimurium as a vaccine vector for HIV-1 Gag. Viruses. 2013;5:2062–2078. doi: 10.3390/v5092062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Choi Y, Chang J. Viral vectors for vaccine applications. Clin. Exp. Vaccine Res. 2013;2:97–105. doi: 10.7774/cevr.2013.2.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Clark-Curtiss JE, Curtiss R. Salmonella vaccines: conduits for protective antigens. J. Immunol. 2018;200:39–48. doi: 10.4049/jimmunol.1600608. [DOI] [PubMed] [Google Scholar]
  21. Comunale BA, Engineer L, Jiang Y, Andrews JC, Liu Q, Ji L, Yurkovich JT, Comunale RA, Xie Q. Poliovirus vaccination induces a humoral immune response that cross reacts with SARS-CoV-2. Front. Med. 2021;8:710010. doi: 10.3389/fmed.2021.710010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Covián C, Fernández-Fierro A, Retamal-Díaz A, Díaz FE, Vasquez AE, Lay MK, Riedel CA, González PA, Bueno SM, Kalergis AM. BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Front. Immunol. 2019;10:2806. doi: 10.3389/fimmu.2019.02806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Covián C, Ríos M, Berríos-Rojas RV, Bueno SM, Kalergis AM. Induction of trained immunity by recombinant vaccines. Front. Immunol. 2021;11:611946. doi: 10.3389/fimmu.2020.611946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Crosby CM, Nehete P, Sastry KJ, Barry MA. Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines. J. Virol. 2015;89:669–675. doi: 10.1128/JVI.02184-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Detmer A, Glenting J. Live bacterial vaccines-a review and identification of potential hazards. Microb. Cell Fact. 2006;5:23. doi: 10.1186/1475-2859-5-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dolzhikova, I.V., Gushchin, V.A., Shcheblyakov, D.V., Tsybin, A.N., Shchetinin, A.M., Pochtovyi, A.A., Komissarov, A.B., Kleymenov, D.A., Kuznetsova, N.A., Tukhvatulin, A., et al. 2021. One-shot immunization with Sputnik Light (the first component of Sputnik V vaccine) is effective against SARS-CoV-2 Delta variant: efficacy data on the use of the vaccine in civil circulation in Moscow. medRxiv. doi: 10.1101/2021.10.08.21264715.
  27. Falsey AR, Sobieszczyk ME, Hirsch I, Sproule S, Robb ML, Corey L, Neuzil KM, Hahn W, Hunt J, Mulligan MJ, et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 vaccine. N. Eng. J. Med. 2021;385:2348–2360. doi: 10.1056/NEJMoa2105290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. FDA, US Food and Drug Administration. 2021. Shingrix. Available from: https://www.fda.gov/vaccines-blood-biologics/vaccines/shingrix.
  29. Feldman KA, Enscore RE, Lathrop SL, Matyas BT, McGuill M, Schriefer ME, Stiles-Enos D, Dennis DT, Petersen LR, Hayes EB. An outbreak of primary pneumonic tularemia on Martha’s Vineyard. N. Eng. J. Med. 2001;345:1601–1606. doi: 10.1056/NEJMoa011374. [DOI] [PubMed] [Google Scholar]
  30. Francis, A.I., Ghany, S., Gilkes, T., and Umakanthan, S. 2021. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad. Med. J. In press. doi: 10.1136/postgradmedj-2021-140654. [DOI] [PubMed]
  31. Frantz PN, Teeravechyan S, Tangy F. Measles-derived vaccines to prevent emerging viral diseases. Microbes Infect. 2018;20:493–500. doi: 10.1016/j.micinf.2018.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gallo O, Locatello LG, Mazzoni A, Novelli L, Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021;14:305–316. doi: 10.1038/s41385-020-00359-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. García-Arriaza J, Garaigorta U, Pérez P, Lázaro-Frías A, Zamora C, Gastaminza P, Del Fresno C, Casasnovas JM, Sorzano CS, Sancho D, et al. COVID-19 vaccine candidates based on modified vaccinia virus Ankara expressing the SARS-CoV-2 spike protein induce robust T-and B-cell immune responses and full efficacy in mice. J. Virol. 2021;95:e02260–20. doi: 10.1128/JVI.02260-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Gold JE, Baumgartl WH, Okyay RA, Licht WE, Fidel PL, Jr, Noverr MC, Tilley LP, Hurley DJ, Rada B, Ashford JW. Analysis of measles-mumps-rubella (MMR) titers of recovered COVID-19 patients. mBio. 2020;11:e02628–20. doi: 10.1128/mBio.02628-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Goodridge HS, Ahmed SS, Curtis N, Kollmann TR, Levy O, Netea MG, Pollard AJ, van Crevel R, Wilson CB. Harnessing the beneficial heterologous effects of vaccination. Nat. Rev. Immunol. 2016;16:392–400. doi: 10.1038/nri.2016.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Grifoni A, Sidney J, Vita R, Peters B, Crotty S, Weiskopf D, Sette A. SARS-CoV-2 human T cell epitopes: adaptive immune response against COVID-19. Cell Host Microbe. 2021;29:1076–1092. doi: 10.1016/j.chom.2021.05.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L, Jadi RS, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181:1489–1501. doi: 10.1016/j.cell.2020.05.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Groisman EA, Chiao E, Lipps CJ, Heffron F. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA. 1989;86:7077–7081. doi: 10.1073/pnas.86.18.7077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Gyssens IC, Netea MG. Heterologous effects of vaccination and trained immunity. Clin. Microbiol. Infect. 2019;25:1457–1458. doi: 10.1016/j.cmi.2019.05.024. [DOI] [PubMed] [Google Scholar]
  40. Heppner DG, Jr, Kemp TL, Martin BK, Ramsey WJ, Nichols R, Dasen EJ, Link CJ, Das R, Xu ZJ, Sheldon EA, et al. Safety and immunogenicity of the rVSVΔ G-ZEBOV-GP Ebola virus vaccine candidate in healthy adults: a phase 1b randomised, multicentre, double-blind, placebo-controlled, dose-response study. Lancet Infect. Dis. 2017;17:854–866. doi: 10.1016/S1473-3099(17)30313-4. [DOI] [PubMed] [Google Scholar]
  41. Ho DT, Hatabu T, Sunada Y, Kondo Y. Oral administration of the probiotic bacterium Lactobacillus acidophilus strain L-55 modulates the immunological parameters of the laying hen inoculated with a Newcastle disease virus-based live attenuated vaccine. Biosci. Microbiota Food Health. 2020;39:117–122. doi: 10.12938/bmfh.2019-033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hörner C, Schürmann C, Auste A, Ebenig A, Muraleedharan S, Dinnon KH, Scholz T, Herrmann M, Schnierle BS, Baric RS, et al. A highly immunogenic and effective measles virus-based Th1-biased COVID-19 vaccine. Proc. Natl. Acad. Sci. USA. 2020;117:32657–32666. doi: 10.1073/pnas.2014468117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hu Z, Ni J, Cao Y, Liu X. Newcastle disease virus as a vaccine vector for 20 years: a focus on maternally derived antibody interference. Vaccines. 2020;8:222. doi: 10.3390/vaccines8020222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020;41:1141–1149. doi: 10.1038/s41401-020-0485-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Jakhmola S, Baral B, Jha HC. A comparative analysis of COVID-19 outbreak on age groups and both the sexes of population from India and other countries. J. Infect. Dev. Ctries. 2021;15:333–341. doi: 10.3855/jidc.13698. [DOI] [PubMed] [Google Scholar]
  46. Jia Q, Bielefeldt-Ohmann H, Maison RM, Masleša-Galić S, Cooper SK, Bowen RA, Horwitz MA. Replicating bacterium-vectored vaccine expressing SARS-CoV-2 Membrane and Nucleocapsid proteins protects against severe COVID-19-like disease in hamsters. npj Vaccines. 2021;6:47. doi: 10.1038/s41541-021-00321-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Jia Q, Lee BY, Bowen R, Dillon BJ, Som SM, Horwitz MA. A Francisella tularensis live vaccine strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infect. Immun. 2010;78:4341–4355. doi: 10.1128/IAI.00192-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Jia Q, Lee BY, Clemens DL, Bowen RA, Horwitz MA. Recombinant attenuated Listeria monocytogenes vaccine expressing Francisella tularensis IglC induces protection in mice against aerosolized Type A F. tularensis. Vaccine. 2009;27:1216–1229. doi: 10.1016/j.vaccine.2008.12.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Jones I, Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet. 2021;397:642–643. doi: 10.1016/S0140-6736(21)00191-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kim BJ, Jeong H, Seo H, Lee MH, Shin HM, Kim BJ. Recombinant Mycobacterium paragordonae expressing SARS-CoV-2 receptor-binding domain as a vaccine candidate against SARS-CoV-2 infections. Front. Immunol. 2021;12:712274. doi: 10.3389/fimmu.2021.712274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kim BJ, Kim BR, Kook YH, Kim BJ. A temperature sensitive Mycobacterium paragordonae induces enhanced protective immune responses against mycobacterial infections in the mouse model. Sci. Rep. 2017;7:15230. doi: 10.1038/s41598-017-15458-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Kim BJ, Kim BR, Kook YH, Kim BJ. Potential of recombinant Mycobacterium paragordonae expressing HIV-1 Gag as a prime vaccine for HIV-1 infection. Sci. Rep. 2019;9:15515. doi: 10.1038/s41598-019-51875-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Koonpaew S, Kaewborisuth C, Srisutthisamphan K, Wanitchang A, Thaweerattanasinp T, Saenboonrueng J, Poonsuk S, Jengarn J, Viriyakitkosol R, Kramyu J, et al. A single-cycle influenza a virus-based SARS-CoV-2 vaccine elicits potent immune responses in a mouse model. Vaccines. 2021;9:850. doi: 10.3390/vaccines9080850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ku MW, Authié P, Nevo F, Souque P, Bourgine M, Romano M, Charneau P, Majlessi L. Lentiviral vector induces high-quality memory T cells via dendritic cells transduction. Commun. Biol. 2021;4:713. doi: 10.1038/s42003-021-02251-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ku MW, Bourgine M, Authié P, Lopez J, Nemirov K, Moncoq F, Noirat A, Vesin B, Nevo F, Blanc C, et al. Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe. 2021;29:236–249. doi: 10.1016/j.chom.2020.12.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Kumar A, Misra S, Verma V, Vishwakarma RK, Kamal VK, Nath M, Prakash K, Upadhyay AD, Sahu JK. Global impact of environmental temperature and BCG vaccination coverage on the transmissibility and fatality rate of COVID-19. PLoS ONE. 2020;15:e0240710. doi: 10.1371/journal.pone.0240710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Li M, Guo J, Lu S, Zhou R, Shi H, Shi X, Cheng L, Liang Q, Liu H, Wang P, et al. Single-dose immunization with a chimpanzee adenovirus-based vaccine induces sustained and protective immunity against SARS-CoV-2 infection. Front. Immunol. 2021;12:697074. doi: 10.3389/fimmu.2021.697074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent. Sci. 2021;7:512–533. doi: 10.1021/acscentsci.1c00120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Lin IY, Van TTH, Smooker PM. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccines. 2015;3:940–972. doi: 10.3390/vaccines3040940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Liu R, Americo JL, Cotter CA, Earl PL, Erez N, Peng C, Moss B. One or two injections of MVA-vectored vaccine shields hACE2 transgenic mice from SARS-CoV-2 upper and lower respiratory tract infection. Proc. Natl. Acad. Sci. USA. 2021;118:e2026785118. doi: 10.1073/pnas.2026785118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Loes AN, Gentles LE, Greaney AJ, Crawford KHD, Bloom JD. Attenuated influenza virions expressing the SARS-CoV-2 receptor-binding domain induce neutralizing antibodies in mice. Viruses. 2020;12:987. doi: 10.3390/v12090987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, Kovyrshina AV, Lubenets NL, Grousova DM, Erokhova AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397:671–681. doi: 10.1016/S0140-6736(21)00234-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Lu M, Dravid P, Zhang Y, Trivedi S, Li A, Harder O, Mahesh K, Chaiwatpongsakorn S, Zani A, Kenney A, et al. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc. Natl. Acad. Sci. USA. 2021;118:e2026153118. doi: 10.1073/pnas.2026153118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Lundberg L, Bygdell M, von Feilitzen GS, Woxenius S, Ohlsson C, Kindblom JM, Leach S. Recent MMR vaccination in health care workers and Covid-19: a test negative case-control study. Vaccine. 2021;39:4414–4418. doi: 10.1016/j.vaccine.2021.06.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Marín-Hernández D, Nixon DF, Hupert N. Heterologous vaccine interventions: boosting immunity against future pandemics. Mol. Med. 2021;27:54. doi: 10.1186/s10020-021-00317-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview of the main anti-SARS-CoV-2 vaccines: mechanism of action, efficacy and safety. Infect. Drug Resist. 2021;14:3459–3476. doi: 10.2147/IDR.S315727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Mendonça SA, Lorincz R, Boucher P, Curiel DT. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. npj Vaccines. 2021;6:97. doi: 10.1038/s41541-021-00356-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Methner U, Barrow PA, Gregorova D, Rychlik I. Intestinal colonisation-inhibition and virulence of Salmonella phoP, rpoS and ompC deletion mutants in chickens. Vet. Microbiol. 2004;98:37–43. doi: 10.1016/j.vetmic.2003.10.019. [DOI] [PubMed] [Google Scholar]
  69. Moradi-Kalbolandi S, Majidzadeh-A K, Abdolvahab MH, Jalili N, Farahmand L. The role of mucosal immunity and recombinant probiotics in SARS-CoV2 vaccine development. Probiotics Antimicrob. Proteins. 2021;13:1239–1253. doi: 10.1007/s12602-021-09773-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Motin VL, Torres AG. Molecular approaches to bacterial vaccines. In: Barrett ADT, Stanberry LR, editors. Vaccines for biodefense and emerging and neglected diseases. 1st edn. Amsterdam, The Netherland: Academic Press; 2009. pp. 63–76. [Google Scholar]
  71. Nagy A, Alhatlani B. An overview of current COVID-19 vaccine platforms. Comput. Struct. Biotechnol. J. 2021;19:2508–2517. doi: 10.1016/j.csbj.2021.04.061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Nascimento LV, Santos CC, Leite LC, Nascimento IP. Characterisation of alternative expression vectors for recombinant Bacillus Calmette-Guérin as live bacterial delivery systems. Mem. Inst. Oswaldo Cruz. 2020;115:e190347. doi: 10.1590/0074-02760190347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LA, van der Meer JW, Mhlanga MM, Mulder WJ, et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020;20:375–388. doi: 10.1038/s41577-020-0285-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, van Crevel R, van de Veerdonk FL, Bonten M. Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 2020;181:969–977. doi: 10.1016/j.cell.2020.04.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O’Neill LA, Xavier RJ. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352:aaf1098. doi: 10.1126/science.aaf1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Nielsen S, Khalek MA, Benn CS, Aaby P, Hanifi SMA. National immunisation campaigns with oral polio vaccine may reduce all-cause mortality: analysis of 2004–2019 demographic surveillance data in rural Bangladesh. EClinicalMedicine. 2021;36:100886. doi: 10.1016/j.eclinm.2021.100886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Nielsen S, Sujan HM, Benn CS, Aaby P, Hanifi SMA. Oral Polio vaccine campaigns may reduce the risk of death from respiratory infections. Vaccines. 2021;9:1133. doi: 10.3390/vaccines9101133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Nieuwenhuizen NE, Kulkarni PS, Shaligram U, Cotton MF, Rentsch CA, Eisele B, Grode L, Kaufmann SH. The recombinant Bacille Calmette-Guérin vaccine VPM1002: ready for clinical efficacy testing. Front. Immunol. 2017;8:1147. doi: 10.3389/fimmu.2017.01147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Nuwarda RF, Alharbi AA, Kayser V. An overview of influenza viruses and vaccines. Vaccines. 2021;9:1032. doi: 10.3390/vaccines9091032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Pasco ST, Anguita J. Lessons from Bacillus Calmette-Guérin: harnessing trained immunity for vaccine development. Cells. 2020;9:2109. doi: 10.3390/cells9092109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Pereira AC, Ramos B, Reis AC, Cunha MV. Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches. Microorganisms. 2020;8:1380. doi: 10.3390/microorganisms8091380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Pérez-Girón JV, Belicha-Villanueva A, Hassan E, Gómez-Medina S, Cruz JL, Lüdtke A, Ruibal P, Albrecht RA, García-Sastre A, Muñoz-Fontela C. Mucosal polyinosinic-polycy-tidylic acid improves protection elicited by replicating influenza vaccines via enhanced dendritic cell function and T cell immunity. J. Immunol. 2014;193:1324–1332. doi: 10.4049/jimmunol.1400222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Rambaut, A., Loman, N., Pybus, O., Barclay, W., Barrett, J., Carabelli, A., Connor, T., Peacock, T., Robertson, D.L., and Volz, E. 2020. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Genom. Epidemiol.https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563/5.
  84. Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr. Opin. Biotechnol. 2007;18:546–556. doi: 10.1016/j.copbio.2007.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Roland KL, Brenneman KE. Salmonella as a vaccine delivery vehicle. Expert Rev. Vaccines. 2013;12:1033–1045. doi: 10.1586/14760584.2013.825454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL. Trained immunity-based vaccines: a new paradigm for the development of broad-spectrum anti-infectious formulations. Front. Immunol. 2018;9:2936. doi: 10.3389/fimmu.2018.02936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Sauer K, Harris T. An effective COVID-19 vaccine needs to engage T cells. Front. Immunol. 2020;11:581807. doi: 10.3389/fimmu.2020.581807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol. Ther. 2020;28:709–722. doi: 10.1016/j.ymthe.2020.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Silva AJ, Zangirolami TC, Novo-Mansur MTM, Giordano RC, Martins EAL. Live bacterial vaccine vectors: an overview. Braz. J. Microbiol. 2014;45:1117–1129. doi: 10.1590/S1517-83822014000400001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect. Drug Resist. 2014;7:239–251. doi: 10.2147/IDR.S53700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Su WJ, Chang CH, Wang JL, Chen SF, Yang CH. Covid-19 severity and neonatal BCG vaccination among young population in Taiwan. Int. J. Environ. Res. Public Health. 2021;18:4303. doi: 10.3390/ijerph18084303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Sun W, Leist SR, McCroskery S, Liu Y, Slamanig S, Oliva J, Amanat F, Schäfer A, Dinnon KH, García-Sastre A, et al. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBio-Medicine. 2020;62:103132. doi: 10.1016/j.ebiom.2020.103132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Sun W, McCroskery S, Liu WC, Leist SR, Liu Y, Albrecht RA, Slamanig S, Oliva J, Amanat F, Schäfer A, et al. A Newcastle disease virus (NDV) expressing a membrane-anchored spike as a cost-effective inactivated SARS-CoV-2 vaccine. Vaccines. 2020;8:771. doi: 10.3390/vaccines8040771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Thysen SM, Benn CS, Gomes VF, Rudolf F, Wejse C, Roth A, Kallestrup P, Aaby P, Fisker A. Neonatal BCG vaccination and child survival in TB-exposed and TB-unexposed children: a prospective cohort study. BMJ Open. 2020;10:e035595. doi: 10.1136/bmjopen-2019-035595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Tober R, Banki Z, Egerer L, Muik A, Behmüller S, Kreppel F, Greczmiel U, Oxenius A, von Laer D, Kimpel J. VSV-GP: a potent viral vaccine vector that boosts the immune response upon repeated applications. J. Virol. 2014;88:4897–4907. doi: 10.1128/JVI.03276-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Tracker, C.V. 2021. COVID19 vaccine traker. https://covid19.track-vaccines.org/vaccines/. Accessed Oct 2021.
  97. Tscherne A, Schwarz JH, Rohde C, Kupke A, Kalodimou G, Limpinsel L, Okba NMA, Bošnjak B, Sandrock I, Halwe S, et al. Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA SARS 2 S in preclinical vaccination. Proc. Natl. Acad. Sci. USA. 2021;118:e2026207118. doi: 10.1073/pnas.2026207118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines. 2014;2:624–641. doi: 10.3390/vaccines2030624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Verheust C, Goossens M, Pauwels K, Breyer D. Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination. Vaccine. 2012;30:2623–2632. doi: 10.1016/j.vaccine.2012.02.016. [DOI] [PubMed] [Google Scholar]
  100. Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and applications of viral vectored vaccines to combat zoonotic and emerging public health threats. Vaccines. 2020;8:680. doi: 10.3390/vaccines8040680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Wang M, Fu T, Hao J, Li L, Tian M, Jin N, Ren L, Li C. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. Int. J. Biol. Macromol. 2020;160:736–740. doi: 10.1016/j.ijbiomac.2020.05.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Wang D, Phan S, DiStefano DJ, Citron MP, Callahan CL, Indrawati L, Dubey SA, Heidecker GJ, Govindarajan D, Liang X, et al. A single-dose recombinant parainfluenza virus 5-vectored vaccine expressing respiratory syncytial virus (RSV) F or G protein protected cotton rats and African green monkeys from RSV challenge. J. Virol. 2017;91:e00066–17. doi: 10.1128/JVI.00066-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. WHO, World Health Organizaion. 2021a. The Janssen Ad26.COV2.S COVID-19 vaccine: What you need to know. https://www.who.int/news-room/feature-stories/detail/the-j-j-covid-19-vaccine-what-you-need-to-know.
  104. WHO, World Health Organizaion. 2021b. Live Attenuated Vaccines (LAV). https://vaccine-safety-training.org/live-attenuated-vaccines.html. Accessed Oct 2021.
  105. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, Lambson BE, De Oliveira T, Vermeulen M, Van der Berg K, et al. SARS-CoV-2 501Y. V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 2021;27:622–625. doi: 10.1038/s41591-021-01285-x. [DOI] [PubMed] [Google Scholar]
  106. Worldometer. 2021. COVID-19 Coronavirus Pandemic. https://www.worldometers.info/coronavirus/.
  107. Xiao P, Dienger-Stambaugh K, Chen X, Wei H, Phan S, Beavis AC, Singh K, Deb Adhikary NR, Tiwari PM, He B, et al. Parainfluenza Virus 5 (PIV5) priming followed by SIV/HIV viruslike-particle boosting induces potent and durable immune responses in nonhuman primates. Front. Immunol. 2021;12:623996. doi: 10.3389/fimmu.2021.623996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Yahalom-Ronen Y, Tamir H, Melamed S, Politi B, Shifman O, Achdout H, Vitner EB, Israeli O, Milrot E, Stein D, et al. A single dose of recombinant VSV-ΔG-spike vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 2020;11:6402. doi: 10.1038/s41467-020-20228-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Yang Y, Du L. SARS-CoV-2 spike protein: a key target for eliciting persistent neutralizing antibodies. Sig. Transduct. Target. Ther. 2021;6:95. doi: 10.1038/s41392-021-00523-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Yang WT, Yang GL, Yang X, Shonyela SM, Zhao L, Jiang YL, Huang HB, Shi CW, Wang JZ, Wang G, et al. Recombinant Lactobacillus plantarum expressing HA2 antigen elicits protective immunity against H9N2 avian influenza virus in chickens. Appl. Microbiol. Biotechnol. 2017;101:8475–8484. doi: 10.1007/s00253-017-8600-2. [DOI] [PubMed] [Google Scholar]
  111. Yao Y, Jeyanathan M, Haddadi S, Barra NG, Vaseghi-Shanjani M, Damjanovic D, Lai R, Afkhami S, Chen Y, Dvorkin-Gheva A, et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell. 2018;175:1634–1650. doi: 10.1016/j.cell.2018.09.042. [DOI] [PubMed] [Google Scholar]
  112. Yengil E, Onlen Y, Ozer C, Hambolat M, Ozdogan M. Effectiveness of booster measles-mumps-rubella vaccination in lower COVID-19 infection rates: a retrospective cohort study in Turkish adults. Int. J. Gen. Med. 2021;14:1757–1762. doi: 10.2147/IJGM.S309022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HM, Tuekprakhon A, Nutalai R, et al. Evidence of escape of SARS-CoV-2 variant B. 1.351 from natural and vaccine-induced sera. Cell. 2021;184:2348–2361. doi: 10.1016/j.cell.2021.02.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Zhu Y, Geng S, Li Q, Jiang H. Transplantation of mesenchymal stem cells: a potential adjuvant therapy for COVID-19. Front. Bioeng. Biotechnol. 2020;8:557652. doi: 10.3389/fbioe.2020.557652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Zhu, D., Meng, Y., Qimuge, A., Bilige, B., Baiyin, T., Temuqile, T., Chen, S., Bao, S., Borjigen, S., Baigude, H., et al. 2020b. Oral delivery of SARS-CoV-2 DNA vaccines using attenuated Salmonella typhimurium} as a carrier in rat. bioRxiv}. doi: 10.1101/2020.07.23.217174. [DOI] [PMC free article] [PubMed]
  116. Zuniga A, Wang Z, Liniger M, Hangartner L, Caballero M, Pavlovic J, Wild P, Viret JF, Glueck R, Billeter MA, et al. Attenuated measles virus as a vaccine vector. Vaccine. 2007;25:2974–2983. doi: 10.1016/j.vaccine.2007.01.064. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Microbiology (Seoul, Korea) are provided here courtesy of Nature Publishing Group

RESOURCES