Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2022 Feb;36(2):242–248. [Article in Chinese] doi: 10.7507/1002-1892.202109091

软骨细胞线粒体生物发生在骨关节炎发病机制中的作用

The role of chondrocyte mitochondrial biogenesis in the pathogenesis of osteoarthritis

Shengliang ZHOU 1, Haibo SI 1, Linbo PENG 1, Bin SHEN 1,*
PMCID: PMC8863531  PMID: 35172413

Abstract

目的

总结软骨细胞线粒体生物发生在骨关节炎(osteoarthritis,OA)发病机制中的作用并分析其应用前景。

方法

查阅近年国内外相关文献,对线粒体生物发生在OA病程中的变化、在OA软骨细胞中主要信号分子的作用,以及在OA治疗中的应用前景进行总结。

结果

近年研究发现线粒体是软骨细胞的重要能量代谢中心,其功能障碍被认为是OA发生、发展的重要机制。线粒体生物发生是维持线粒体正常数量和功能的关键生物过程之一,过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferator-activated receptor-gamma coactivator 1 alpha,PGC-1α)是该过程的关键调控因子。现已报道了以PGC-1α为中心,腺苷酸活化蛋白激酶、沉默信息调节因子1/3及环磷酸腺苷反应元件结合蛋白等为主要上游调控分子,核呼吸因子1、雌激素受体α、核呼吸因子2等为主要下游调控分子的线粒体生物发生调控网络。然而,软骨细胞线粒体生物发生在OA发病机制中的作用还需进一步深入探索。已有研究表明如葛根素、人网膜素-1等药物和活性物质可通过激活OA软骨细胞中受损的线粒体生物发生过程延缓OA发生、发展,为OA治疗提供了新思路。

结论

软骨细胞线粒体生物发生在OA发病机制中起重要作用,进一步探索相关机制具有重要临床意义。

Keywords: 骨关节炎, 软骨细胞, 线粒体生物发生, 过氧化物酶体增殖物激活受体γ辅激活因子1α


骨关节炎(osteoarthritis,OA)是世界上发病率最高的关节疾病,已成为中老年人群疼痛及致残的主要疾病之一,给患者及社会带来了巨大负担[1]。OA的发病机制目前尚未完全明确,非手术治疗以缓解疼痛为主,对于晚期OA患者只能进行关节置换手术[2]。随着老年人群和肥胖人群比例的增长,过去20年间因OA行关节置换手术的数量也大幅度增加[3],目前亟需新的治疗手段来延缓、阻止甚至逆转OA的发展。研究发现线粒体功能障碍会引起软骨细胞能量代谢障碍、活性氧堆积,促使软骨细胞释放炎症介质,导致软骨退化,最终发展为OA。基于内源性分子靶点来恢复线粒体正常功能已经成为OA治疗的新方向。线粒体生物发生是已有线粒体生长或产生新线粒体的复杂过程,该过程涉及线粒体内、外膜和线粒体编码蛋白质的合成,核编码蛋白质的合成以及线粒体DNA(mitochondrial DNA,mtDNA)的复制[4]。线粒体生物发生能够调控细胞器的自我更新,维持mtDNA的完整性,进而保证细胞内环境的稳定[5-7]。研究显示,在人OA软骨细胞中线粒体生物发生能力下降,表明线粒体生物发生与OA发生密切相关[8-9]。本文就软骨细胞线粒体生物发生在OA发病机制中的作用作一综述。

1. 线粒体生物发生在OA病程中的变化

1.1. 线粒体是维持软骨细胞稳态的关键因素

软骨细胞是成熟软骨中存在的唯一细胞,其新陈代谢非常活跃,青少年期后通常不会再分裂[10]。虽然软骨细胞只占关节软骨的5%,但在维持整个软骨稳态中发挥着至关重要的作用[11]。OA发生时,软骨细胞发生显著病理性改变,表现为数量减少、软骨细胞外基质合成减少、基质降解酶分泌增加、软骨病理性钙化等[1012-14]。既往研究认为关节软骨缺乏血供,软骨细胞处于缺氧环境中,糖酵解是其产生能量的主要方式,线粒体和软骨细胞能量代谢没有联系[15]。然而,最新研究显示关节软骨组织表面氧分压可达7%,靠近关节软骨表面的软骨细胞处于相对有氧的状态,表明线粒体介导的有氧呼吸仍是关节软骨细胞的重要供能方式[16]。同时,其他研究表明线粒体是维持软骨细胞正常代谢的关键[17]。OA软骨细胞线粒体功能损害主要表现为呼吸链中Ⅱ和Ⅲ复合物显著减少、三磷酸腺苷合成减少、线粒体细胞膜电位损失、活性氧增加、mtDNA损伤等,最终导致软骨细胞结构和功能受损、细胞寿命缩短[8-10]。线粒体细胞膜电位损失会发生能量产生减少、膜通透性增加,最终导致各种凋亡诱导因子(如细胞色素C)从线粒体释放进入软骨细胞基质[18]

1.2. 线粒体生物发生在OA中的作用及变化

线粒体生物发生受特定的激素或信号分子调控,涉及到核和线粒体基因及基因表达产物的相互协调作用,在能量需求增多、生长发育旺盛或微环境改变等刺激下,线粒体生物发生增加[419]。线粒体生物发生对于维持线粒体正常功能具有重要意义,若该过程受阻,不仅细胞能量调节失控,还会由于线粒体功能损害和凋亡激活,造成线粒体产生过多活性氧,导致氧化应激损害及钙失调[20]。目前认为调节线粒体生物发生的关键分子是过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferator-activated receptor-gamma coactivator 1 alpha,PGC-1α)。PGC-1α是结构相关转录共激活因子家族的创始成员,最初在已分化棕色脂肪系中被发现,其作用是与相关转录因子结合,提高其活性[21]。自PGC-1α被发现以来,陆续发现了腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)、沉默信息调节因子1/3(sirtuin1/3,SIRT1/3)、核呼吸因子1(nuclear respiratory factor 1,NRF-1)、NRF-2、雌激素受体α(estrogen-related receptor α,ERRα)等与其存在相互作用的上游或下游分子。PGC-1α利用正、负反馈与这些分子建立网络,进而行使调节线粒体生物发生的功能(图1)。线粒体生物发生的调节网络在衰老相关疾病领域被广泛研究,并在治疗神经退行性病变、心血管及肾脏等疾病方面取得一定进展[22-24]

图 1.

Mitochondrial biogenesis regulatory network

线粒体生物发生调控网络

cAMP:环磷酸腺苷 CREB:环磷酸腺苷反应元件结合蛋白 PKA:蛋白激酶AA RIP-140:转录辅抑制因子140  

cAMP: Cyclic adenosine monophosphate CREB: Cyclic adenosine monophosphate response element-binding protein PKA: Protein kinase AA RIP-140: Receptor-interacting protein 140

图 1

线粒体生物发生在OA发病机制和治疗方面也取得了一定成果。研究发现在OA软骨细胞中调控线粒体生物发生的AMPK、PGC-1α及NRF-1等调控因子表达或活性降低,mtDNA含量及细胞内三磷酸腺苷减少,线粒体能量代谢障碍,表明在OA软骨细胞中线粒体生物发生能力受损,并可能诱导产生OA软骨细胞中不可逆的线粒体功能障碍[925]。但当人为调节使OA软骨细胞中的线粒体生物发生增加时,mtDNA含量增加,线粒体功能恢复,表明重新激活OA软骨细胞中的线粒体生物发生有助于恢复损伤的线粒体,限制OA发展进程[9]。目前研究的能够激活软骨细胞线粒体生物发生的途径主要有AMPK-PGC-1α[25]、SIRT1-PGC-1α[9]及SIRT3-PGC-1α[26],通过激活PGC-1α及其下游NRF-1、NRF-2及ERRα等使线粒体生物发生增加。

2. OA软骨细胞线粒体生物发生中主要信号分子的变化及作用

2.1. PGC-1α

PGC-1α是线粒体生物发生的主要调节因子,在OA软骨细胞线粒体生物发生调节网络中,PGC-1α位居中央,通过接受上游分子的调节信号,传递给下游分子发挥效应[27]。因此,为探求线粒体生物发生对OA软骨细胞的作用及机制,研究PGC-1α是必不可少的。与正常软骨细胞对比,在人OA软骨细胞中PGC-1α表达降低,线粒体生物发生过程受到抑制,调高PGC-1α表达和活性会显著促进线粒体生物发生,增加mtDNA含量和线粒体容量,能一定程度恢复线粒体功能[9]。目前已发现的能够调节PGC-1α表达和活性的信号分子主要有AMPK、SIRT1、SIRT3,提高以上分子活性均可激活PGC-1α,进而激活NRF-1、NRF-2等下游分子,提高线粒体生物发生,减少氧化应激,限制OA疾病进展[92528-29]

2.2. AMPK

AMPK是存在于几乎所有真核细胞中的激酶,也是重要的能量感受器[30]。AMPK是细胞中调节代谢的关键分子,被激活后通过磷酸化多种途径的关键蛋白,增加分解代谢并降低合成代谢[31]。AMPK在调节脂质稳态及线粒体稳态等多方面具有重要作用,和多种与细胞能量失衡及衰老相关的疾病有牵连,如癌症、心血管疾病、阿尔兹海默症及OA[32-34]。不仅如此,还可通过抑制氧化应激、NF-κB通路对软骨细胞应激反应发挥抗炎作用[35]。研究发现在OA软骨细胞中AMPK活性降低,线粒体生物发生受损,诱导关节软骨退变,最终引起OA[3036-37]。线粒体生物发生是调节软骨细胞线粒体稳态的重要环节,OA软骨细胞中线粒体生物发生受损可通过激活AMPK-SIRT-1-PGC-1α通路逆转[9]。Chen等[36]报道轻微软骨退化的年轻C57BL/6雄性小鼠与年长C57BL/6雄性小鼠相比,AMPKα的磷酸化明显丧失,表明AMPK活性降低可能是与衰老相关OA发生发展的一个关键因素。

2.3. SIRTs

SIRTs是烟酰胺腺嘌呤二核苷酸(NAD+)依赖的去乙酰化酶,包括SIRT-1~SIRT-7,分布于整个细胞。其中SIRT-3、SIRT-4及SIRT-5位于线粒体,调节线粒体的代谢和呼吸作用。OA软骨细胞中SIRT-1表达水平低于正常软骨细胞,此外敲除SIRT-1后会提高人基质金属蛋白酶13(matrix metalloproteinases 13,MMP-13)和软骨细胞凋亡标志物表达,加速软骨损伤[38]。SIRT-1存在于细胞核中,虽不能直接影响线粒体功能,但可通过去乙酰化PGC-1α广泛参与代谢控制和线粒体生物发生[39-40]。最新研究表明[41],槲皮素可通过激活SIRT-1-PGC-1α途径激活线粒体生物发生,改善胶原诱导的小鼠关节炎。SIRT-3是第一个被证明位于线粒体的SIRTs,维持着超过136个线粒体蛋白质的乙酰化状态和活性[42-45]。近来研究表明SIRT-3是软骨细胞代谢的调节因子,可维持线粒体正常功能和稳态[4446]。OA软骨细胞中SIRT-3水平显著减少,敲除软骨细胞中SIRT-3基因可诱导线粒体功能障碍,且SIRT-3基因敲除小鼠OA症状表现重于正常小鼠[263647]。Torrens-Mas等[48]发现在乳腺癌细胞中SIRT-3基因敲除后,PGC-1α表达水平下降,线粒体生物发生被抑制。这一结果表明SIRT-3通过PGC-1α通路对线粒体生物发生产生影响,然而这一作用机制在OA软骨细胞中尚不清楚,还需更多研究明确。

2.4. 核转录因子

mtDNA复制和表达依赖于核转录因子,包括NRF-1、NRF-2、线粒体转录因子A(mitochondrial transcription factor A,TFAM)等。NRF-1和NRF-2接受PGC-1α刺激活化,结合线粒体转录因子的启动子,激活下游分子TFAM和线粒体转录因子B(mitochondrial transcription factor B,TFBM)表达参与线粒体生物发生[49-51]。TFAM是专门调节mtDNA的核转录因子,可转移到线粒体中促进mtDNA复制和表达。OA软骨细胞中TFAM基因表达水平与正常软骨细胞相比存在明显差异,可能参与了OA的治病过程[52]。TFAM基因敲除小鼠表现为胚胎致死和mtDNA缺失,同时过量表达TFAM的转基因小鼠表现为mtDNA拷贝数目增加,证实了该蛋白在哺乳动物中维持mtDNA的作用[53-54]。目前也有研究表明,足够数量的TFBM对于正常线粒体生物发生是不可或缺的[55-56]。TFAM能够调节mtDNA总拷贝数,保持mtDNA的完整和稳定,TFBM可以提高mtDNA转录增加线粒体生物发生[44]。既往研究表明[50],相比于NRF-2,NRF-1在激活TFAM中起主要作用。NRF-1的显性抑制等位基因可阻断PGC-1α对线粒体生物发生的作用,为NRF-1依赖途径提供了体内证据[57]。有研究发现,NRF-2在线粒体生物发生中同样起着不容忽视的作用[58]。Suliman等[59]发现在大鼠肝脏细胞内细菌脂多糖能够诱导提高NRF-1表达水平和活性,并且NRF-2、TFAM表达同样增加,线粒体生物发生被激活。Mattingly等[60]发现在MCF-7乳腺细胞中雌二醇可诱导NRF-1、TFAM表达增加,进而激活细胞线粒体生物发生。目前尚无通过调控OA软骨细胞核转录因子来调控线粒体生物发生的研究。在OA软骨细胞中,由于PGC-1α活性及表达降低,NRF-1、NRF-2及TFAM的表达水平相比于正常软骨细胞均降低[9]。核转录因子受上游分子调控,许多研究选择通过AMPK/SIRT-1/SIRT-3-PGC-1α途径激活PGC-1α,进而激活下游分子即NRF-1、NRF-2及TFAM来调控线粒体生物发生[9, 25, 44]

2.5. ERRα

孤儿核受体家族包括ERRα、ERRβ及ERRγ,与线粒体生物发生有关的主要是ERRα。现有研究表明,ERRα不仅与脂质代谢有关,还与PGC-1α诱导的线粒体生物发生有关[61-62]。Schreiber等[63]研究首次发现ERRα是PGC-1α的效应分子,能够调控氧化磷酸化和线粒体生物发生。抑制ERRα会抑制PGC-1α诱导线粒体蛋白质表达和mtDNA复制的能力[63]。ERRα还可以直接控制NRF-2的表达[64]。还有研究发现PGC-1α可以通过招募ERRα作用于SIRT3的启动子来促进SIRT3的表达[44]。近年研究发现ERRγ同样可以通过PGC-1α调节线粒体生物发生[65]。目前ERRα或ERRγ在OA软骨细胞线粒体生物发生的作用尚无研究阐明。

3. 线粒体生物发生在OA发病机制中的后续研究方向及应用前景

软骨细胞线粒体生物发生参与了OA发病过程,线粒体生物发生过程涉及到的关键调节分子(如AMPK、SIRT-1、PGC-1α)是保护软骨细胞、防止细胞功能障碍和软骨发生损伤不可或缺的。因此,探明OA软骨细胞中线粒体生物发生失调的机制,可能有助于发现能够限制OA进程的临床干预措施。目前,线粒体生物发生的调节机制主要由以PGC-1α为中心的调节网络构成,并发现了一些药物和生物活性成分,通过改善软骨细胞线粒体生物发生来减轻软骨损伤。Li等[66]发现网膜素-1可通过上调细胞内PGC-1α表达,调控软骨细胞线粒体生物发生,最终限制OA进展;Masuda等[67]发现苹果原花青素具有同样作用。Wang等[68]和Chen等[69]报道葛根素和梓醇分别通过AMPK-PGC-1α通路和CREB-PGC-1α通路调控软骨细胞线粒体生物发生,可用于治疗或缓解OA。此外,研究发现[70-71]在神经细胞中白藜芦醇可通过PGC-1α激活线粒体生物发生,改善神经细胞损伤,但其在OA软骨细胞中的作用尚未证实。同时,还有研究发现二甲双胍通过AMPK通路限制OA的进展[72]。但二甲双胍是否在软骨细胞的线粒体生物发生中发挥潜在作用以改善OA,仍需深入研究。目前研究中对软骨细胞线粒体生物发生的调控都需要上调PGC-1α表达和活性,引起线粒体生物发生增加,进而限制OA进展。但需要注意的是,过度增加线粒体生物发生会适得其反。线粒体功能是一个整体,如果没有其他质量控制机制的平衡,过度增加线粒体生物发生会导致耗氧量增加和氧化应激[9]

另外根据多个研究发现,AMPK和SIRT-3之间可能存在一定联系。Petursson等[73]报道了LKB1是软骨细胞中激活AMPK的主要激酶,LKB1敲除后几乎阻断了软骨细胞中AMPK的活化。Zhang等[74]报道了在人神经母细胞瘤中活化的SIRT-3将LKB1去磷酸化激活,继而提高了AMPK的活性。软骨细胞中的AMPK在能量缺乏时被磷酸化激活,被激活的AMPK促进了三磷酸腺苷的产生并增加了细胞内NAD+水平,最终激活了SIRT-3,并且下调AMPK表达后,SIRT-3的表达和活性降低[36]。因此,有理由认为AMPK和SIRT-3之间存在某种联系,这种联系通过软骨细胞线粒体生物发生在OA发生中发挥的作用尚不得而知,可能成为OA治疗的潜在靶点。

4. 总结

近年线粒体功能障碍被认为是OA发生的重要机制,线粒体生物发生是维持线粒体正常数量和功能的主要过程之一,因此软骨细胞线粒体生物发生机制可能是OA治疗的潜在干预靶点。目前已发现PGC-1α是线粒体生物发生的关键调控因子,并大致形成了以PGC-1α为中心,AMPK、SIRT及CREB等为主要上游调控分子,NRF-1、ERRα、NRF-2等为主要下游调控分子的正、负反馈调控网络,但OA软骨细胞线粒体生物发生的调控研究较少,作用机制还有待进一步深入探索。现有研究表明激活OA软骨细胞中受损的线粒体生物发生可延缓OA发展,且已发现如葛根素、人网膜素-1等可通过调控软骨细胞线粒体生物发生抑制OA发展。因此,进一步探索调控软骨细胞线粒体生物发生的相关机制及研发靶向调控策略具有重要临床意义。

作者贡献:斯海波、沈彬负责综述设计、构思及修改;周圣梁负责撰写文章;彭琳博负责收集资料和查阅文献,对文章结构、逻辑提供建议。

利益冲突:所有作者声明,在课题研究和文章撰写过程中不存在利益冲突。项目经费支持没有影响文章观点。

Funding Statement

国家自然科学基金资助项目(81974347、81802210);四川省科技厅重点研发计划项目(2021YFS0122);四川省卫健委项目(20PJ056)

National Natural Science Foundation of China (81974347, 81802210); Key Project of Sichuan Science & Technology Department (2021YFS0122); Sichuan Health Commission Project (20PJ056)

References

  • 1.Woolf AD, Pfleger B Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81(9):646–656. [PMC free article] [PubMed] [Google Scholar]
  • 2.Loeser RF, Collins JA, Diekman BO Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12(7):412–420. doi: 10.1038/nrrheum.2016.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Cram P, Lu X, Kates SL, et al Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010. JAMA. 2012;308(12):1227–1236. doi: 10.1001/2012.jama.11153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Li PA, Hou X, Hao S Mitochondrial biogenesis in neurodegeneration. J Neurosci Res. 2017;95(10):2025–2029. doi: 10.1002/jnr.24042. [DOI] [PubMed] [Google Scholar]
  • 5.Popov LD Mitochondrial biogenesis: An update. J Cell Mol Med. 2020;24(9):4892–4899. doi: 10.1111/jcmm.15194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Jamwal S, Blackburn JK, Elsworth JD. Pparγ/pgc1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther, 2021, 219: 107705. doi: 10.1016/j.pharmthera.2020.107705.
  • 7.Jornayvaz FR, Shulman GI Regulation of mitochondrial biogenesis. Essays in Biochem. 2010;47:69–84. doi: 10.1042/bse0470069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Mao X, Fu P, Wang L, et al. Mitochondria: Potential targets for osteoarthritis. Front Med (Lausanne), 2020, 7: 581402. doi: 10.3389/fmed.2020.581402.
  • 9.Wang Y, Zhao X, Lotz M, et al Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol. 2015;67(8):2141–2153. doi: 10.1002/art.39182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Blanco FJ, López-Armada MJ, Maneiro E Mitochondrial dysfunction in osteoarthritis. Mitochondrion. 2004;4(5-6):715–728. doi: 10.1016/j.mito.2004.07.022. [DOI] [PubMed] [Google Scholar]
  • 11.Onuora S. Osteoarthritis: Chondrocyte clock maintains cartilage tissue. Nat Rev Rheumatol, 2016, 12(2): 71. doi: 10.1038/nrrheum.2015.183.
  • 12.Mitrovic D, Quintero M, Stankovic A, et al Cell density of adult human femoral condylar articular cartilage. Joints with normal and fibrillated surfaces. Lab Invest. 1983;49(3):309–316. [PubMed] [Google Scholar]
  • 13.Blanco FJ, Guitian R, Vázquez-Martul E, et al Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum. 1998;41(2):284–289. doi: 10.1002/1529-0131(199802)41:2<284::AID-ART12>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  • 14.Bullough PG Osteoarthritis: pathogenesis and aetiology. Br J Rheumatol. 1984;23(3):166–169. doi: 10.1093/rheumatology/23.3.166. [DOI] [PubMed] [Google Scholar]
  • 15.Otte P Basic cell metabolism of articular cartilage. Manometric studies. Z Rheumatol. 1991;50(5):304–312. [PubMed] [Google Scholar]
  • 16.Jahr H, Gunes S, Kuhn AR, et al. Bioreactor-controlled physoxia regulates TGF-β signaling to alter extracellular matrix synthesis by human chondrocytes. Int J Mol Sci, 2019, 20(7): 1715. doi: 10.3390/ijms20071715.
  • 17.Wang Y, Chen LY, Liu-Bryan R Mitochondrial biogenesis, activity, and DNA isolation in chondrocytes. Methods Mol Biol. 2021;2245:195–213. doi: 10.1007/978-1-0716-1119-7_14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Maneiro E, López-Armada MJ, de Andres MC, et al Effect of nitric oxide on mitochondrial respiratory activity of human articular chondrocytes. Ann Rheum Dis. 2005;64(3):388–395. doi: 10.1136/ard.2004.022152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Du K, Ramachandran A, McGill MR, et al. Induction of mitochondrial biogenesis protects against acetaminophen hepatotoxicity. Food Chem Toxicol, 2017, 108(Pt A): 339-350.
  • 20.Murphy MP, Smith RA Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–656. doi: 10.1146/annurev.pharmtox.47.120505.105110. [DOI] [PubMed] [Google Scholar]
  • 21.Coppi L, Ligorio S, Mitro N, et al. Pgc1s and beyond: Disentangling the complex regulation of mitochondrial and cellular metabolism. Int J Mol Sci, 2021, 22(13): 6913. doi: 10.3390/ijms22136913.
  • 22.Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, et al. The role of pgc-1α and mitochondrial biogenesis in kidney diseases. Biomolecules, 2020, 10(2): 347. doi: 10.3390/biom10020347.
  • 23.Simmons EC, Scholpa NE, Schnellmann RG. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative cns diseases. Exp Neurol, 2020, 329: 113309. doi: 10.1016/j.expneurol.2020.113309.
  • 24.Dorn GW, Vega RB, Kelly DP Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 2015;29(19):1981–1991. doi: 10.1101/gad.269894.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Zhao X, Petursson F, Viollet B, et al Peroxisome proliferator-activated receptor γ coactivator 1α and foxo3a mediate chondroprotection by amp-activated protein kinase. Arthritis Rheumatol. 2014;66(11):3073–3082. doi: 10.1002/art.38791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Wang J, Wang K, Huang C, et al SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis. Int J Biol Sci. 2018;14(13):1873–1882. doi: 10.7150/ijbs.27746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Liu D, Cai ZJ, Yang YT, et al. Mitochondrial quality control in cartilage damage and osteoarthritis: New insights and potential therapeutic targets. Osteoarthritis Cartilage, 2021. doi: 10.1016/j.joca.2021.10.009.
  • 28.Soto-Hermida A, Fernández-Moreno M, Pértega-Díaz S, et al Mitochondrial DNA haplogroups modulate the radiographic progression of spanish patients with osteoarthritis. Rheumatol Int. 2015;35(2):337–344. doi: 10.1007/s00296-014-3104-1. [DOI] [PubMed] [Google Scholar]
  • 29.Wang J, Li J, Song D, et al Ampk: Implications in osteoarthritis and therapeutic targets. Am J Transl Res. 2020;12(12):7670–7681. [PMC free article] [PubMed] [Google Scholar]
  • 30.Hardie DG AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr. 2014;34:31–55. doi: 10.1146/annurev-nutr-071812-161148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Herzig S, Shaw RJ AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–135. doi: 10.1038/nrm.2017.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Carling D, Zammit VA, Hardie DG A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 1987;223(2):217–222. doi: 10.1016/0014-5793(87)80292-2. [DOI] [PubMed] [Google Scholar]
  • 33.Toyama EQ, Herzig S, Courchet J, et al Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351(6270):275–281. doi: 10.1126/science.aab4138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Salminen A, Kaarniranta K AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–241. doi: 10.1016/j.arr.2011.12.005. [DOI] [PubMed] [Google Scholar]
  • 35.Liu-Bryan R Inflammation and intracellular metabolism: new targets in OA. Osteoarthritis Cartilage. 2015;23(11):1835–1842. doi: 10.1016/j.joca.2014.12.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Chen LY, Wang Y, Terkeltaub R, et al Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage. 2018;26(11):1539–1550. doi: 10.1016/j.joca.2018.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Terkeltaub R, Yang B, Lotz M, et al Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. Arthritis Rheum. 2011;63(7):1928–1937. doi: 10.1002/art.30333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Matsuzaki T, Matsushita T, Takayama K, et al Disruption of sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis. 2014;73(7):1397–1404. doi: 10.1136/annrheumdis-2012-202620. [DOI] [PubMed] [Google Scholar]
  • 39.Tang BL Sirt1 and the Mitochondria. Mol Cells. 2016;39(2):87–95. doi: 10.14348/molcells.2016.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Haigis MC, Guarente LP Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20(21):2913–2921. doi: 10.1101/gad.1467506. [DOI] [PubMed] [Google Scholar]
  • 41.Shen P, Lin W, Ba X, et al. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. J Ethnopharmacol, 2021, 279: 114213. doi: 10.1016/j.jep.2021.114213.
  • 42.Onyango P, Celic I, McCaffery JM, et al SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A. 2002;99(21):13653–13658. doi: 10.1073/pnas.222538099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Schwer B, North BJ, Frye RA, et al The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 2002;158(4):647–657. doi: 10.1083/jcb.200205057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.He Y, Wu Z, Xu L, et al The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell Mol Life Sci. 2020;77(19):3729–3743. doi: 10.1007/s00018-020-03497-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.He W, Newman JC, Wang MZ, et al Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends Endocrinol Metab. 2012;23(9):467–476. doi: 10.1016/j.tem.2012.07.004. [DOI] [PubMed] [Google Scholar]
  • 46.Almeida M, Porter RM Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone. 2019;121:284–292. doi: 10.1016/j.bone.2019.01.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Li Y, Ma Y, Song L, et al SIRT3 deficiency exacerbates p53/Parkin-mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. Int J Mol Med. 2018;41(6):3517–3526. doi: 10.3892/ijmm.2018.3555. [DOI] [PubMed] [Google Scholar]
  • 48.Torrens-Mas M, Pons DG, Sastre-Serra J, et al SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production. J Cell Biochem. 2017;118(2):397–406. doi: 10.1002/jcb.25653. [DOI] [PubMed] [Google Scholar]
  • 49.Puigserver P, Wu Z, Park CW, et al A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–839. doi: 10.1016/S0092-8674(00)81410-5. [DOI] [PubMed] [Google Scholar]
  • 50.Viña J, Gomez-Cabrera MC, Borras C, et al Mitochondrial biogenesis in exercise and in ageing. Adv Drug Deliv Rev. 2009;61(14):1369–1374. doi: 10.1016/j.addr.2009.06.006. [DOI] [PubMed] [Google Scholar]
  • 51.Virbasius JV, Scarpulla RC Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A. 1994;91(4):1309–1313. doi: 10.1073/pnas.91.4.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Zhang X, Bu Y, Zhu B, et al Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res. 2018;7(4):298–307. doi: 10.1302/2046-3758.74.BJR-2017-0245.R1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ekstrand MI, Falkenberg M, Rantanen A, et al Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet. 2004;13(9):935–944. doi: 10.1093/hmg/ddh109. [DOI] [PubMed] [Google Scholar]
  • 54.Larsson NG, Wang J, Wilhelmsson H, et al Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 1998;18(3):231–236. doi: 10.1038/ng0398-231. [DOI] [PubMed] [Google Scholar]
  • 55.Cotney J, McKay SE, Shadel GS Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet. 2009;18(14):2670–2682. doi: 10.1093/hmg/ddp208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Metodiev MD, Lesko N, Park CB, et al Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome . Cell Metab. 2009;9(4):386–397. doi: 10.1016/j.cmet.2009.03.001. [DOI] [PubMed] [Google Scholar]
  • 57.Wu Z, Puigserver P, Andersson U, et al Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–124. doi: 10.1016/S0092-8674(00)80611-X. [DOI] [PubMed] [Google Scholar]
  • 58.Yang ZF, Drumea K, Mott S, et al GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol Cell Biol. 2014;34(17):3194–3201. doi: 10.1128/MCB.00492-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Suliman HB, Carraway MS, Welty-Wolf KE, et al Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem. 2003;278(42):41510–41518. doi: 10.1074/jbc.M304719200. [DOI] [PubMed] [Google Scholar]
  • 60.Mattingly KA, Ivanova MM, Riggs KA, et al Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol. 2008;22(3):609–622. doi: 10.1210/me.2007-0029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Luo J, Sladek R, Carrier J, et al Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol Cell Biol. 2003;23(22):7947–7956. doi: 10.1128/MCB.23.22.7947-7956.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Scarpulla RC Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88(2):611–638. doi: 10.1152/physrev.00025.2007. [DOI] [PubMed] [Google Scholar]
  • 63.Schreiber SN, Emter R, Hock MB, et al The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A. 2004;101(17):6472–6477. doi: 10.1073/pnas.0308686101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Mootha VK, Handschin C, Arlow D, et al Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A. 2004;101(17):6570–6575. doi: 10.1073/pnas.0401401101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Fan W, He N, Lin CS, et al ERRγ promotes angiogenesis, mitochondrial biogenesis, and oxidative remodeling in PGC1α/β-deficient muscle. Cell Rep. 2018;22(10):2521–2529. doi: 10.1016/j.celrep.2018.02.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Li Z, Zhang Y, Tian F, et al. Omentin-1 promotes mitochondrial biogenesis via PGC1α-AMPK pathway in chondrocytes. Arch Physiol Biochem, 2020. doi: 10.1080/13813455.2020.1819337.
  • 67.Masuda I, Koike M, Nakashima S, et al. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci Rep, 2018, 8(1): 7229. doi: 10.1038/s41598-018-25348-1.
  • 68.Wang L, Shan H, Wang B, et al Puerarin attenuates osteoarthritis via upregulating amp-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats. Pharmacology. 2018;102(3-4):117–125. doi: 10.1159/000490418. [DOI] [PubMed] [Google Scholar]
  • 69.Chen D, Guo J, Li L. Catalpol promotes mitochondrial biogenesis in chondrocytes. Arch Physiol Biochem, 2020. doi: 10.1080/13813455.2020.1727927.
  • 70.张虎, 梁计陵, 钱帅伟, 等 白藜芦醇对线粒体质量调控研究进展. 生物学杂志. 2020;37(6):99–103. doi: 10.3969/j.issn.2095-1736.2020.06.099. [DOI] [Google Scholar]
  • 71.Zhou J, Yang Z, Shen R, et al. Resveratrol improves mitochondrial biogenesis function and activates PGC-1α pathway in a preclinical model of early brain injury following subarachnoid hemorrhage. Front Mol Biosci, 2021, 8: 620683. doi: 10.3389/fmolb.2021.620683.
  • 72.Li J, Zhang B, Liu WX, et al Metformin limits osteoarthritis development and progression through activation of ampk signalling. Ann Rheum Dis. 2020;79(5):635–645. doi: 10.1136/annrheumdis-2019-216713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Petursson F, Husa M, June R, et al. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther, 2013, 15(4): R77. doi: 10.1186/ar4254.
  • 74.Zhang M, Deng YN, Zhang JY, et al SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging Dis. 2018;9(2):273–286. doi: 10.14336/AD.2017.0517. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES