Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2022 Jun 23:2022.02.22.481100. Originally published 2022 Feb 24. [Version 3] doi: 10.1101/2022.02.22.481100

Mitoquinone mesylate targets SARS-CoV-2 infection in preclinical models

Anton Petcherski, Madhav Sharma, Sandro Satta, Maria Daskou, Hariclea Vasilopoulos, Cristelle Hugo, Eleni Ritou, Barbara Jane Dillon, Eileen Fung, Gustavo Garcia, Claudio Scafoglio, Arunima Purkayastha, Brigitte N Gomperts, Gregory A Fishbein, Vaithilingaraja Arumugaswami, Marc Liesa, Orian S Shirihai, Theodoros Kelesidis
PMCID: PMC8887067  PMID: 35233569

Summary

To date, there is no effective oral antiviral against SARS-CoV-2 that is also anti-inflammatory. Herein, we show that the mitochondrial antioxidant mitoquinone/mitoquinol mesylate (Mito-MES), a dietary supplement, has potent antiviral activity against SARS-CoV-2 and its variants of concern in vitro and in vivo . Mito-MES had nanomolar in vitro antiviral potency against the Beta and Delta SARS-CoV-2 variants as well as the murine hepatitis virus (MHV-A59). Mito-MES given in SARS-CoV-2 infected K18-hACE2 mice through oral gavage reduced viral titer by nearly 4 log units relative to the vehicle group. We found in vitro that the antiviral effect of Mito-MES is attributable to its hydrophobic dTPP+ moiety and its combined effects scavenging reactive oxygen species (ROS), activating Nrf2 and increasing the host defense proteins TOM70 and MX1. Mito-MES was efficacious reducing increase in cleaved caspase-3 and inflammation induced by SARS-CoV2 infection both in lung epithelial cells and a transgenic mouse model of COVID-19. Mito-MES reduced production of IL-6 by SARS-CoV-2 infected epithelial cells through its antioxidant properties (Nrf2 agonist, coenzyme Q10 moiety) and the dTPP moiety. Given established safety of Mito-MES in humans, our results suggest that Mito-MES may represent a rapidly applicable therapeutic strategy that can be added in the therapeutic arsenal against COVID-19. Its potential long-term use by humans as diet supplement could help control the SARS-CoV-2 pandemic, especially in the setting of rapidly emerging SARS-CoV-2 variants that may compromise vaccine efficacy.

One-Sentence Summary

Mitoquinone/mitoquinol mesylate has potent antiviral and anti-inflammatory activity in preclinical models of SARS-CoV-2 infection.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES