Abstract
儿童多系统炎症综合征(multisystem inflammatory syndrome in children,MIS-C)是儿童感染严重急性呼吸综合征冠状病毒2后出现的类似川崎病的过度炎症症状,多发于8~10岁儿童。首选治疗药物是静脉注射免疫球蛋白和糖皮质激素,文献报道危重症患者可选择生物制剂如白细胞介素1受体拮抗剂阿那白滞素、白细胞介素6受体拮抗剂托珠单抗、肿瘤坏死因子α受体拮抗剂英夫利昔单抗等治疗。该文通过阐述上述生物制剂的作用机制,结合案例具体分析生物制剂在治疗儿童感染严重急性呼吸综合征冠状病毒2后出现MIS-C中的安全性和有效性,以期对具有严重症状的MIS-C治疗提供方案。
Keywords: 多系统炎症综合征, 严重急性呼吸综合征冠状病毒2, 生物制剂, 儿童
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a type of hyperinflammatory symptoms similar to Kawasaki disease after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is commonly observed in children aged 8-10 years. Primary therapeutic medications for MIS-C are intravenous immunoglobulins and glucocorticoids. It has been reported that biologics, such as IL-1 receptor antagonist anakinra, IL-6 receptor antagonist tocilizumab, and TNF-α receptor antagonist infliximab, can be used as an option for critically ill patients. This article elaborates on the mechanism of action of the above biologics and discusses the efficacy and safety biologics in the treatment of MIS-C after SARS-CoV-2 infection, in order to provide methods for the treatment of MIS-C with severe symptoms.
Keywords: Multisystem inflammatory syndrome, Severe acute respiratory syndrome coronavirus 2, Biologics, Child
2019年12月,一场由严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)引起的新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)席卷全球,截至2021年11月1日,全球累积确诊人数已超过2亿例,死亡人数已达498万例,所有确诊病例中,<19岁人群占比约为15.35%[1]。与成人比较,儿童的患病风险相对较低,感染后以无症状或轻中度症状居多,患有基础疾病的儿童更易感染。2020年4月,Riphagen等[2]首次报道了既往无基础疾病的8名儿童出现持续发热、结膜炎等症状,患儿均存在不同程度的呼吸受累、过度炎症综合征等,与川崎病(Kawasaki disease,KD)、中毒样休克综合征等临床表现类似,其中4人有COVID-19暴露史。随后,欧洲、北美等地相继出现类似病例报道,引起了世界卫生组织和美国疾病控制与预防中心(Centers for Disease Control and Prevention,CDC)的关注,并将这种与COVID-19相关的儿童多系统炎症症状定义为儿童多系统炎症综合征(multisystem inflammatory syndrome in children,MIS-C)。
1. MIS-C概述
1.1. 儿童感染SARS-CoV-2后MIS-C的流行病学特征
截至2021年11月1日,世界卫生组织统计结果显示,全球已报告1 673万例儿童COVID-19病例,<14岁的儿童患者中有3 262例死亡,但尚无MIS-C病例的全球统计数据[3]。根据美国CDC截至2021年11月1日统计数据显示,美国各州统计的MIS-C总病例数为5 526例,中位年龄为9岁,介于8~13岁的患者占比为44.7%;男性居多,约为60%;死亡病例共48例。MIS-C病例呈现一定的种族倾向性,60%的患者是西班牙人或非西班牙裔黑色人种儿童[4]。一项基于全球27项研究的系统综述指出,MIS-C的年龄分布和种族分布与美国CDC数据一致,其中30.7%的患者存在至少1种合并症如肥胖、支气管哮喘、慢性肺部疾病等,入住ICU的比例为79.1%,病死率为1.9%[5]。MIS-C在亚洲人群中较少报道。
1.2. MIS-C的可能病理生理机制
MIS-C的病理机制尚未明确,目前认为存在2种可能的机制,一是SARS-CoV-2感染及病毒复制导致细胞损伤;二是通过形成免疫复合物引起获得性免疫反应导致免疫损伤。流行病学调查显示MIS-C多在感染SARS-CoV-2后4~6周内以无症状或轻度症状起病,患者RT-PCR检测阳性率低而血清抗体检测阳性率较高,表明该炎症反应可能由获得性免疫反应引起[6]。其机制为SARS-CoV-2病毒通过与血管紧张素Ⅱ转化酶结合进入细胞,诱导细胞焦亡,刺激辅助性T细胞分泌细胞因子,使巨噬细胞、单核细胞、淋巴细胞活化,刺突蛋白在体内可与抗刺突蛋白抗体结合形成免疫复合物而加重巨噬细胞炎症反应,产生大量促炎细胞因子如白细胞介素(interleukin,IL)-1、IL-6、肿瘤坏死因子(tumor necrosis factor,TNF)等,造成细胞因子风暴。同时病毒进入机体还可以激活B细胞、浆细胞产生抗体,多种作用协同导致机体出现全身性过度炎症反应[7]。
1.3. MIS-C的诊断依据
根据目前的临床资料,MIS-C的诊断依据主要包括:(1)患者持续发热(>38℃)达24 h以上;(2)临床指标:患有必须接受住院治疗的严重疾病,≥2个器官系统受到影响(如心脏、肾脏、呼吸系统、血液系统、消化系统、皮肤和神经系统等);(3)实验室指标:包括但不限于以下一项或多项改变:C反应蛋白(C reactive protein,CRP)、红细胞沉降率、纤维蛋白原、降钙素原、铁蛋白、D-二聚体、IL-6水平升高,淋巴细胞减少、中性粒细胞增多等;(4)通过RT-PCR检测、血清学检测或抗原检测结果显示SARS-CoV-2病毒呈阳性或在症状出现前4周存在COVID-19暴露史[8]。符合上述所有条件方能诊断为MIS-C,在接受静脉注射免疫球蛋白(intravenous immunoglobulin,IVIG)和糖皮质激素治疗后症状无缓解,仍持续性发热、炎症标志物水平持续升高或器官功能受累等中重度症状的患者,可诊断为危重症患者。
1.4. MIS-C的临床表现
MIS-C是儿童感染SARS-CoV-2后引发的1种与KD样症状相似的多系统炎症表现,包括持续发热、高炎症状态及多器官功能受损等,以发热、腹痛、腹泻、皮疹、黏膜改变等KD样症状最为常见,还可能出现心动过速、心功能不全、冠状动脉扩张或冠状动脉瘤、急性肾损伤等症状,呼吸道症状较少见[9-10],男童发病率略高[11]。诊断为MIS-C的患者入院后治疗时间约为1周,病死率较低,绝大部分患者SARS-CoV-2的RT-PCR和/或血清学检测呈阳性,阴性患者也存在SARS-CoV-2暴露史。一项关于确诊为MIS-C的58位儿童患者研究发现,所有患儿均出现发热、腹痛、腹泻等症状,约一半出现皮疹、结膜出血、休克症状,8例出现冠状动脉扩张或冠状动脉瘤[12]。另一项对32名MIS-C住院患儿的研究中,19%的患儿发生一度房室传导阻滞,PR间期延长,但在平均入院8日后即可恢复正常[13]。实验室检查显示,所有患儿均出现不同程度的高炎症状态,炎症标志物如CRP、D-二聚体、降钙素原、脑钠肽、红细胞沉降率、IL-6、IL-8水平升高,伴随淋巴细胞减少及血小板减少等,淋巴细胞减少的程度也反映了疾病严重程度[14-15]。近期还有研究对MIS-C和COVID-19患者的嗜中性粒细胞指数进行研究及统计分析发现,嗜中性粒细胞与MIS-C的严重程度密切相关,也可以作为一项重要的实验室指标[16]。
2. MIS-C的治疗药物
2.1. IVIG和糖皮质激素
基于KD的治疗经验,美国风湿免疫学会的诊疗方案将IVIG作为治疗MIS-C的一线治疗药物,推荐剂量为2 g/kg,推荐IVIG和糖皮质激素联合治疗休克或多器官功能损伤的MIS-C患者[17]。29名MIS-C患者的临床数据[18]发现,所有患者均接受了IVIG治疗,其中6名患者在单用IVIG治疗后发热症状消失,其余在IVIG联合糖皮质激素、生物制剂治疗后症状均有所改善。IVIG与糖皮质激素联用治疗MIS-C失败的风险较低,且需要进行2次治疗的概率也较低[19]。但也有研究发现,单用甲泼尼龙10~30 mg/(kg·d)静脉注射,持续3~7 d,同样能尽快缓解发热症状,降低CRP水平[20]。有研究提出给予MIS-C患者早期大量注射IVIG可能加重心功能不全,故该研究对符合MIS-C特征的患者均首先给予静脉注射甲泼尼龙,随后根据病情变化调整药物使用,按该方案治疗的患者仅有1位需要正性肌力药物支持转入ICU,其余患者均痊愈,提示单用甲泼尼龙治疗的有效性[21]。同时,一项伴有心肌损害的MIS-C患者的临床研究发现,使用IVIG治疗失败的风险相较于甲泼尼龙更高,甲泼尼龙治疗后能更快恢复体温、改善实验室指标、缩短ICU的住院时间[22]。
2.2. 生物制剂
生物制剂在治疗自身免疫性疾病如KD、巨噬细胞活化综合征中发挥着重要作用[23]。基于MIS-C与自身免疫性疾病在临床表现及实验室检查的相似性,对接受IVIG和糖皮质激素治疗后症状无缓解的患者,有文献报道用阿那白滞素(anakinra)、托珠单抗(tocilizumab)和英夫利昔单抗(infliximab)等生物制剂进行治疗。
2.2.1. IL-1拮抗剂阿那白滞素
阿那白滞素是一种重组IL-1受体拮抗剂,可通过阻断IL-1与受体结合,阻止炎症因子的释放,在临床上主要用于治疗风湿类疾病、幼年特发性关节炎等,对出现巨噬细胞活化综合征症状的严重细菌性败血症患者也有一定疗效[24],因此可考虑用于IVIG或糖皮质激素治疗后无缓解或存在难治性疾病的MIS-C患者。基于阿那白滞素在高炎症患者中的相对安全性及对MIS-C的治疗经验,美国风湿免疫学会的诊疗方案中指出可以使用高剂量[>4 mg/(kg·d)]阿那白滞素作为难治性MIS-C的治疗药物[17],通常采用静脉或皮下注射方式给药,因其半衰期较短,为3~4 h,合并败血症时高剂量给药也被认为较安全[25-26]。
接受IVIG和糖皮质激素治疗效果不佳的患者,使用阿那白滞素治疗后体温明显下降,预后良好[14]。一项回顾性分析也发现[27],2例MIS-C患者予以静脉注射甲泼尼龙和IVIG无好转后使用阿那白滞素治疗,1~2 d后发热症状即缓解,临床症状逐渐好转,实验室检查显示CRP、纤维蛋白原水平下降。阿那白滞素可能对IL-1受体拮抗剂水平高的儿童疗效较好[28],6例MIS-C患者中有5例(1例未检测)血清学检测提示IL-1受体拮抗剂水平显著升高,为参考值上限的8~22倍。1例患者仅接受IVIG治疗即好转,其余患者在给予阿那白滞素单独或联合IVIG治疗后CRP水平显著下降。以上病例均提示,当患者在改用阿那白滞素治疗后疗效较好,能有效改善患者病情,对IVIG或糖皮质激素治疗效果不佳的患者提供了新方法。此外,阿那白滞素在危重症患者中也能发挥重要作用。2名MIS-C患者在感染SARS-CoV-2出现症状的3~4周内表现出了过度炎症症状[29],给予阿那白滞素和糖皮质激素联合治疗24 h后,患者发热症状明显缓解,临床反应良好。另一项[30]关于MIS-C患者的病例报告显示,患者在出现发热、心动过速等症状时就诊并接受IVIG和阿司匹林联用治疗,因病情恶化,每日加用两次阿那白滞素治疗,第3天时脑钠肽前体、CRP、肌钙蛋白等炎症标志物水平显著下降,6 d后心电图水平恢复正常,心功能改善并于第7天停止呼吸支持。目前暂未发现阿那白滞素用于MIS-C后发生不良反应的报道。
2.2.2. IL-6拮抗剂托珠单抗
托珠单抗是IgG1类的人源化抗IL-6受体单克隆抗体,可通过抑制IL-6与跨膜可溶性IL-6受体结合,从而阻断IL-6介导的信号转导发挥作用,用于治疗类风湿性关节炎、幼年特发性关节炎、Still病等[31],但该药用于MIS-C尚无指南推荐,文献报道可用于IVIG和糖皮质激素治疗无效的患者,通常采用静脉注射方式给药,用于治疗MIS-C的剂量为8~12 mg/kg。
小样本的临床研究发现托珠单抗可用于儿童危重症COVID-19患者的救治,能有效降低重症患者进入ICU的比例和病死率[26]。2020年4月末就诊的9例MIS-C患者中有6例患者在IVIG治疗后加用托珠单抗进行治疗,1例患者直接使用托珠单抗治疗,给予托珠单抗治疗的患者均预后良好,平均病程为6 d,随访显示各项指标正常且没有明显的不良反应[32]。另一项研究对2020年4~6月入院的15名MIS-C患者进行回顾性分析,对存在血流动力学不稳定或快速失代偿的患者给予托珠单抗治疗,能改善患者症状,随访显示肌钙蛋白、D-二聚体、脑钠肽等水平恢复正常[33]。英国报道的1例MIS-C患者因病情急剧恶化使用托珠单抗联合机械通气治疗,2 d后症状明显改善,胸部X线片恢复正常,CRP、肌钙蛋白等水平下降。以上案例证实托珠单抗能有效抑制免疫反应,可能是危重症MIS-C患者的有效选择[34]。此外,托珠单抗对于心脏功能受损的MIS-C患者也具有一定疗效。智利第1例接受托珠单抗治疗的MIS-C患者,入院时表现为持续性发热、心动过速和低血压等,扩充血容量后症状未见缓解,给予患者8 mg/kg托珠单抗和甲泼尼龙治疗后,次日即停用血管活性药物,超声心动图显示心室功能正常,17 d后出院,1个月后随访转为无症状[35]。
托珠单抗在MIS-C患者的治疗中未见不良反应的相关报道,但成人COVID-19患者应用托珠单抗可能存在迟发性感染的风险[36],因此托珠单抗用于MIS-C时仍应权衡利弊。且有研究表明,IL-6具有双向调节作用,在应激状态下IL-6可以与IL-6受体结合激活gp130通道,有助于消除感染因子和组织愈合。但在感染或组织损伤期间,IL-6的过表达则会产生促炎作用[37]。因此,正确把握用药时间对于MIS-C的治疗至关重要。
2.2.3. TNF-α抑制剂英夫利昔单抗
英夫利昔单抗是一种人-鼠嵌合抗TNF-α单克隆IgG1抗体,可以中和游离及膜结合的TNF-α,是第1个批准用于治疗儿童和成人中重度活动性克罗恩病和溃疡性结肠炎的药物,用于MIS-C患者的治疗尚无指南推荐,仅有个案和小样本临床研究报道,该药用于治疗MIS-C的剂量为5~10 mg/kg,可根据患者病情进行调整。英夫利昔单抗应用于MIS-C较前2种生物制剂少,其作用机制及安全性仍有待进一步研究验证[17]。
1例儿童克罗恩病患者感染SARS-CoV-2的病例,患者表现为持续性发热、皮疹、腹痛等,入院后接受了COVID-19和肛周脓肿的治疗,但在第7天时病情急剧恶化,细胞因子水平升高,给予10 mg/kg英夫利昔单抗数小时后发热、心动过速和低血压症状消失,出院后2周临床病症完全消失,TNF-α、IL-6、IL-8恢复正常[38]。另有1例MIS-C伴有纵形扩展性脊髓炎儿童患者的病例报道,患者在摔倒后出现发热和四肢进行性瘫痪,入院后SARS-CoV-2检测呈阳性,炎症标志物水平升高,四肢肌力明显下降。给予IVIG、甲泼尼龙和葡萄糖酸钙治疗后,肌力未见明显改善,第10天和第22天分别给予2次5 mg/kg英夫利昔单抗后,肌力明显恢复[39]。
英夫利昔单抗能改善心脏功能、冠状动脉扩张及冠状动脉瘤,可作为重症MIS-C患者的二线治疗药物。一项对33位MIS-C患者的调查显示,所有患者均接受了IVIG治疗,但治疗后有13名患者仍持续发热、严重炎症状态、心脏功能严重受损或冠状动脉扩张等,因此给予其中12名患者10 mg/kg英夫利昔单抗,单次给药后患者症状明显改善,出院后各项指标恢复正常[40]。另一项报道显示,MIS-C患者在接受了2剂IVIG联合高剂量阿司匹林和甲泼尼龙治疗后疗效欠佳,并出现冠状动脉扩张,在连续使用2 d 5 mg/(kg·d)英夫利昔单抗后症状迅速改善,冠状动脉扩张在出院1个月后减轻[41]。伊朗[42]也曾报道了1例MIS-C伴巨大冠状动脉瘤患者病例,IVIG联合阿司匹林治疗3 d后病情恶化并出现冠状动脉瘤伴有低血压等症状,转至PICU,第19天时给予5 mg/kg英夫利昔单抗,24 d后出院,1个月后随访冠状动脉瘤已明显缩小。目前未在MIS-C患者中发现不良反应的报道。
2.3. 其他疗法
除上述治疗药物外,结合MIS-C患者的症状还应给予其他药物对症支持治疗,如非甾体抗炎药物、抗病毒药物、正性肌力药物、抗凝药物等。阿司匹林主要用于血小板增多症或KD样症状的患者,存在潜在血栓并发症风险的患者应服用抗凝药物。对于症状严重且存在持续感染风险或SARS-CoV-2的RT-PCR检测结果呈阳性的患者应考虑使用抗病毒药物[43-44]。此前获批上市或获批紧急使用的抗病毒药物是瑞德西韦注射液和巴瑞替尼片剂,但疗效存在争议。2021年11月4日抗病毒药物莫努匹韦(molnupiravir)已被批准在英国上市,用于治疗重症和住院风险较高的轻至中度COVID-19成人患者。Ⅲ期双盲、平行、随机、安慰剂对照临床试验研究显示,与安慰剂组比较,莫努匹韦组住院率和病死率降低31%,死亡风险下降89%,同时也表现出对delta、gamma和mu变异毒株的有效性,不良反应发生率较低[45]。除小分子抗病毒药物外,中和抗体和疫苗的研究也在不断发展,未来将在对抗SARS-CoV-2病毒方面发挥作用。心脏、呼吸功能严重衰竭的患者还可采用体外膜肺氧合、机械通气等治疗,恢复期患者血浆中因含有病毒的中和抗体,可能存在潜在疗效[25,46]。Panigrahy等[47]总结了15个国家的875名MIS-C患者治疗情况,其中287名患者给予心血管正性肌力支持,58名患者使用体外膜肺氧合,302名患者进行呼吸支持,给予抗凝药物、瑞德西韦和抗生素治疗的比例分别为32.9%、4.1%及24.9%。
3. 小结
随着全球疫情形势的日渐严峻,儿童感染SARA-CoV-2后多系统炎症综合征的病例数也在不断增加。MIS-C的发病机制与细胞因子水平升高导致炎症反应发生关系密切,主要治疗药物包括IVIG、糖皮质激素及生物制剂等。生物制剂可通过阻断细胞因子与受体结合发挥抗炎作用,有效改善危重症患者的临床症状,降低患者病死率。已应用于MIS-C的生物制剂主要包括阿那白滞素、托珠单抗、英夫利昔单抗等,其中阿那白滞素最常用,英夫利昔单抗应用较少。临床病例报道提示以上生物制剂用于MIS-C疗效较好且具有良好的安全性,但生物制剂用于MIS-C的安全性和有效性需要通过更多临床试验证实。
参考文献
- 1. World Health Organization . WHO coronavirus (COVID-19)dashboard [EB/OL]. (2021-11-01) [2021-11-01]. https://covid19.who.int/.
- 2. Riphagen S, Gomez X, Gonzalez-Martinez C, et al. . Hyperinflammatory shock in children during COVID-19 pandemic[J].Lancet, 2020, 395(10237): 1607-1608. DOI: 10.1016/S0140-6736(20)31094-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. World Health Organization . WHO coronavirus (COVID-19)dashboard [EB/OL]. (2021-11-01) [2021-11-01]. https://app.powerbi.com/.
- 4. Centers for Disease Control and Prevention . Health department-reported cases of multisystem inflammatory syndrome in children (MIS-C) in the United States[EB/OL]. (2021-11-01)[2021-11-01]. https://stacks.cdc.gov/view/cdc/104682.
- 5. Yasuhara J, Watanabe K, Takagi H, et al. . COVID-19 and multisystem inflammatory syndrome in children: a systematic review and meta-analysis[J].Pediatr Pulmonol, 2021, 56(5): 837-848. DOI: 10.1002/ppul.25245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Jiang L, Tang K, Levin M, et al. . COVID-19 and multisystem inflammatory syndrome in children and adolescents[J].Lancet Infect Dis, 2020, 20(11): e276-e288. DOI: 10.1016/S1473-3099(20)30651-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. McMurray JC, May JW, Cunningham MW, et al. . Multisystem inflammatory syndrome in children (MIS-C), a post-viral myocarditis and systemic vasculitis-a critical review of its pathogenesis and treatment[J].Front Pediatr, 2020, 8: 626182. DOI: 10.3389/fped.2020.626182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Centers for Disease Control and Prevention . Multisystem inflammatory syndrome (MIS)[EB/OL]. (2021-05-20)[2021-05-20]. https://www.cdc.gov/mis/.
- 9. Lima-Setta F, Magalhães-Barbosa MCD, Rodrigues-Santos G, et al. . Multisystem inflammatory syndrome in children (MIS-C) during SARS-CoV-2 pandemic in Brazil: a multicenter, prospective cohort study[J].J Pediatr (Rio J), 2021, 97(3): 354-361. DOI: 10.1016/j.jped.2020.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. García-Salido A, de Carlos Vicente JC, Belda Hofheinz S, et al. . Severe manifestations of SARS-CoV-2 in children and adolescents: from COVID-19 pneumonia to multisystem inflammatory syndrome: a multicentre study in pediatric intensive care units in Spain[J].Crit Care, 2020, 24(1): 666. DOI: 10.1186/s13054-020-03332-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. McCormick DW, Richardson LC, Young PR, et al. . Deaths in children and adolescents associated with COVID-19 and MIS-C in the United States[J].Pediatrics, 2021, 148(5): e2021052273. DOI: 10.1542/peds.2021-052273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Whittaker E, Bamford A, Kenny J, et al. . Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2[J].JAMA, 2020, 324(3): 259-269. DOI: 10.1001/jama.2020.10369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Choi NH, Fremed M, Starc T, et al. . MIS-C and cardiac conduction abnormalities[J].Pediatrics, 2020, 146(6): e2020009738. DOI: 10.1542/peds.2020-009738. [DOI] [PubMed] [Google Scholar]
- 14. Lee PY, Day-Lewis M, Henderson LA, et al. . Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children[J].J Clin Invest, 2020, 130(11): 5942-5950. DOI: 10.1172/JCI141113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Okarska-Napierała M, Mańdziuk J, Feleszko W, et al. . Recurrent assessment of lymphocyte subsets in 32 patients with multisystem inflammatory syndrome in children (MIS-C)[J].Pediatr Allergy Immunol, 2021, 32(8): 1857-1865. DOI: 10.1111/pai.13611. [DOI] [PubMed] [Google Scholar]
- 16. Karagol C, Tehci AK, Gungor A, et al. . Delta neutrophil index and C-reactive protein: a potential diagnostic marker of multisystem inflammatory syndrome in children (MIS-C) with COVID-19[J].Eur J Pediatr, 2021. DOI: 10.1007/s00431-021-04281-y. Epub ahead of printDOI: 10.1007/s00431-021-04281-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Henderson LA, Canna SW, Friedman KG, et al. . American college of rheumatology clinical guidance for multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19: version2[J].Arthritis Rheumatol, 2021, 73(4): e13-e29. DOI: 10.1002/art.41616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Felsenstein S, Willis E, Lythgoe H, et al. . Presentation, treatment response and short-term outcomes in paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 (PIMS-TS)[J].J Clin Med, 2020, 9(10): 3293. DOI: 10.3390/jcm9103293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Ouldali N, Toubiana J, Antona D, et al. . Association of intravenous immunoglobulins plus methylprednisolone vs immunoglobulins alone with course of fever in multisystem inflammatory syndrome in children[J].JAMA, 2021, 325(9): 855-864. DOI: 10.1001/jama.2021.0694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Kabeerdoss J, Pilania RK, Karkhele R, et al. . Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management[J].Rheumatol Int, 2021, 41(1): 19-32. DOI: 10.1007/s00296-020-04749-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Licciardi F, Baldini L, Dellepiane M, et al. . MIS-C treatment: is IVIG always necessary?[J].Front Pediatr, 2021, 9: 753123. DOI: 10.3389/fped.2021.753123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Vukomanovic V, Krasic S, Prijic S, et al. . Recent experience: corticosteroids as a first-line therapy in children with multisystem inflammatory syndrome and COVID-19-related myocardial damage[J].Pediatr Infect Dis J, 2021, 40(11): e390-e394. DOI: 10.1097/INF.0000000000003260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Çelikel E, Tekin ZE, Aydin F, et al. . Role of biological agents in the treatment of SARS-CoV-2-associated multisystem inflammatory syndrome in children[J].J Clin Rheumatol, 2021. DOI: 10.1097/RHU.0000000000001734. Epub ahead of printDOI: 10.1097/RHU.0000000000001734. [DOI] [PubMed] [Google Scholar]
- 24. Kooistra EJ, Waalders NJB, Grondman I, et al. . Anakinra treatment in critically ill COVID-19 patients: a prospective cohort study[J].Crit Care, 2020, 24(1): 688. DOI: 10.1186/s13054-020-03364-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Tanner T, Wahezi DM. Hyperinflammation and the utility of immunomodulatory medications in children with COVID-19[J].Paediatr Respir Rev, 2020, 35: 81-87. DOI: 10.1016/j.prrv.2020.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Kwak JH, Lee SY, Choi JW, et al. . Clinical features, diagnosis, and outcomes of multisystem inflammatory syndrome in children associated with coronavirus disease 2019[J].Clin Exp Pediatr, 2021, 64(2): 68-75. DOI: 10.3345/cep.2020.01900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Della Paolera S, Valencic E, Piscianz E, et al. . Case report: use of anakinra in multisystem inflammatory syndrome during COVID-19 pandemic[J].Front Pediatr, 2020, 8: 624248. DOI: 10.3389/fped.2020.624248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Fouriki A, Fougère Y, De Camaret C, et al. . Case report: case series of children with multisystem inflammatory syndrome following SARS-CoV-2 infection in Switzerland[J].Front Pediatr, 2020, 8: 594127. DOI: 10.3389/fped.2020.594127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Calò Carducci FI, De Ioris MA, Agrati C, et al. . Hyperinflammation in two severe acute respiratory syndrome coronavirus 2-infected adolescents successfully treated with the interleukin-1 inhibitor anakinra and glucocorticoids[J].Front Pediatr, 2020, 8: 576912. DOI: 10.3389/fped.2020.576912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Cirks BT, Geracht JC, Jones OY, et al. . Multisystem inflammatory syndrome in children during the COVID-19 pandemic: a case report on managing the hyperinflammation[J].Mil Med, 2021, 186(1-2): e270-e276. DOI: 10.1093/milmed/usaa508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease[J].Cold Spring Harb Perspect Biol, 2014, 6(10): a016295. DOI: 10.1101/cshperspect.a016295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Gruber CN, Patel RS, Trachtman R, et al. . Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C)[J].Cell, 2020, 183(4): 982-995.e14. DOI: 10.1016/j.cell.2020.09.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Riollano-Cruz M, Akkoyun E, Briceno-Brito E, et al. . Multisystem inflammatory syndrome in children related to COVID-19: a New York city experience[J].J Med Virol, 2021, 93(1): 424-433. DOI: 10.1002/jmv.26224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Al Maskari N, Al Mukhaini K, Al Abrawi S, et al. . SARS-CoV-2-related multisystem inflammatory syndrome in children: a case series[J].Sultan Qaboos Univ Med J, 2021, 21(2): e302-e307. DOI: 10.18295/squmj.2021.21.02.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Niño-Taravilla C, Espinosa-Vielma YP, Otaola-Arca H, et al. . Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 treated with tocilizumab[J].Pediatr Rep, 2020, 12(3): 142-148. DOI: 10.3390/pediatric12030029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Pettit NN, Nguyen CT, Mutlu GM, et al. . Late onset infectious complications and safety of tocilizumab in the management of COVID-19[J].J Med Virol, 2021, 93(3): 1459-1464. DOI: 10.1002/jmv.26429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Tanaka T, Narazaki M, Masuda K, et al. . Regulation of IL-6 in immunity and diseases[J].Adv Exp Med Biol, 2016, 941: 79-88. DOI: 10.1007/978-94-024-0921-5_4. [DOI] [PubMed] [Google Scholar]
- 38. Dolinger MT, Person H, Smith R, et al. . Pediatric Crohn disease and multisystem inflammatory syndrome in children (MIS-C) and COVID-19 treated with infliximab[J].J Pediatr Gastroenterol Nutr, 2020, 71(2): 153-155. DOI: 10.1097/MPG.0000000000002809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Pourmoghaddas Z, Sadeghizadeh A, Tara SZ, et al. . Longitudinally extensive transverse myelitis as a sign of multisystem inflammatory syndrome following COVID-19 infection: a pediatric case report[J].J Neuroimmunol, 2021, 360: 577704. DOI: 10.1016/j.jneuroim.2021.577704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Abdel-Haq N, Asmar BI, Deza Leon MP, et al. . SARS-CoV-2-associated multisystem inflammatory syndrome in children: clinical manifestations and the role of infliximab treatment[J].Eur J Pediatr, 2021, 180(5): 1581-1591. DOI: 10.1007/s00431-021-03935-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Shikhare AR, Iqbal RM, Tariq R, et al. . Diversity of cardiac and gastrointestinal presentations of multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19: a case series[J].Glob Pediatr Health, 2021, 8: 2333794X21996613. DOI: 10.1177/2333794X21996613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Navaeifar MR, Shahbaznejad L, Sadeghi Lotfabadi A, et al. . COVID-19-associated multisystem inflammatory syndrome complicated with giant coronary artery aneurysm[J].Case Rep Pediatr, 2021, 2021: 8836403. DOI: 10.1155/2021/8836403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Consiglio CR, Cotugno N, Sardh F, et al. . The immunology of multisystem inflammatory syndrome in children with COVID-19[J].Cell, 2020, 183(4): 968-981.e7. DOI: 10.1016/j.cell.2020.09.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Sperotto F, Friedman KG, Son MBF, et al. . Cardiac manifestations in SARS-CoV-2-associated multisystem inflammatory syndrome in children: a comprehensive review and proposed clinical approach[J].Eur J Pediatr, 2021, 180(2): 307-322. DOI: 10.1007/s00431-020-03766-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. . Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients[J].N Engl J Med, 2021. DOI: 10.1056/NEJMoa2116044. Epub ahead of printDOI: 10.1056/NEJMoa2116044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Bautista-Rodriguez C, Sanchez-de-Toledo J, Clark BC, et al. . Multisystem inflammatory syndrome in children: an international survey[J].Pediatrics, 2021, 147(2): e2020024554. DOI: 10.1542/peds.2020-024554. [DOI] [PubMed] [Google Scholar]
- 47. Panigrahy N, Policarpio J, Ramanathan R. Multisystem inflammatory syndrome in children and SARS-CoV-2: a scoping review[J].J Pediatr Rehabil Med, 2020, 13(3): 301-316. DOI: 10.3233/PRM-200794. [DOI] [PubMed] [Google Scholar]