A three-dimensional coordination polymer of 2-(1,3,5-triaza-7-phosphoniatricyclo[3.3.1.13,7]decan-7-yl)ethanoate with silver(I) tetrafluoroborate was fully characterized.
Keywords: crystal structure, coordination polymer, silver, phosphabetaine, tetrafluoroborate
Abstract
An AgI-based coordination polymer (CP), namely, poly[[[μ3-2-(1,3,5-triaza-7-phosphoniatricyclo[3.3.1.13,7]decan-7-yl)ethanoate-κ4 N:N′:O,O′]silver(I)] tetrafluoroborate], {[Ag(C9H16N3O2P)]BF4} n , was synthesized in an aqueous solution of zwitterionic 2-(1,3,5-triaza-7-phosphoniatricyclo[3.3.1.13,7]decan-7-yl)ethanoate (L) and AgBF4 with exclusion of light at room temperature. The colourless and light-insensitive CP crystallized in the monoclinic space group Cc. The asymmetric unit consists of an AgI cation, the zwitterionic L ligand and a BF4 − counter-ion. Each AgI ion is coordinated by two carboxylate oxygen atoms in a chelating coordination mode, as well as one of the nitrogen atoms of two neighbouring L ligands. The crystal structure of the CP was classified as a unique three-dimensional arrangement. The CP was also characterized in aqueous solutions by multinuclear NMR and HRMS spectroscopies and elemental analysis.
Chemical context
The architectures and antimicrobial properties of self-assembled silver-based coordination polymers (CPs) or MOFs (metal–organic frameworks), bridged by phosphaurotropines, have been widely studied (Guerriero et al., 2018 ▸). According to our previous studies, the aqueous reaction of zwitterionic 2-(1,3,5-triaza-7-phosphoniatricyclo[3.3.1.13,7]decan-7-yl)ethanoate (L) with AgX (X = PF6, SO3C6H4CH3, SO3CF3) yielded various 1D Ag-based coordination polymers (Udvardy et al., 2021 ▸). The architectures of these AgI complexes depend on their counter-ions and the position of the ligand, which contains both rigid and flexible molecular moieties.
Herein, we report the crystal structure of a CP prepared by the aqueous reaction of 2-(1,3,5-triaza-7-phosphoniatricyclo[3.3.1.13,7]decan-7-yl)ethanoate and AgBF4 with the exclusion of light at 278 K (Fig. 1 ▸). The colourless crystals of the CP were isolated by filtration, dissolved in water and characterized by 1H-, 13C- and 31P-NMR spectroscopy, ESI mass spectrometry, as well as by elemental analysis.
Figure 1.
Schematic representation of the formation of the title compound.
The chemical shift of the phosphorus atom in CP (δ = −37.5 ppm in D2O) was the same as that in the free ligand. Similar to the hexafluorophosphate, tosylate (tos) and triflate (OTf) derivatives (Udvardy et al., 2021 ▸), the 1H-NMR spectrum showed differences between the P+–CH2–N and N–CH2–N signals, which clearly indicated the coordination of the silver ions to the nitrogen donor atoms of the L ligand.
The most intense ESI–MS signals of the CP (aqueous solution, positive ion mode) were observed at m/z = 252.0878 ([L+Na]+, C9H16N3NaO2P, calculated. 252.0872), 336.0026 ([L+Ag]+, C9H16N3AgO2P, calculated 336.0026), and 565.1009 ([2L+Ag]+, C18H32N6NaO4P2, calculated 565.1005). Similar ions were detected for the CP formed with AgPF6, AgSO3C6H4CH3, AgSO3CF3 and PTA in aqueous solutions.
Structural commentary
The molecular structure of the title compound is shown in Fig. 2 ▸. The CP crystallized in the monoclinic Cc space group. The asymmetric unit consists of a silver(I) cation, a zwitterionic L ligand and a BF4 −counter-ion, in which the N,N′,O,O′ coordination mode of the silver(I) ions creates a 3D coordination architecture (Fig. 2 ▸).
Figure 2.
(a) A view of the title CP with atomic labels. Displacement ellipsoids are drawn at the 50% probability level. (b) The coordination architecture of the CP with atomic labels for the coordination sphere. Hydrogen atoms and BF4
− ions are omitted for clarity. [Symmetry codes: (1) x, −y,
+ z; (2) −
+ x, −
− y,
+ z; (3) x, −y, −
+ z; (4)
+ x, −
− y, −
+ z.]
In the CP, the central Ag+ ion is coordinated by an L ligand via two carboxylate oxygen atoms [Ag12—O11 = 2.594 (9) Å and Ag12—O12 = 2.298 (8) Å] and two nitrogen atoms from two adjacent PTA moieties of L [Ag1—N1 = 2.225 (7) Å and Ag11—N3 = 2.505 (7) Å]. The N1—Ag—N33 and O114—Ag—O124 bond angles are 119.6 (3) and 52.9 (2)°, respectively. Selected bond lengths and bond angles are presented in the supporting information. The coordination geometry exhibits a distorted tetrahedral shape (τ4 = 0.65 and τ4’ = 0.66; Yang et al., 2007 ▸; Okuniewski et al., 2015 ▸), in which the AgI ion is located at the centre. The space between the 3D polymer backbones is occupied by the BF4 − counter-ions (Fig. 3 ▸). The chemical composition was also determined by elemental analysis, which shows a good agreement with the SC-XRD results (see Synthesis and crystallization).
Figure 3.
(a) Packing arrangement of the three-dimensional structure of the CP in the crystal viewed along the crystallographic a axis. The coordination sphere is labelled and highlighted by a ball-and-stick model. Hydrogen atoms are omitted for clarity. (b) Selected hydrogen-bond geometry in the CP showing the weak C—H⋯F and C—H⋯O secondary interactions, as well as the Ag1⋯F3 interaction. For symmetry codes, see Table 1 ▸.
Supramolecular features
As a result of the lack of primary H-donor groups, no classical hydrogen bonds are found in the crystal structure of the title coordination polymer. The main intermolecular interactions between the molecules in the crystal are weak C—H⋯F and C—H⋯O type hydrogen bonds. The BF4 − anion is generally classified as a non-coordinating anion owing to its weak Lewis base properties (Grabowski, 2020 ▸). These secondary interactions play a major role in stabilizing the crystal lattice by connecting the molecular units to each other, which results in a 3D coordination polymer. All of the fluorine atoms of a BF4 − counter-ion are connected to at least one C—H hydrogen atom by a weak C—H⋯F type hydrogen bond. The shortest C—H⋯F distance is found for the C2—H2B⋯F3 interaction [C2⋯F3 = 3.183 (13) Å], where the F3 atom of the BF4 − counter-ion is also able to coordinate to the central Ag+ ion with a distance of 3.010 (11) Å (Fig. 3 ▸). This ionic attraction between the Ag+ and BF4 − ions is strong enough to affect the arrangement of part of the whole complex molecule and form a bent 3D structure. In comparison, the value of the longest C—H⋯F distance is 3.417 (14) Å (C4—H4B⋯F2, Fig. 3 ▸) owing to the rigid PTA cage, which is unable to change its conformation. There are numerous examples in the literature of where the C—H⋯F distances were investigated in the presence of BF4 −counter-ions [i.e. BIXBIT03 (Emge et al., 1986 ▸) and SUXHID01 (Albinati et al., 2010 ▸)]. In case of the bis[μ2-1,1′-naphthalene-1,8-diyl-bis(1H-pyrazole)]tris(acetonitrile)disilver(I) bis(BF4) acetonitrile solvate structure (OGINOI; Liddle et al., 2009 ▸), it was found that the typical C⋯F distances are between 3.179 (2) and 3.406 (3) Å, which shows a good agreement with our results. The carboxylate oxygen atoms in the title CP are also able to form weak C—H⋯O type interactions with the C—H atoms of the complex molecule. Their atomic distances can also be compared to the C—H⋯F secondary interactions. An intramolecular hydrogen bond also helps to form a bent 3D molecular structure for the CP [C2⋯O12 = 2.812 (12) Å]. For selected hydrogen-bond distances and angles see Fig. 3 ▸ b and Table 1 ▸. The considerably high calculated density (2.102 Mg m−3) and KPI (Kitaigorodskii packing index) of 74.2% (Spek, 2020 ▸) indicate the tight packing arrangement of the molecules, resulting in no residual solvent-accessible voids in the crystal structure.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1A⋯F2 | 0.97 | 2.40 | 3.201 (13) | 140 |
| C1—H1B⋯O11i | 0.97 | 2.49 | 3.213 (12) | 131 |
| C2—H2A⋯O11i | 0.97 | 2.56 | 3.254 (12) | 129 |
| C2—H2B⋯F3ii | 0.97 | 2.35 | 3.183 (13) | 143 |
| C2—H2B⋯O12 | 0.97 | 2.22 | 2.812 (12) | 118 |
| C3—H3A⋯F4iii | 0.97 | 2.45 | 3.290 (15) | 145 |
| C3—H3B⋯F2 | 0.97 | 2.51 | 3.283 (12) | 136 |
| C4—H4A⋯F4iv | 0.97 | 2.43 | 3.298 (12) | 148 |
| C4—H4B⋯F2v | 0.97 | 2.51 | 3.417 (14) | 155 |
| C5—H5A⋯F1 | 0.97 | 2.49 | 3.370 (13) | 151 |
| C5—H5B⋯F4iv | 0.97 | 2.54 | 3.373 (14) | 144 |
| C6—H6B⋯F2iv | 0.97 | 2.34 | 3.314 (13) | 177 |
| C7—H7A⋯O11i | 0.97 | 2.48 | 3.165 (13) | 128 |
| C7—H7A⋯F1vi | 0.97 | 2.37 | 3.137 (12) | 135 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
Database survey
A survey of the Cambridge Structural Database (CSD version 5.42, Sept. 2021 update; Groom et al., 2016 ▸) found zwitterionic 2-(1,3,5-triaza-7-phosphoniatricyclo[3.3.1.13,7]decan-7-yl)ethanoate dihydrate (L) (SIJPOR; Tang et al., 2007 ▸) and three 1D Ag-based coordination polymers containing L, viz. [Ag(μ3-L-κ3 N:O:O′)] n (PF6) n (UPUCAM; Udvardy et al., 2021 ▸), [Ag(OTf)(μ3-L-κ3 N:O:O′)] n (UPUCIU; Udvardy et al., 2021 ▸) and [Ag(tos)(μ3-L-κ3 N:N:O)] n ·nH2O (UPUCEQ; Udvardy et al., 2021 ▸). While in the cases of UPUCAM, UPUCIU and UPUCEQ only 1D polymers were obtained, in the title CP the AgI complex is able to form a 3D coordination polymer owing to the relatively small size of the BF4 − counter-ion, which is able to occupy a smaller space compared to the PF6 −, triflate or tosylate anions. These results show how a counter-ion can influence the packing arrangement and the coordination mode of an [(AgL)X] type polymer.
Synthesis and crystallization
Water-soluble PTA (Daigle, 1998 ▸) and 2-(1,3,5-triaza-7-phosphoniatricyclo[3.3.1.13,7]decan-7-yl)ethanoate (L) (Tang et al., 2007 ▸; Udvardy et al., 2021 ▸) were prepared according to literature methods.
CP: With the exclusion of light, 4 mL aqueous solution containing 194.7 mg (1 mmol) AgBF4 was added to an aqueous solution (4 mL) of L (100 mg, 0.44 mmol). The reaction mixture was stored at 278 K. After two days, the CP was formed as colourless crystals, which were separated by filtration and dried. Yield (based on L) 112 mg, 60%. 1H NMR (360 MHz, D2O, 298 K) δ 4.73–4.37 (m, 12H, +P–CH2–N, N–CH2–N), 2.58 (dt, J = 24, 7 Hz, 2H, P+–CH 2–CH2–COO), 2.44–2.22 (m, 2H, P+–CH2–CH 2–COO) ppm. 13C{1H} NMR (90 MHz, D2O, 298 K) δ 179.5 (s, COO−), 71.5 (d, 3 J PC = 8 Hz, N–CH2–N), 49.1 (d, 1 J PC = 37 Hz, +P-CH2–N), 29.0 (d, 2 J PC = 7 Hz, P+–CH2–CH2–COO−), 18.5 (d, 1 J PC = 35 Hz, P+–CH2–CH2–COO−) ppm. 31P{1H} NMR (145 MHz, D2O, 25 °C) δ −37.5 (s) ppm. Elemental analysis: C9H16AgBF4N3O2P (423.89): calculated C 25.05, H 3.80, N 9.91; found C 25.64, H 4.10, N 9.95.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All hydrogen atoms of the CP complex were positioned geometrically and refined using a riding model, with C—H = 0.97 Å and U iso(H) = 1.2U eq(C).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Ag(C9H16N3O2P)]BF4 |
| M r | 423.90 |
| Crystal system, space group | Monoclinic, C c |
| Temperature (K) | 293 |
| a, b, c (Å) | 10.116 (5), 12.186 (5), 10.979 (5) |
| β (°) | 98.260 (5) |
| V (Å3) | 1339.4 (11) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.68 |
| Crystal size (mm) | 0.35 × 0.2 × 0.15 |
| Data collection | |
| Diffractometer | Enraf–Nonius CAD-4 |
| Absorption correction | ψ scan (North et al., 1968 ▸) |
| T min, T max | 0.558, 0.755 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 1358, 1313, 1299 |
| R int | 0.009 |
| (sin θ/λ)max (Å−1) | 0.605 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.048, 0.123, 1.13 |
| No. of reflections | 1313 |
| No. of parameters | 190 |
| No. of restraints | 2 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.20, −1.54 |
| Absolute structure | Classical Flack method preferred over Parsons because s.u. lower |
| Absolute structure parameter | 0.13 (6) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022000767/ex2052sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022000767/ex2052Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989022000767/ex2052Isup3.mol
Cover letter. DOI: 10.1107/S2056989022000767/ex2052sup4.pdf
Supporting information file. DOI: 10.1107/S2056989022000767/ex2052sup5.docx
Supporting information file. DOI: 10.1107/S2056989022000767/ex2052sup6.pdf
Cover letter. DOI: 10.1107/S2056989022000767/ex2052sup7.pdf
Supporting information file. DOI: 10.1107/S2056989022000767/ex2052sup8.pdf
CCDC reference: 2143743
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank Ms Cynthia Nóra Nagy (University of Debrecen) for the HRMS measurements and Dr Attila Kiss for the elemental analysis measurements. We are also grateful to Dr Attila Bényei (University of Debrecen) for recording the diffraction data.
supplementary crystallographic information
Crystal data
| [Ag(C9H16N3O2P)]BF4 | F(000) = 840 |
| Mr = 423.90 | Dx = 2.102 Mg m−3 |
| Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
| a = 10.116 (5) Å | Cell parameters from 25 reflections |
| b = 12.186 (5) Å | θ = 9.1–17.2° |
| c = 10.979 (5) Å | µ = 1.68 mm−1 |
| β = 98.260 (5)° | T = 293 K |
| V = 1339.4 (11) Å3 | Prism, colourless |
| Z = 4 | 0.35 × 0.2 × 0.15 mm |
Data collection
| Enraf–Nonius CAD-4 diffractometer | Rint = 0.009 |
| profiled ω/2θ scans | θmax = 25.5°, θmin = 3.1° |
| Absorption correction: ψ scan (North et al., 1968) | h = 0→12 |
| Tmin = 0.558, Tmax = 0.755 | k = 0→14 |
| 1358 measured reflections | l = −13→13 |
| 1313 independent reflections | 3 standard reflections every 184 reflections |
| 1299 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0873P)2 + 4.2725P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.123 | (Δ/σ)max < 0.001 |
| S = 1.13 | Δρmax = 1.20 e Å−3 |
| 1313 reflections | Δρmin = −1.54 e Å−3 |
| 190 parameters | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower |
| 2 restraints | Absolute structure parameter: 0.13 (6) |
| Primary atom site location: structure-invariant direct methods |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | −0.0444 (9) | −0.2414 (7) | −0.2977 (8) | 0.0266 (16) | |
| H1A | 0.0509 | −0.2557 | −0.2849 | 0.032* | |
| H1B | −0.0820 | −0.2737 | −0.3758 | 0.032* | |
| C2 | −0.2914 (9) | −0.2548 (7) | −0.2148 (9) | 0.0302 (19) | |
| H2A | −0.3323 | −0.2870 | −0.2918 | 0.036* | |
| H2B | −0.3444 | −0.2743 | −0.1511 | 0.036* | |
| C3 | −0.0546 (9) | −0.2182 (7) | −0.0445 (8) | 0.0284 (17) | |
| H3A | −0.0975 | −0.2365 | 0.0265 | 0.034* | |
| H3B | 0.0408 | −0.2298 | −0.0232 | 0.034* | |
| C4 | −0.2157 (10) | −0.1011 (7) | −0.3251 (9) | 0.0317 (19) | |
| H4A | −0.2311 | −0.0233 | −0.3392 | 0.038* | |
| H4B | −0.2532 | −0.1397 | −0.3994 | 0.038* | |
| C5 | −0.0139 (9) | −0.0704 (7) | −0.1840 (8) | 0.0269 (16) | |
| H5A | 0.0798 | −0.0897 | −0.1646 | 0.032* | |
| H5B | −0.0192 | 0.0087 | −0.1934 | 0.032* | |
| C6 | −0.2256 (10) | −0.0841 (8) | −0.1135 (10) | 0.035 (2) | |
| H6A | −0.2706 | −0.1113 | −0.0472 | 0.042* | |
| H6B | −0.2418 | −0.0057 | −0.1203 | 0.042* | |
| C7 | −0.0690 (9) | −0.4434 (7) | −0.1593 (9) | 0.0311 (19) | |
| H7A | −0.1281 | −0.4868 | −0.2178 | 0.037* | |
| H7B | 0.0201 | −0.4492 | −0.1815 | 0.037* | |
| C8 | −0.0676 (11) | −0.4934 (8) | −0.0308 (9) | 0.0340 (19) | |
| H8A | −0.0322 | −0.5674 | −0.0306 | 0.041* | |
| H8B | −0.0084 | −0.4506 | 0.0285 | 0.041* | |
| C9 | −0.2032 (10) | −0.4967 (8) | 0.0078 (8) | 0.0298 (18) | |
| N1 | −0.0681 (7) | −0.1216 (6) | −0.3016 (6) | 0.0253 (14) | |
| N2 | −0.2837 (7) | −0.1355 (6) | −0.2263 (8) | 0.0323 (17) | |
| N3 | −0.0822 (8) | −0.1022 (6) | −0.0806 (7) | 0.0278 (15) | |
| O11 | −0.2377 (9) | −0.5691 (6) | 0.0750 (8) | 0.0444 (17) | |
| O12 | −0.2793 (8) | −0.4175 (6) | −0.0319 (7) | 0.0408 (16) | |
| P1 | −0.1202 (2) | −0.30412 (17) | −0.1746 (2) | 0.0234 (4) | |
| B1 | 0.3222 (13) | −0.2721 (10) | −0.1875 (11) | 0.039 (2) | |
| Ag1 | 0.03866 (7) | −0.03737 (7) | −0.43859 (7) | 0.0488 (3) | |
| F1 | 0.2885 (9) | −0.1691 (6) | −0.2226 (8) | 0.062 (2) | |
| F2 | 0.2229 (8) | −0.3155 (7) | −0.1250 (9) | 0.066 (2) | |
| F3 | 0.4361 (8) | −0.2745 (9) | −0.1032 (10) | 0.082 (3) | |
| F4 | 0.3319 (16) | −0.3351 (7) | −0.2846 (9) | 0.104 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.025 (4) | 0.023 (4) | 0.033 (4) | 0.002 (3) | 0.013 (3) | −0.004 (3) |
| C2 | 0.022 (4) | 0.022 (4) | 0.047 (5) | 0.005 (3) | 0.006 (4) | 0.005 (4) |
| C3 | 0.029 (4) | 0.027 (4) | 0.029 (4) | 0.007 (3) | 0.003 (3) | 0.001 (3) |
| C4 | 0.028 (5) | 0.027 (4) | 0.040 (5) | −0.001 (3) | 0.001 (4) | 0.008 (3) |
| C5 | 0.029 (4) | 0.025 (4) | 0.027 (4) | −0.004 (3) | 0.008 (3) | −0.003 (3) |
| C6 | 0.031 (5) | 0.028 (4) | 0.049 (5) | 0.010 (4) | 0.019 (4) | −0.001 (4) |
| C7 | 0.026 (4) | 0.029 (4) | 0.042 (5) | −0.001 (3) | 0.016 (4) | 0.000 (4) |
| C8 | 0.040 (5) | 0.031 (4) | 0.030 (4) | 0.004 (4) | 0.001 (4) | 0.009 (4) |
| C9 | 0.033 (5) | 0.026 (4) | 0.028 (4) | −0.001 (4) | −0.002 (3) | 0.002 (4) |
| N1 | 0.023 (3) | 0.025 (3) | 0.027 (3) | −0.001 (3) | 0.003 (3) | 0.005 (3) |
| N2 | 0.023 (4) | 0.027 (4) | 0.048 (5) | 0.001 (3) | 0.008 (3) | 0.005 (3) |
| N3 | 0.030 (4) | 0.021 (3) | 0.033 (4) | 0.001 (3) | 0.009 (3) | −0.002 (3) |
| O11 | 0.049 (4) | 0.034 (3) | 0.052 (4) | −0.002 (3) | 0.013 (3) | 0.016 (3) |
| O12 | 0.042 (4) | 0.037 (3) | 0.046 (4) | 0.011 (3) | 0.016 (3) | 0.012 (3) |
| P1 | 0.0211 (10) | 0.0193 (9) | 0.0306 (10) | 0.0024 (8) | 0.0065 (8) | 0.0009 (8) |
| B1 | 0.043 (7) | 0.038 (6) | 0.037 (5) | 0.009 (5) | 0.012 (5) | 0.008 (5) |
| Ag1 | 0.0465 (4) | 0.0623 (5) | 0.0407 (4) | −0.0149 (4) | 0.0167 (3) | 0.0099 (4) |
| F1 | 0.059 (4) | 0.037 (3) | 0.090 (6) | 0.000 (3) | 0.007 (4) | 0.016 (3) |
| F2 | 0.040 (4) | 0.064 (5) | 0.096 (6) | −0.004 (3) | 0.016 (4) | 0.024 (4) |
| F3 | 0.038 (4) | 0.114 (8) | 0.091 (6) | 0.013 (5) | −0.003 (4) | 0.020 (6) |
| F4 | 0.205 (14) | 0.049 (4) | 0.065 (5) | 0.025 (6) | 0.047 (7) | −0.003 (4) |
Geometric parameters (Å, º)
| C1—H1A | 0.9700 | C6—N2 | 1.436 (14) |
| C1—H1B | 0.9700 | C6—N3 | 1.460 (12) |
| C1—N1 | 1.479 (11) | C7—H7A | 0.9700 |
| C1—P1 | 1.815 (9) | C7—H7B | 0.9700 |
| C2—H2A | 0.9700 | C7—C8 | 1.534 (13) |
| C2—H2B | 0.9700 | C7—P1 | 1.775 (9) |
| C2—N2 | 1.461 (11) | C8—H8A | 0.9700 |
| C2—P1 | 1.826 (9) | C8—H8B | 0.9700 |
| C3—H3A | 0.9700 | C8—C9 | 1.494 (15) |
| C3—H3B | 0.9700 | C9—O11 | 1.233 (12) |
| C3—N3 | 1.484 (11) | C9—O12 | 1.272 (12) |
| C3—P1 | 1.818 (9) | N1—Ag1 | 2.225 (7) |
| C4—H4A | 0.9700 | N3—Ag1i | 2.505 (7) |
| C4—H4B | 0.9700 | O11—Ag1ii | 2.594 (9) |
| C4—N1 | 1.499 (12) | O12—Ag1ii | 2.298 (8) |
| C4—N2 | 1.428 (13) | B1—F1 | 1.343 (14) |
| C5—H5A | 0.9700 | B1—F2 | 1.399 (14) |
| C5—H5B | 0.9700 | B1—F3 | 1.370 (15) |
| C5—N1 | 1.467 (10) | B1—F4 | 1.328 (16) |
| C5—N3 | 1.464 (12) | Ag1—N3iii | 2.505 (7) |
| C6—H6A | 0.9700 | Ag1—O11iv | 2.594 (9) |
| C6—H6B | 0.9700 | Ag1—O12iv | 2.298 (8) |
| H1A—C1—H1B | 108.1 | C7—C8—H8B | 109.1 |
| N1—C1—H1A | 109.5 | H8A—C8—H8B | 107.8 |
| N1—C1—H1B | 109.5 | C9—C8—C7 | 112.6 (8) |
| N1—C1—P1 | 110.7 (6) | C9—C8—H8A | 109.1 |
| P1—C1—H1A | 109.5 | C9—C8—H8B | 109.1 |
| P1—C1—H1B | 109.5 | O11—C9—C8 | 122.7 (9) |
| H2A—C2—H2B | 108.6 | O11—C9—O12 | 122.6 (10) |
| N2—C2—H2A | 110.4 | O12—C9—C8 | 114.7 (8) |
| N2—C2—H2B | 110.4 | C1—N1—C4 | 108.8 (7) |
| N2—C2—P1 | 106.7 (6) | C1—N1—Ag1 | 112.5 (5) |
| P1—C2—H2A | 110.4 | C4—N1—Ag1 | 112.0 (5) |
| P1—C2—H2B | 110.4 | C5—N1—C1 | 110.9 (6) |
| H3A—C3—H3B | 108.5 | C5—N1—C4 | 108.6 (7) |
| N3—C3—H3A | 110.2 | C5—N1—Ag1 | 104.0 (5) |
| N3—C3—H3B | 110.2 | C4—N2—C2 | 113.3 (7) |
| N3—C3—P1 | 107.8 (6) | C4—N2—C6 | 110.2 (8) |
| P1—C3—H3A | 110.2 | C6—N2—C2 | 112.3 (8) |
| P1—C3—H3B | 110.2 | C3—N3—Ag1i | 115.1 (5) |
| H4A—C4—H4B | 107.7 | C5—N3—C3 | 111.6 (7) |
| N1—C4—H4A | 108.9 | C5—N3—Ag1i | 93.4 (5) |
| N1—C4—H4B | 108.9 | C6—N3—C3 | 110.6 (7) |
| N2—C4—H4A | 108.9 | C6—N3—C5 | 109.4 (7) |
| N2—C4—H4B | 108.9 | C6—N3—Ag1i | 115.4 (5) |
| N2—C4—N1 | 113.4 (7) | C9—O11—Ag1ii | 85.8 (6) |
| H5A—C5—H5B | 107.6 | C9—O12—Ag1ii | 98.7 (6) |
| N1—C5—H5A | 108.7 | C1—P1—C2 | 99.7 (4) |
| N1—C5—H5B | 108.7 | C1—P1—C3 | 101.4 (4) |
| N3—C5—H5A | 108.7 | C3—P1—C2 | 103.1 (4) |
| N3—C5—H5B | 108.7 | C7—P1—C1 | 108.9 (4) |
| N3—C5—N1 | 114.2 (7) | C7—P1—C2 | 126.3 (4) |
| H6A—C6—H6B | 107.6 | C7—P1—C3 | 114.0 (4) |
| N2—C6—H6A | 108.6 | F1—B1—F2 | 108.8 (9) |
| N2—C6—H6B | 108.6 | F1—B1—F3 | 111.6 (11) |
| N2—C6—N3 | 114.6 (7) | F3—B1—F2 | 104.7 (9) |
| N3—C6—H6A | 108.6 | F4—B1—F1 | 110.8 (10) |
| N3—C6—H6B | 108.6 | F4—B1—F2 | 108.4 (11) |
| H7A—C7—H7B | 107.5 | F4—B1—F3 | 112.2 (12) |
| C8—C7—H7A | 108.4 | N1—Ag1—N3iii | 119.6 (3) |
| C8—C7—H7B | 108.4 | N1—Ag1—O11iv | 134.1 (3) |
| C8—C7—P1 | 115.5 (7) | N1—Ag1—O12iv | 133.5 (3) |
| P1—C7—H7A | 108.4 | N3iii—Ag1—O11iv | 92.3 (3) |
| P1—C7—H7B | 108.4 | O12iv—Ag1—N3iii | 103.6 (3) |
| C7—C8—H8A | 109.1 | O12iv—Ag1—O11iv | 52.9 (2) |
| C7—C8—C9—O11 | 148.3 (10) | N2—C6—N3—C5 | 53.5 (10) |
| C7—C8—C9—O12 | −33.2 (12) | N2—C6—N3—Ag1i | 157.2 (6) |
| C8—C7—P1—C1 | 153.3 (7) | N3—C3—P1—C1 | 51.8 (7) |
| C8—C7—P1—C2 | −88.5 (8) | N3—C3—P1—C2 | −51.1 (7) |
| C8—C7—P1—C3 | 40.9 (8) | N3—C3—P1—C7 | 168.7 (6) |
| C8—C9—O11—Ag1ii | 177.7 (9) | N3—C5—N1—C1 | −66.7 (9) |
| C8—C9—O12—Ag1ii | −177.7 (7) | N3—C5—N1—C4 | 52.8 (9) |
| N1—C1—P1—C2 | 54.5 (7) | N3—C5—N1—Ag1 | 172.2 (6) |
| N1—C1—P1—C3 | −51.1 (7) | N3—C6—N2—C2 | 71.6 (10) |
| N1—C1—P1—C7 | −171.6 (6) | N3—C6—N2—C4 | −55.7 (10) |
| N1—C4—N2—C2 | −71.1 (10) | O11—C9—O12—Ag1ii | 0.8 (11) |
| N1—C4—N2—C6 | 55.6 (10) | O12—C9—O11—Ag1ii | −0.7 (10) |
| N1—C5—N3—C3 | 70.1 (9) | P1—C1—N1—C4 | −60.8 (8) |
| N1—C5—N3—C6 | −52.7 (9) | P1—C1—N1—C5 | 58.5 (8) |
| N1—C5—N3—Ag1i | −171.2 (6) | P1—C1—N1—Ag1 | 174.5 (4) |
| N2—C2—P1—C1 | −53.2 (7) | P1—C2—N2—C4 | 64.6 (9) |
| N2—C2—P1—C3 | 51.0 (7) | P1—C2—N2—C6 | −61.0 (8) |
| N2—C2—P1—C7 | −175.5 (6) | P1—C3—N3—C5 | −62.5 (8) |
| N2—C4—N1—C1 | 66.6 (10) | P1—C3—N3—C6 | 59.5 (8) |
| N2—C4—N1—C5 | −54.2 (9) | P1—C3—N3—Ag1i | −167.4 (3) |
| N2—C4—N1—Ag1 | −168.4 (6) | P1—C7—C8—C9 | 62.9 (10) |
| N2—C6—N3—C3 | −69.8 (10) |
Symmetry codes: (i) x, −y, z+1/2; (ii) x−1/2, −y−1/2, z+1/2; (iii) x, −y, z−1/2; (iv) x+1/2, −y−1/2, z−1/2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1A···F2 | 0.97 | 2.40 | 3.201 (13) | 140 |
| C1—H1B···O11v | 0.97 | 2.49 | 3.213 (12) | 131 |
| C2—H2A···O11v | 0.97 | 2.56 | 3.254 (12) | 129 |
| C2—H2B···F3vi | 0.97 | 2.35 | 3.183 (13) | 143 |
| C2—H2B···O12 | 0.97 | 2.22 | 2.812 (12) | 118 |
| C3—H3A···F4ii | 0.97 | 2.45 | 3.290 (15) | 145 |
| C3—H3B···F2 | 0.97 | 2.51 | 3.283 (12) | 136 |
| C4—H4A···F4vii | 0.97 | 2.43 | 3.298 (12) | 148 |
| C4—H4B···F2viii | 0.97 | 2.51 | 3.417 (14) | 155 |
| C5—H5A···F1 | 0.97 | 2.49 | 3.370 (13) | 151 |
| C5—H5B···F4vii | 0.97 | 2.54 | 3.373 (14) | 144 |
| C6—H6B···F2vii | 0.97 | 2.34 | 3.314 (13) | 177 |
| C7—H7A···O11v | 0.97 | 2.48 | 3.165 (13) | 128 |
| C7—H7A···F1ix | 0.97 | 2.37 | 3.137 (12) | 135 |
Symmetry codes: (ii) x−1/2, −y−1/2, z+1/2; (v) x, −y−1, z−1/2; (vi) x−1, y, z; (vii) x−1/2, y+1/2, z; (viii) x−1/2, −y−1/2, z−1/2; (ix) x−1/2, y−1/2, z.
Funding Statement
This work was funded by Hungarian National Research, Development and Innovation Office grant FK-128333; Development and Innovation Fund of Hungary grant 2020-4.1.1-TKP2020, TKP2020-NKA-04; European Regional Development Fund grants GINOP-2.3.3-15-2016-00004 and GINOP 2.3.2-15-2016-00008.
References
- Albinati, A., Cesarotti, E., Mason, S. A., Rimoldi, I., Rizzato, S. & Zerla, D. (2010). Tetrahedron Asymmetry, 21, 1162–1165.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Daigle, D. J. (1998). Inorg. Synth. 32, 40–45.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Emge, T. J., Wang, H. H., Beno, M. A., Williams, J. M., Whangbo, M. H. & Evain, M. (1986). J. Am. Chem. Soc. 108, 8215–8223.
- Enraf–Nonius (1992). MACH3/PC in CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
- Grabowski, S. J. (2020). Crystals, 10, 460.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Guerriero, A., Peruzzini, H. & Gonsalvi, L. (2018). Coord. Chem. Rev. 355, 328–361.
- Liddle, B. L., Hall, D., Lindeman, S. J., Smith, M. D. & Gardinier, J. R. (2009). Inorg. Chem. 48, 8404–8414. [DOI] [PubMed]
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Streltsov, V. A. & Zavodnik, V. E. (1989). Sov. Phys. Crystallogr. 34, 824–828.
- Tang, X., Zhang, B., He, Z., Gao, R. & He, Z. (2007). Adv. Synth. Catal. 349, 2007–2017.
- Udvardy, A., Szolnoki, Cs. T., Kováts, É., Nyul, D., Gál, Gy. T., Papp, G., Joó, F. & Kathó, Á. (2021). Inorg. Chim. Acta, 520, 120299.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yang, L., Powell, D. R. & Houser, P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022000767/ex2052sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022000767/ex2052Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989022000767/ex2052Isup3.mol
Cover letter. DOI: 10.1107/S2056989022000767/ex2052sup4.pdf
Supporting information file. DOI: 10.1107/S2056989022000767/ex2052sup5.docx
Supporting information file. DOI: 10.1107/S2056989022000767/ex2052sup6.pdf
Cover letter. DOI: 10.1107/S2056989022000767/ex2052sup7.pdf
Supporting information file. DOI: 10.1107/S2056989022000767/ex2052sup8.pdf
CCDC reference: 2143743
Additional supporting information: crystallographic information; 3D view; checkCIF report



