Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 3;78(Pt 3):259–263. doi: 10.1107/S2056989022001177

Ciprofloxacin salt and salt co-crystal with di­hydroxy­benzoic acids

Yuda Prasetya Nugraha a,*, Haruki Sugiyama b,c, Hidehiro Uekusa d
PMCID: PMC8900500  PMID: 35371545

The crystal structure of a ciprofloxacin salt with 2,6-di­hydroxy­benzoic acid and a ciprofloxacin hydro­chloride salt co-crystal with 3,5-di­hydroxy­benzoic acid are reported.

Keywords: crystal structure, fluoro­quinolone, ciprofloxacin, di­hydroxy­benzoic acid, salt co-crystal, anti­biotic

Abstract

The crystal structure of two multi-component crystals of ciprofloxacin [systematic name: 1-cyclo­propyl-6-fluoro-4-oxo-7-(piperazin-1-yl)quinoline-3-carb­­oxy­lic acid], a fluoro­quinolone anti­biotic, namely, ciprofloxacin 2,6-di­hydroxy­benzoate salt, C17H19FN3O3 +·C7H5O4 , (I), and ciprofloxacin hydro­chloride–3,5-di­hydroxy­benzoic–water (1/1/1), C17H19FN3O3 +·Cl·C7H6O4·H2O, (II), were determined. In (I) and (II), the ciprofloxacin cations are connected via head-to-tail N—H⋯O hydrogen bonding. Both structures show an alternating layered arrangement between ciprofloxacin and di­hydroxy­benzoic acid.

Chemical context

The design and exploration of multi-component crystals of active pharmaceutical ingredients (APIs) have gained increasing inter­est over recent decades. The formation of multi-component crystals, i.e. salts and co-crystals through a crystal-engineering approach has been continuously demonstrated as a versatile tool to improve the physicochemical properties of APIs (Kavanagh et al., 2019; Putra & Uekusa, 2020; Thakur & Thakuria, 2020). Recently, the co-crystallization of salt APIs or salt co-crystal formation has been increasingly studied. Salt co-crystallization has been utilized to suppress hydrate formation of salt APIs (Nugraha & Uekusa, 2018; Fujito et al., 2021). As a part of our study of salt co-crystals of APIs, we investigated multi-component crystals of ciprofloxacin. Ciprofloxacin is a Biopharmaceutics Classification System (BCS) class IV fluoro­quinolone anti­biotic that is widely used therapeutically as the free base and the hydro­chloride salt (Olivera et al., 2011). graphic file with name e-78-00259-scheme1.jpg

Structural commentary

Compound (I) was obtained as an anion-exchange product between ciprofloxacin hydro­chloride and 2,6-di­hydro­benzoic acid in solution. 2,6-Di­hydroxy­benzoic acid (2,6HBA) is a relatively strong carb­oxy­lic acid with a pK a of 1.30 (Gdaniec et al., 1994; Habibi-yangjeh et al., 2005). Compound (I) crystallizes in the monoclinic space group P21/c. The asymmetric unit consists of one ciprofloxacin cation and one 2,6HBA anion (Fig. 1). The C—O distances of the ciprofloxacin carb­oxy­lic group i.e., 1.218 (3) and 1.325 (3) Å indicate that it exists as the neutral carb­oxy­lic form. However, in 2,6HBA, the C–O distances are very similar i.e., 1.263 (4) and 1.267 (3) Å due to resonance stabilization in the carboxyl­ate anion (Childs et al., 2007; Aakeröy et al., 2006). As a result, the piperazinyl group of ciprofloxacin is protonated. Therefore, compound (I) is a salt. The formation of a salt is well-predicted by the pK a rule (Cruz-Cabeza, 2012). The pK a of ciprofloxacin are 6.18 and 8.73 for the carb­oxy­lic acid and the piperazinyl ring, respectively (Sun et al., 2002). Therefore, salt formation is expected because the ΔpK a between the piperazinyl ring of ciprofloxacin and the carb­oxy­lic acid of 2,6HBA is greater than 4. Similar behaviour is observed in the salicylate salt of ciprofloxacin (Surov et al., 2019; Nugrahani et al., 2020).

Figure 1.

Figure 1

Displacement ellipsoid (50% probability level) drawing with the atomic labelling scheme for compound (I) showing the hydrogen bonds within the selected asymmetric unit.

Compound (II) crystallizes in the non-centrosymmetric P1 space group despite the lack of a chiral centre. The asymmetric unit comprises one ciprofloxacin cation, one chloride anion and one 3,5HBA mol­ecule, as shown in Fig. 2. In addition, one water mol­ecule is incorporated into the crystal lattice. An anion-exchange reaction during crystallization did not occur in this system. Compared to 2,6HBA, the coformer is a weaker acid with a pK a of 4.04 (Habibi-yangjeh et al., 2005). Contrary to the previous structures, the coformer exists as a neutral mol­ecule in the crystal. The carb­oxy­lic C18—O4 and C18—O5 distances of 2,6HBA are 1.320 (4) and 1.216 (4) Å, respectively, confirming its neutral state. Additionally, the carb­oxy­lic C1—O1 and C1—O2 distances of ciprofloxacin, i.e. 1.227 (4) and 1.314 (4) Å, respectively, also confirm the neutral state of this moiety. On the other hand, the piperazinyl group is protonated. Hence, compound (II) is a salt co-crystal monohydrate of ciprofloxacin.

Figure 2.

Figure 2

Displacement ellipsoid (50% probability level) drawing with the atomic labelling scheme for compound (II) showing the hydrogen bonds within the selected asymmetric unit.

Compounds (I) and (II) exhibit similar conformations, as shown in Fig. 3. The mol­ecular conformation of the ciprofloxacin mol­ecule is governed by intra­molecular O2—H2⋯O3 and C14—H14A⋯F1 hydrogen bonding (Tables 1 and 2). In both structures, the piperazinium ring exhibits a chair conformation. The main difference is the relative orientation between the piperazinium moiety and the quinolone ring. The C7—N2—C14—C15 torsion angles are 97.0 (2) and −167.8 (2)°, respectively, for compounds (I) and (II).

Figure 3.

Figure 3

Mol­ecular overlay of ciprofloxacin cation in compounds (I) (red) and (II) (blue). Hydrogen atoms are omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 1.73 2.512 (2) 155
N3—H3A⋯O1i 0.91 2.38 2.977 (2) 123
N3—H3A⋯O6 0.91 2.09 2.890 (2) 146
N3—H3B⋯O4ii 0.91 2.18 2.897 (3) 136
N3—H3B⋯O5ii 0.91 2.24 3.090 (3) 155
C11—H11⋯O3iii 1.00 2.46 3.239 (3) 134
C12—H12A⋯O4iv 0.99 2.54 3.374 (3) 141
C13—H13A⋯O7v 0.99 2.51 3.193 (3) 126
C14—H14A⋯F1 0.99 2.13 2.831 (2) 126
C15—H15B⋯O1iii 0.99 2.33 3.282 (3) 161
C17—H17A⋯O5ii 0.99 2.60 3.408 (3) 139
O6—H6⋯O5 0.84 1.77 2.520 (3) 148
O7—H7⋯O4 0.84 1.85 2.508 (4) 134
C21—H21⋯O4ii 0.95 2.54 3.488 (3) 178

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 1.78 2.551 (3) 152
N3—H3A⋯O1i 0.91 1.75 2.652 (3) 172
N3—H3B⋯Cl1 0.91 2.30 3.106 (3) 148
C10—H10⋯F1ii 0.95 2.46 3.158 (4) 130
C12—H12B⋯O7iii 0.99 2.47 3.435 (4) 166
C14—H14B⋯F1 0.99 2.27 2.927 (3) 123
C16—H16B⋯Cl1iv 0.99 2.78 3.609 (3) 142
O4—H4⋯Cl1 0.84 2.28 3.082 (2) 160
O6—H6⋯Cl1v 0.84 2.40 3.232 (2) 170
O7—H7⋯O8 0.84 1.96 2.769 (3) 161
O8—H8A⋯Cl1i 0.88 (6) 2.51 (6) 3.362 (3) 164 (4)
O8—H8B⋯O5vi 0.82 (6) 2.05 (6) 2.865 (4) 170 (5)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Supra­molecular features

In compound (I), the carboxyl­ate anion of 2,6HBA acts as a hydrogen-bond donor for intra­molecular hydrogen bonds involving two hydroxyl groups, namely O6—H6⋯O5 and O7—H7⋯O4. The protonated nitro­gen atom N3 of the piperazinyl ring is involved in the formation of trifurcated hydrogen bonds with O4, O5, and O6 of the coformer. These charge-assisted hydrogen bonds, i.e. N3—H3B⋯O4, N3—H3B⋯O5, and N3—H3A⋯O6, form an infinite chain structure along the a-axis direction (Table 1, Fig. 4). The chains are connected to the adjacent ciprofloxacin mol­ecule through head-to-tail N3—H3A⋯O1 hydrogen bonding. The crystal packing of (I) is shown in Fig. 5. Along the a-axis, centrosymmetric pairs of ciprofloxacin mol­ecules are stacked by ππ inter­actions. The distance between the centroids of symmetry-related C4–C9 rings is 3.4986 (11) Å. This arrangement leads to the formation of a columnar packing arrangement. Inter­estingly, a similar packing feature was observed in the 1.75 hydrate of ciprofloxacin salicylate (Nugrahani et al., 2020). In addition, compound (I) shows a layered structure with alternating ciprofloxacin and 2,6HBA layers along the b axis.

Figure 4.

Figure 4

Inter­molecular hydrogen-bonding motifs in (I) showing infinite chains along the a-axis direction formed by ciprofloxacin and 2,6HBA (red). Hydrogen atoms are omitted for clarity.

Figure 5.

Figure 5

Packing motifs of (I) viewed along (a) the a axis and (b) the c axis highlighting the alternating layers of ciprofloxacin and the coformer.

The supra­molecular features of compound (II) are similar to those observed in compound (I). Ciprofloxacin cations are inter­connected through head-to-tail N3—H3A⋯O1 hydrogen bonds (Table 2), forming an infinite chain arrangement. The chloride ion and water mol­ecule are involved in an extensive hydrogen-bond network bridging ciprofloxacin and 3,5HBA (Fig. 6 a). Inter­estingly, compound (II) also shows a layered arrangement of ciprofloxacin and the coformer (Fig. 6 b).

Figure 6.

Figure 6

Inter­molecular hydrogen-bonding motifs in (II) highlighting the role of the chloride ion and water mol­ecule in bridging ciprofloxacin and 3,5HBA (blue). Hydrogen atoms are omitted for clarity. (b) The crystal packing of (II) showing the alternating layered arrangement.

Database survey

Several crystal structures of ciprofloxacin salts with benzoic acid derivatives have been reported, including salts with salicylic acid (Surov et al., 2019; Nagalapalli & Yaga Bheem, 2014; CSD refcode family DOFWUT), 4-hy­droxy­benzoic acid (Surov et al., 2020; CSD refcode PUNMUJ), 4-amino­benzoic acid (Surov et al., 2020; CSD refcode PUNMIX) and gallic acid (Surov et al., 2020; CSD refcode PUNMOD). A search for salt co-crystals of ciprofloxacin hydro­chloride yielded one reported crystal structure, a co-crystal of ciprofloxacin hydro­chloride with 4-hy­droxy­benzoic acid (Martínez-Alejo et al., 2014; CSD refcode XOHTUL). Compound (II) was also disclosed in a patent without any structural information (Rojas et al., 2016).

Synthesis and crystallization

Single crystals of (I) and (II) were obtained by preparing a saturated solution of equimolar ciprofloxacin hydro­chloride and the respective coformer in methanol/water (1:1) at room temperature. The saturated solution was allowed to slowly evaporate at room temperature. A suitable single crystal was selected and measured for structure determination.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were refined using a riding model and their displacement parameters (U iso) were fixed to 1.2U eq of the parent carbon or nitro­gen atom and 1.5U eq for hydroxyl groups.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C17H19FN3O3 +·C7H5O4 C17H19FN3O3 +·C7H6O4·Cl·H2O
M r 485.46 539.93
Crystal system, space group Monoclinic, P21/c Triclinic, P1
Temperature (K) 93 93
a, b, c (Å) 7.9722 (5), 21.2705 (11), 13.0860 (7) 7.2165 (2), 8.8298 (4), 10.1184 (3)
α, β, γ (°) 90, 101.805 (6), 90 92.997 (3), 95.219 (2), 111.557 (4)
V3) 2172.1 (2) 594.60 (4)
Z 4 1
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.98 2.00
Crystal size (mm) 0.23 × 0.05 × 0.04 0.28 × 0.2 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020) Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.919, 1.000 0.839, 1.000
No. of measured, independent and observed reflections 15936, 4378, 3601 (?) 16358, 4420, 4323 [I > 2σ(I)]
R int 0.038 0.035
(sin θ/λ)max−1) 0.630 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.139, 1.04 0.034, 0.094, 1.12
No. of reflections 4378 4420
No. of parameters 319 344
No. of restraints 0 3
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.41 0.25, −0.47
Absolute structure Flack x determined using 1889 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.011 (7)

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989022001177/dx2042sup1.cif

e-78-00259-sup1.cif (987.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001177/dx2042Isup2.hkl

e-78-00259-Isup2.hkl (348.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022001177/dx2042IIsup3.hkl

e-78-00259-IIsup3.hkl (351.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022001177/dx2042Isup4.cml

CCDC references: 2098049, 2098403

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Materials Analysis Division of the Open Facility Center at the Tokyo Institute of Technology for the research facilities.

supplementary crystallographic information

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I). Crystal data

C17H19FN3O3+·C7H5O4 F(000) = 1016
Mr = 485.46 Dx = 1.485 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 7.9722 (5) Å Cell parameters from 4777 reflections
b = 21.2705 (11) Å θ = 4.0–72.0°
c = 13.0860 (7) Å µ = 0.98 mm1
β = 101.805 (6)° T = 93 K
V = 2172.1 (2) Å3 Block, colourless
Z = 4 0.23 × 0.05 × 0.04 mm

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I). Data collection

XtaLAB Synergy R, DW system, HyPix diffractometer 15936 measured reflections
Radiation source: Rotating-anode X-ray tube, Rigaku XtaLAB Synergy-R 4378 independent reflections
Mirror monochromator Rint = 0.038
Detector resolution: 10.0000 pixels mm-1 θmax = 76.3°, θmin = 4.0°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) k = −17→26
Tmin = 0.919, Tmax = 1.000 l = −15→16

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.062P)2 + 1.4432P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
4378 reflections Δρmax = 0.34 e Å3
319 parameters Δρmin = −0.41 e Å3
0 restraints

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.05295 (16) 0.41493 (5) 0.67770 (9) 0.0377 (3)
O1 0.4436 (2) 0.54707 (8) 0.16888 (11) 0.0432 (4)
O2 0.3833 (2) 0.44645 (7) 0.18852 (11) 0.0402 (4)
H2 0.347742 0.424196 0.232696 0.060*
O3 0.28730 (19) 0.41034 (7) 0.35014 (11) 0.0362 (3)
N1 0.3471 (2) 0.59129 (8) 0.46044 (12) 0.0314 (4)
N2 0.0934 (2) 0.53783 (8) 0.75639 (13) 0.0328 (4)
N3 0.2572 (3) 0.58568 (8) 0.95730 (14) 0.0395 (4)
H3A 0.356800 0.595565 1.002153 0.047*
H3B 0.169225 0.594851 0.989447 0.047*
C1 0.4001 (3) 0.50538 (10) 0.22173 (15) 0.0354 (5)
C2 0.3602 (3) 0.51643 (10) 0.32635 (15) 0.0327 (4)
C3 0.3006 (2) 0.46647 (10) 0.38290 (15) 0.0326 (4)
C4 0.2566 (2) 0.48427 (10) 0.48093 (15) 0.0316 (4)
C5 0.1856 (3) 0.44006 (9) 0.54010 (15) 0.0327 (4)
H5 0.172151 0.397574 0.517532 0.039*
C6 0.1363 (3) 0.45781 (9) 0.62931 (15) 0.0321 (4)
C7 0.1580 (2) 0.51970 (9) 0.67053 (15) 0.0313 (4)
C8 0.2342 (2) 0.56281 (9) 0.61296 (15) 0.0314 (4)
H8 0.256130 0.604419 0.638611 0.038*
C9 0.2786 (2) 0.54598 (9) 0.51851 (15) 0.0303 (4)
C10 0.3838 (3) 0.57567 (10) 0.36771 (15) 0.0329 (4)
H10 0.428110 0.607231 0.329187 0.040*
C11 0.3814 (3) 0.65431 (9) 0.50290 (16) 0.0338 (4)
H11 0.471754 0.657418 0.568093 0.041*
C12 0.2333 (3) 0.69888 (10) 0.49555 (18) 0.0418 (5)
H12A 0.232822 0.727421 0.555245 0.050*
H12B 0.118861 0.684208 0.459028 0.050*
C13 0.3671 (3) 0.70946 (10) 0.43140 (17) 0.0407 (5)
H13A 0.334605 0.701423 0.355393 0.049*
H13B 0.448510 0.744615 0.451562 0.049*
C14 0.1041 (3) 0.49851 (10) 0.84970 (16) 0.0357 (5)
H14A 0.115360 0.453863 0.830791 0.043*
H14B −0.002908 0.502959 0.876377 0.043*
C15 0.2556 (3) 0.51692 (9) 0.93462 (16) 0.0340 (4)
H15A 0.250824 0.493237 0.999094 0.041*
H15B 0.363113 0.505307 0.912586 0.041*
C16 0.2411 (3) 0.62529 (10) 0.86112 (16) 0.0364 (5)
H16A 0.344474 0.620481 0.830902 0.044*
H16B 0.229875 0.670139 0.878811 0.044*
C17 0.0831 (3) 0.60408 (10) 0.78271 (15) 0.0327 (4)
H17A −0.020076 0.611142 0.812303 0.039*
H17B 0.071566 0.629659 0.718442 0.039*
O4 1.1188 (2) 0.66620 (11) 1.0984 (2) 0.0830 (8)
O5 0.8981 (3) 0.62083 (8) 0.99400 (18) 0.0683 (6)
O6 0.5971 (2) 0.63810 (8) 1.02051 (13) 0.0476 (4)
H6 0.675991 0.625422 0.991803 0.071*
O7 1.0721 (3) 0.74339 (12) 1.23479 (19) 0.0809 (8)
H7 1.128472 0.712831 1.218955 0.121*
C18 0.9592 (3) 0.65706 (12) 1.0688 (2) 0.0531 (7)
C19 0.8411 (3) 0.68834 (9) 1.12632 (16) 0.0336 (4)
C20 0.6639 (3) 0.67641 (10) 1.10169 (16) 0.0332 (4)
C21 0.5540 (3) 0.70341 (11) 1.1582 (2) 0.0447 (5)
H21 0.434867 0.694228 1.142088 0.054*
C22 0.6208 (4) 0.74400 (12) 1.2386 (2) 0.0593 (8)
H22 0.545515 0.763145 1.277098 0.071*
C23 0.7929 (5) 0.75756 (13) 1.2647 (2) 0.0625 (8)
H23 0.835717 0.785656 1.320376 0.075*
C24 0.9025 (3) 0.72996 (12) 1.20927 (18) 0.0475 (6)

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0444 (7) 0.0350 (6) 0.0334 (6) −0.0065 (5) 0.0070 (5) −0.0004 (5)
O1 0.0555 (10) 0.0466 (9) 0.0264 (7) 0.0049 (7) 0.0058 (7) 0.0000 (7)
O2 0.0470 (9) 0.0437 (9) 0.0280 (7) 0.0011 (7) 0.0030 (6) −0.0068 (6)
O3 0.0384 (8) 0.0360 (8) 0.0312 (7) 0.0019 (6) 0.0003 (6) −0.0065 (6)
N1 0.0347 (9) 0.0338 (9) 0.0239 (8) 0.0014 (7) 0.0017 (7) 0.0003 (6)
N2 0.0370 (9) 0.0345 (9) 0.0254 (8) −0.0019 (7) 0.0030 (7) −0.0007 (7)
N3 0.0477 (10) 0.0353 (9) 0.0290 (9) 0.0021 (8) −0.0074 (8) −0.0025 (7)
C1 0.0360 (11) 0.0418 (11) 0.0255 (10) 0.0036 (9) −0.0008 (8) −0.0026 (9)
C2 0.0300 (10) 0.0390 (11) 0.0260 (9) 0.0034 (8) −0.0014 (8) −0.0031 (8)
C3 0.0288 (9) 0.0364 (10) 0.0288 (10) 0.0040 (8) −0.0033 (8) −0.0031 (8)
C4 0.0290 (9) 0.0370 (10) 0.0254 (9) 0.0016 (8) −0.0022 (7) −0.0011 (8)
C5 0.0331 (10) 0.0313 (10) 0.0298 (10) 0.0020 (8) −0.0024 (8) −0.0035 (8)
C6 0.0304 (10) 0.0340 (10) 0.0293 (10) −0.0024 (8) −0.0001 (8) 0.0016 (8)
C7 0.0300 (9) 0.0360 (10) 0.0253 (9) 0.0006 (8) −0.0002 (7) −0.0010 (8)
C8 0.0308 (10) 0.0337 (10) 0.0265 (9) 0.0011 (8) −0.0017 (7) −0.0016 (8)
C9 0.0297 (10) 0.0345 (10) 0.0242 (9) 0.0027 (8) −0.0001 (7) 0.0005 (8)
C10 0.0332 (10) 0.0387 (11) 0.0249 (9) 0.0031 (8) 0.0014 (8) 0.0011 (8)
C11 0.0398 (11) 0.0325 (10) 0.0282 (10) −0.0005 (8) 0.0053 (8) −0.0009 (8)
C12 0.0457 (12) 0.0372 (11) 0.0420 (12) 0.0049 (9) 0.0074 (10) −0.0010 (9)
C13 0.0538 (13) 0.0345 (11) 0.0328 (11) 0.0025 (9) 0.0067 (9) 0.0015 (9)
C14 0.0406 (11) 0.0380 (11) 0.0275 (10) −0.0058 (9) 0.0047 (8) 0.0008 (8)
C15 0.0385 (11) 0.0330 (10) 0.0283 (10) 0.0013 (8) 0.0018 (8) −0.0005 (8)
C16 0.0410 (11) 0.0326 (10) 0.0321 (10) 0.0006 (8) −0.0011 (9) −0.0021 (8)
C17 0.0335 (10) 0.0359 (10) 0.0269 (9) 0.0020 (8) 0.0017 (8) −0.0010 (8)
O4 0.0390 (10) 0.0790 (14) 0.140 (2) 0.0173 (9) 0.0391 (12) 0.0559 (15)
O5 0.1042 (17) 0.0351 (9) 0.0862 (15) 0.0002 (10) 0.0675 (13) −0.0015 (10)
O6 0.0513 (10) 0.0531 (10) 0.0356 (8) −0.0164 (8) 0.0027 (7) −0.0101 (7)
O7 0.0613 (12) 0.0922 (16) 0.0708 (14) −0.0414 (11) −0.0296 (11) 0.0281 (13)
C18 0.0488 (14) 0.0374 (13) 0.082 (2) 0.0124 (10) 0.0340 (14) 0.0259 (13)
C19 0.0320 (10) 0.0335 (10) 0.0344 (10) −0.0010 (8) 0.0048 (8) 0.0063 (8)
C20 0.0342 (10) 0.0347 (10) 0.0296 (10) −0.0019 (8) 0.0036 (8) 0.0007 (8)
C21 0.0394 (12) 0.0431 (12) 0.0547 (14) 0.0024 (10) 0.0172 (10) 0.0040 (11)
C22 0.096 (2) 0.0364 (13) 0.0590 (16) −0.0030 (13) 0.0477 (16) −0.0036 (11)
C23 0.108 (2) 0.0474 (14) 0.0343 (12) −0.0330 (15) 0.0198 (14) −0.0087 (11)
C24 0.0525 (14) 0.0496 (13) 0.0341 (11) −0.0194 (11) −0.0056 (10) 0.0104 (10)

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I). Geometric parameters (Å, º)

F1—C6 1.359 (2) C12—H12A 0.9900
O1—C1 1.218 (3) C12—H12B 0.9900
O2—H2 0.8400 C12—C13 1.503 (3)
O2—C1 1.325 (3) C13—H13A 0.9900
O3—C3 1.265 (2) C13—H13B 0.9900
N1—C9 1.405 (3) C14—H14A 0.9900
N1—C10 1.347 (3) C14—H14B 0.9900
N1—C11 1.455 (3) C14—C15 1.516 (3)
N2—C7 1.383 (3) C15—H15A 0.9900
N2—C14 1.468 (3) C15—H15B 0.9900
N2—C17 1.457 (3) C16—H16A 0.9900
N3—H3A 0.9100 C16—H16B 0.9900
N3—H3B 0.9100 C16—C17 1.521 (3)
N3—C15 1.492 (3) C17—H17A 0.9900
N3—C16 1.498 (3) C17—H17B 0.9900
C1—C2 1.486 (3) O4—C18 1.267 (3)
C2—C3 1.431 (3) O5—C18 1.263 (4)
C2—C10 1.369 (3) O6—H6 0.8400
C3—C4 1.448 (3) O6—C20 1.358 (3)
C4—C5 1.408 (3) O7—H7 0.8400
C4—C9 1.400 (3) O7—C24 1.355 (3)
C5—H5 0.9500 C18—C19 1.479 (3)
C5—C6 1.359 (3) C19—C20 1.406 (3)
C6—C7 1.420 (3) C19—C24 1.409 (3)
C7—C8 1.402 (3) C20—C21 1.382 (3)
C8—H8 0.9500 C21—H21 0.9500
C8—C9 1.400 (3) C21—C22 1.381 (4)
C10—H10 0.9500 C22—H22 0.9500
C11—H11 1.0000 C22—C23 1.375 (5)
C11—C12 1.501 (3) C23—H23 0.9500
C11—C13 1.490 (3) C23—C24 1.376 (4)
C1—O2—H2 109.5 C13—C12—H12B 117.8
C9—N1—C11 119.24 (16) C11—C13—C12 60.21 (15)
C10—N1—C9 119.88 (17) C11—C13—H13A 117.8
C10—N1—C11 120.86 (17) C11—C13—H13B 117.8
C7—N2—C14 123.30 (17) C12—C13—H13A 117.8
C7—N2—C17 120.67 (17) C12—C13—H13B 117.8
C17—N2—C14 110.55 (16) H13A—C13—H13B 114.9
H3A—N3—H3B 107.8 N2—C14—H14A 109.4
C15—N3—H3A 109.0 N2—C14—H14B 109.4
C15—N3—H3B 109.0 N2—C14—C15 111.36 (17)
C15—N3—C16 112.86 (16) H14A—C14—H14B 108.0
C16—N3—H3A 109.0 C15—C14—H14A 109.4
C16—N3—H3B 109.0 C15—C14—H14B 109.4
O1—C1—O2 121.63 (19) N3—C15—C14 111.86 (17)
O1—C1—C2 123.19 (19) N3—C15—H15A 109.2
O2—C1—C2 115.18 (19) N3—C15—H15B 109.2
C3—C2—C1 121.03 (18) C14—C15—H15A 109.2
C10—C2—C1 118.14 (19) C14—C15—H15B 109.2
C10—C2—C3 120.83 (19) H15A—C15—H15B 107.9
O3—C3—C2 122.61 (19) N3—C16—H16A 110.0
O3—C3—C4 121.90 (19) N3—C16—H16B 110.0
C2—C3—C4 115.48 (18) N3—C16—C17 108.50 (17)
C5—C4—C3 120.65 (18) H16A—C16—H16B 108.4
C9—C4—C3 121.38 (19) C17—C16—H16A 110.0
C9—C4—C5 117.95 (18) C17—C16—H16B 110.0
C4—C5—H5 119.8 N2—C17—C16 111.57 (16)
C6—C5—C4 120.40 (19) N2—C17—H17A 109.3
C6—C5—H5 119.8 N2—C17—H17B 109.3
F1—C6—C5 117.95 (18) C16—C17—H17A 109.3
F1—C6—C7 118.58 (18) C16—C17—H17B 109.3
C5—C6—C7 123.34 (19) H17A—C17—H17B 108.0
N2—C7—C6 122.04 (18) C20—O6—H6 109.5
N2—C7—C8 121.89 (18) C24—O7—H7 109.5
C8—C7—C6 115.79 (18) O4—C18—C19 118.7 (3)
C7—C8—H8 119.2 O5—C18—O4 122.3 (3)
C9—C8—C7 121.53 (19) O5—C18—C19 119.0 (2)
C9—C8—H8 119.2 C20—C19—C18 121.1 (2)
C4—C9—N1 119.20 (18) C20—C19—C24 117.7 (2)
C4—C9—C8 120.89 (19) C24—C19—C18 121.2 (2)
C8—C9—N1 119.91 (18) O6—C20—C19 120.12 (19)
N1—C10—C2 123.07 (19) O6—C20—C21 118.6 (2)
N1—C10—H10 118.5 C21—C20—C19 121.3 (2)
C2—C10—H10 118.5 C20—C21—H21 120.7
N1—C11—H11 115.6 C22—C21—C20 118.7 (2)
N1—C11—C12 118.27 (18) C22—C21—H21 120.7
N1—C11—C13 120.07 (17) C21—C22—H22 119.0
C12—C11—H11 115.6 C23—C22—C21 122.0 (2)
C13—C11—H11 115.6 C23—C22—H22 119.0
C13—C11—C12 60.32 (15) C22—C23—H23 120.4
C11—C12—H12A 117.8 C22—C23—C24 119.3 (2)
C11—C12—H12B 117.8 C24—C23—H23 120.4
C11—C12—C13 59.47 (14) O7—C24—C19 119.6 (3)
H12A—C12—H12B 115.0 O7—C24—C23 119.3 (3)
C13—C12—H12A 117.8 C23—C24—C19 121.1 (2)
F1—C6—C7—N2 −1.6 (3) C9—C4—C5—C6 1.8 (3)
F1—C6—C7—C8 −175.68 (16) C10—N1—C9—C4 2.8 (3)
O1—C1—C2—C3 176.50 (19) C10—N1—C9—C8 −177.48 (18)
O1—C1—C2—C10 −4.2 (3) C10—N1—C11—C12 102.8 (2)
O2—C1—C2—C3 −2.7 (3) C10—N1—C11—C13 32.6 (3)
O2—C1—C2—C10 176.59 (18) C10—C2—C3—O3 −175.52 (18)
O3—C3—C4—C5 −4.5 (3) C10—C2—C3—C4 4.3 (3)
O3—C3—C4—C9 177.25 (17) C11—N1—C9—C4 −175.72 (17)
N1—C11—C12—C13 −110.4 (2) C11—N1—C9—C8 4.0 (3)
N1—C11—C13—C12 107.5 (2) C11—N1—C10—C2 177.41 (18)
N2—C7—C8—C9 −171.43 (18) C14—N2—C7—C6 42.6 (3)
N2—C14—C15—N3 52.0 (2) C14—N2—C7—C8 −143.72 (19)
N3—C16—C17—N2 −58.5 (2) C14—N2—C17—C16 61.2 (2)
C1—C2—C3—O3 3.8 (3) C15—N3—C16—C17 53.4 (2)
C1—C2—C3—C4 −176.44 (17) C16—N3—C15—C14 −51.4 (2)
C1—C2—C10—N1 178.08 (18) C17—N2—C7—C6 −166.08 (18)
C2—C3—C4—C5 175.74 (17) C17—N2—C7—C8 7.6 (3)
C2—C3—C4—C9 −2.5 (3) C17—N2—C14—C15 −56.9 (2)
C3—C2—C10—N1 −2.6 (3) O4—C18—C19—C20 −175.4 (2)
C3—C4—C5—C6 −176.56 (18) O4—C18—C19—C24 3.0 (3)
C3—C4—C9—N1 −0.9 (3) O5—C18—C19—C20 2.6 (3)
C3—C4—C9—C8 179.39 (18) O5—C18—C19—C24 −179.0 (2)
C4—C5—C6—F1 173.48 (16) O6—C20—C21—C22 −177.9 (2)
C4—C5—C6—C7 −2.5 (3) C18—C19—C20—O6 −3.4 (3)
C5—C4—C9—N1 −179.21 (17) C18—C19—C20—C21 177.1 (2)
C5—C4—C9—C8 1.1 (3) C18—C19—C24—O7 2.3 (3)
C5—C6—C7—N2 174.32 (18) C18—C19—C24—C23 −178.0 (2)
C5—C6—C7—C8 0.2 (3) C19—C20—C21—C22 1.6 (3)
C6—C7—C8—C9 2.7 (3) C20—C19—C24—O7 −179.2 (2)
C7—N2—C14—C15 97.0 (2) C20—C19—C24—C23 0.5 (3)
C7—N2—C17—C16 −93.5 (2) C20—C21—C22—C23 −0.9 (4)
C7—C8—C9—N1 176.92 (17) C21—C22—C23—C24 0.0 (4)
C7—C8—C9—C4 −3.4 (3) C22—C23—C24—O7 179.9 (2)
C9—N1—C10—C2 −1.1 (3) C22—C23—C24—C19 0.2 (4)
C9—N1—C11—C12 −78.7 (2) C24—C19—C20—O6 178.08 (19)
C9—N1—C11—C13 −148.89 (19) C24—C19—C20—C21 −1.4 (3)

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O3 0.84 1.73 2.512 (2) 155
N3—H3A···O1i 0.91 2.38 2.977 (2) 123
N3—H3A···O6 0.91 2.09 2.890 (2) 146
N3—H3B···O4ii 0.91 2.18 2.897 (3) 136
N3—H3B···O5ii 0.91 2.24 3.090 (3) 155
C11—H11···O3iii 1.00 2.46 3.239 (3) 134
C12—H12A···O4iv 0.99 2.54 3.374 (3) 141
C13—H13A···O7v 0.99 2.51 3.193 (3) 126
C14—H14A···F1 0.99 2.13 2.831 (2) 126
C15—H15B···O1iii 0.99 2.33 3.282 (3) 161
C17—H17A···O5ii 0.99 2.60 3.408 (3) 139
O6—H6···O5 0.84 1.77 2.520 (3) 148
O7—H7···O4 0.84 1.85 2.508 (4) 134
C21—H21···O4ii 0.95 2.54 3.488 (3) 178

Symmetry codes: (i) x, y, z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) x−1, −y+3/2, z−1/2; (v) x−1, y, z−1.

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride–3,5-hydroxybenzoic acid–water (1/1/1) (II). Crystal data

C17H19FN3O3+·C7H6O4·Cl·H2O Z = 1
Mr = 539.93 F(000) = 282
Triclinic, P1 Dx = 1.508 Mg m3
a = 7.2165 (2) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.8298 (4) Å Cell parameters from 10041 reflections
c = 10.1184 (3) Å θ = 4.4–75.8°
α = 92.997 (3)° µ = 2.00 mm1
β = 95.219 (2)° T = 93 K
γ = 111.557 (4)° Block, colourless
V = 594.60 (4) Å3 0.28 × 0.2 × 0.05 mm

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride–3,5-hydroxybenzoic acid–water (1/1/1) (II). Data collection

XtaLAB Synergy R, DW system, HyPix diffractometer 4420 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku XtaLAB Synergy-R 4323 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.035
Detector resolution: 10.0000 pixels mm-1 θmax = 74.5°, θmin = 4.4°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) k = −10→11
Tmin = 0.839, Tmax = 1.000 l = −12→12
16358 measured reflections

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride–3,5-hydroxybenzoic acid–water (1/1/1) (II). Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.0709P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094 (Δ/σ)max < 0.001
S = 1.12 Δρmax = 0.25 e Å3
4420 reflections Δρmin = −0.47 e Å3
344 parameters Absolute structure: Flack x determined using 1889 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraints Absolute structure parameter: 0.011 (7)
Primary atom site location: dual

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride–3,5-hydroxybenzoic acid–water (1/1/1) (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride–3,5-hydroxybenzoic acid–water (1/1/1) (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.85144 (9) 0.46863 (8) 0.40663 (7) 0.02533 (17)
F1 0.4599 (3) 0.5185 (2) 0.98137 (17) 0.0273 (4)
O1 0.3224 (3) −0.3703 (3) 1.2978 (2) 0.0284 (5)
O2 0.3642 (4) −0.1499 (3) 1.4315 (2) 0.0294 (5)
H2 0.379572 −0.051835 1.423817 0.044*
O3 0.3972 (3) 0.1143 (3) 1.3272 (2) 0.0280 (5)
N1 0.2840 (4) −0.1445 (3) 0.9603 (2) 0.0213 (5)
N2 0.3796 (4) 0.3457 (3) 0.7334 (2) 0.0210 (5)
N3 0.4407 (4) 0.4661 (3) 0.4778 (2) 0.0233 (5)
H3A 0.412202 0.525266 0.413562 0.028*
H3B 0.528778 0.423848 0.448534 0.028*
C1 0.3370 (4) −0.2274 (4) 1.3126 (3) 0.0249 (6)
C2 0.3276 (4) −0.1342 (4) 1.1970 (3) 0.0222 (6)
C3 0.3655 (4) 0.0366 (4) 1.2138 (3) 0.0226 (6)
C4 0.3687 (4) 0.1155 (4) 1.0907 (3) 0.0220 (6)
C5 0.4158 (4) 0.2850 (4) 1.0937 (3) 0.0227 (6)
H5 0.444144 0.349621 1.176480 0.027*
C6 0.4203 (4) 0.3556 (4) 0.9773 (3) 0.0214 (6)
C7 0.3828 (4) 0.2667 (4) 0.8503 (3) 0.0202 (6)
C8 0.3389 (4) 0.1003 (4) 0.8483 (3) 0.0212 (6)
H8 0.314618 0.036841 0.765286 0.025*
C9 0.3297 (4) 0.0241 (4) 0.9661 (3) 0.0204 (6)
C10 0.2882 (4) −0.2168 (4) 1.0730 (3) 0.0218 (6)
H10 0.262685 −0.330555 1.066643 0.026*
C11 0.2568 (4) −0.2397 (4) 0.8324 (3) 0.0219 (6)
H11 0.381927 −0.228926 0.791979 0.026*
C12 0.0740 (5) −0.2667 (4) 0.7366 (3) 0.0257 (6)
H12A 0.087678 −0.270948 0.640183 0.031*
H12B −0.021768 −0.217677 0.763308 0.031*
C13 0.0926 (5) −0.4047 (4) 0.8124 (3) 0.0259 (6)
H13A 0.007825 −0.440061 0.885206 0.031*
H13B 0.117236 −0.493315 0.762121 0.031*
C14 0.5686 (4) 0.4771 (4) 0.7139 (3) 0.0231 (6)
H14A 0.667670 0.429259 0.691921 0.028*
H14B 0.623427 0.549862 0.797431 0.028*
C15 0.5351 (5) 0.5757 (4) 0.6022 (3) 0.0253 (6)
H15A 0.447094 0.632955 0.628102 0.030*
H15B 0.665144 0.659131 0.586453 0.030*
C16 0.2536 (5) 0.3306 (4) 0.5001 (3) 0.0240 (6)
H16A 0.198514 0.256713 0.417103 0.029*
H16B 0.152583 0.375766 0.523119 0.029*
C17 0.2940 (4) 0.2351 (4) 0.6112 (3) 0.0221 (6)
H17A 0.167365 0.147006 0.626540 0.027*
H17B 0.388812 0.184215 0.586309 0.027*
O4 0.8307 (4) 0.7243 (3) 0.2157 (2) 0.0292 (5)
H4 0.845149 0.674900 0.282288 0.044*
O5 0.8281 (4) 0.9108 (3) 0.3721 (2) 0.0338 (5)
O6 0.9253 (4) 1.4048 (3) 0.1019 (2) 0.0282 (5)
H6 0.922943 1.426566 0.183393 0.042*
O7 0.7685 (4) 0.9471 (3) −0.2173 (2) 0.0282 (5)
H7 0.769716 1.019031 −0.268691 0.042*
C18 0.8310 (5) 0.8689 (4) 0.2561 (3) 0.0245 (6)
C19 0.8373 (4) 0.9759 (4) 0.1448 (3) 0.0233 (6)
C20 0.8753 (4) 1.1395 (4) 0.1782 (3) 0.0230 (6)
H20 0.894255 1.180995 0.269053 0.028*
C21 0.8855 (4) 1.2429 (4) 0.0771 (3) 0.0230 (6)
C22 0.8531 (4) 1.1805 (4) −0.0565 (3) 0.0229 (6)
H22 0.860643 1.250739 −0.125512 0.028*
C23 0.8099 (4) 1.0150 (4) −0.0877 (3) 0.0231 (6)
C24 0.8048 (4) 0.9107 (4) 0.0123 (3) 0.0243 (6)
H24 0.779908 0.798399 −0.009350 0.029*
O8 0.7775 (4) 1.1327 (3) −0.4306 (2) 0.0309 (5)
H8A 0.799 (7) 1.230 (7) −0.457 (5) 0.046*
H8B 0.779 (7) 1.068 (7) −0.492 (5) 0.046*

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride–3,5-hydroxybenzoic acid–water (1/1/1) (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0315 (3) 0.0267 (3) 0.0219 (3) 0.0151 (3) 0.0052 (2) 0.0029 (2)
F1 0.0445 (10) 0.0200 (9) 0.0203 (8) 0.0152 (8) 0.0057 (7) −0.0001 (7)
O1 0.0376 (12) 0.0253 (12) 0.0242 (11) 0.0142 (9) 0.0011 (9) 0.0058 (9)
O2 0.0419 (13) 0.0289 (12) 0.0176 (10) 0.0132 (10) 0.0032 (9) 0.0048 (8)
O3 0.0426 (13) 0.0294 (12) 0.0144 (9) 0.0160 (10) 0.0048 (9) 0.0003 (8)
N1 0.0270 (12) 0.0220 (13) 0.0168 (12) 0.0117 (10) 0.0024 (9) −0.0002 (9)
N2 0.0255 (12) 0.0232 (13) 0.0144 (11) 0.0097 (10) 0.0009 (9) 0.0008 (9)
N3 0.0303 (12) 0.0286 (13) 0.0173 (11) 0.0174 (10) 0.0047 (9) 0.0046 (10)
C1 0.0243 (14) 0.0325 (18) 0.0202 (14) 0.0131 (12) 0.0027 (11) 0.0050 (12)
C2 0.0238 (13) 0.0266 (15) 0.0179 (13) 0.0108 (11) 0.0036 (10) 0.0041 (12)
C3 0.0262 (14) 0.0272 (15) 0.0175 (14) 0.0131 (12) 0.0044 (11) 0.0038 (11)
C4 0.0234 (13) 0.0268 (15) 0.0177 (13) 0.0117 (11) 0.0035 (10) 0.0007 (11)
C5 0.0282 (14) 0.0232 (15) 0.0182 (13) 0.0117 (12) 0.0036 (10) −0.0011 (11)
C6 0.0267 (14) 0.0176 (13) 0.0206 (14) 0.0094 (11) 0.0032 (11) −0.0006 (11)
C7 0.0222 (13) 0.0228 (15) 0.0171 (13) 0.0105 (11) 0.0018 (10) 0.0016 (11)
C8 0.0239 (13) 0.0230 (15) 0.0167 (13) 0.0095 (11) 0.0021 (10) −0.0023 (11)
C9 0.0210 (13) 0.0217 (14) 0.0188 (14) 0.0084 (10) 0.0030 (10) 0.0005 (11)
C10 0.0242 (13) 0.0215 (15) 0.0225 (14) 0.0112 (11) 0.0033 (11) 0.0050 (11)
C11 0.0291 (14) 0.0213 (14) 0.0173 (13) 0.0121 (12) 0.0024 (11) −0.0009 (11)
C12 0.0317 (15) 0.0243 (15) 0.0213 (13) 0.0117 (12) −0.0005 (12) 0.0006 (11)
C13 0.0329 (15) 0.0211 (15) 0.0242 (14) 0.0110 (12) 0.0038 (11) −0.0004 (11)
C14 0.0281 (14) 0.0233 (15) 0.0183 (13) 0.0103 (12) 0.0021 (11) 0.0011 (11)
C15 0.0335 (15) 0.0240 (15) 0.0198 (14) 0.0116 (12) 0.0050 (11) 0.0040 (11)
C16 0.0291 (15) 0.0241 (15) 0.0192 (13) 0.0111 (12) 0.0006 (11) 0.0012 (11)
C17 0.0264 (14) 0.0242 (16) 0.0174 (13) 0.0121 (11) 0.0006 (10) 0.0006 (11)
O4 0.0432 (13) 0.0270 (12) 0.0240 (11) 0.0194 (10) 0.0077 (9) 0.0056 (9)
O5 0.0540 (14) 0.0318 (13) 0.0216 (11) 0.0224 (11) 0.0074 (10) 0.0025 (9)
O6 0.0423 (12) 0.0214 (11) 0.0220 (10) 0.0133 (9) 0.0046 (9) −0.0007 (8)
O7 0.0408 (12) 0.0264 (12) 0.0186 (10) 0.0140 (10) 0.0046 (9) −0.0003 (9)
C18 0.0269 (14) 0.0271 (16) 0.0230 (14) 0.0137 (12) 0.0048 (11) 0.0025 (12)
C19 0.0240 (13) 0.0265 (16) 0.0216 (14) 0.0116 (11) 0.0039 (11) 0.0017 (12)
C20 0.0254 (13) 0.0255 (15) 0.0196 (13) 0.0117 (11) 0.0029 (11) −0.0003 (11)
C21 0.0244 (13) 0.0205 (14) 0.0243 (14) 0.0092 (11) 0.0023 (11) −0.0019 (11)
C22 0.0249 (14) 0.0247 (15) 0.0215 (14) 0.0115 (11) 0.0045 (11) 0.0035 (12)
C23 0.0240 (13) 0.0281 (16) 0.0187 (14) 0.0119 (12) 0.0023 (11) −0.0010 (12)
C24 0.0261 (14) 0.0259 (15) 0.0232 (15) 0.0122 (12) 0.0058 (11) −0.0007 (12)
O8 0.0438 (13) 0.0286 (13) 0.0212 (11) 0.0146 (10) 0.0044 (9) 0.0017 (9)

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride–3,5-hydroxybenzoic acid–water (1/1/1) (II). Geometric parameters (Å, º)

F1—C6 1.357 (4) C12—C13 1.513 (4)
O1—C1 1.227 (4) C13—H13A 0.9900
O2—H2 0.8400 C13—H13B 0.9900
O2—C1 1.314 (4) C14—H14A 0.9900
O3—C3 1.263 (4) C14—H14B 0.9900
N1—C9 1.397 (4) C14—C15 1.517 (4)
N1—C10 1.339 (4) C15—H15A 0.9900
N1—C11 1.463 (4) C15—H15B 0.9900
N2—C7 1.407 (4) C16—H16A 0.9900
N2—C14 1.468 (4) C16—H16B 0.9900
N2—C17 1.467 (4) C16—C17 1.510 (4)
N3—H3A 0.9100 C17—H17A 0.9900
N3—H3B 0.9100 C17—H17B 0.9900
N3—C15 1.489 (4) O4—H4 0.8400
N3—C16 1.484 (4) O4—C18 1.320 (4)
C1—C2 1.475 (4) O5—C18 1.216 (4)
C2—C3 1.428 (4) O6—H6 0.8400
C2—C10 1.369 (4) O6—C21 1.356 (4)
C3—C4 1.457 (4) O7—H7 0.8400
C4—C5 1.406 (4) O7—C23 1.372 (4)
C4—C9 1.407 (4) C18—C19 1.501 (4)
C5—H5 0.9500 C19—C20 1.385 (4)
C5—C6 1.358 (4) C19—C24 1.395 (4)
C6—C7 1.419 (4) C20—H20 0.9500
C7—C8 1.384 (4) C20—C21 1.395 (4)
C8—H8 0.9500 C21—C22 1.399 (4)
C8—C9 1.394 (4) C22—H22 0.9500
C10—H10 0.9500 C22—C23 1.389 (5)
C11—H11 1.0000 C23—C24 1.398 (4)
C11—C12 1.499 (4) C24—H24 0.9500
C11—C13 1.492 (4) O8—H8A 0.88 (6)
C12—H12A 0.9900 O8—H8B 0.82 (6)
C12—H12B 0.9900
C1—O2—H2 109.5 C11—C13—C12 59.9 (2)
C9—N1—C11 120.6 (2) C11—C13—H13A 117.8
C10—N1—C9 119.9 (3) C11—C13—H13B 117.8
C10—N1—C11 119.0 (3) C12—C13—H13A 117.8
C7—N2—C14 115.7 (2) C12—C13—H13B 117.8
C7—N2—C17 114.7 (2) H13A—C13—H13B 114.9
C17—N2—C14 111.0 (2) N2—C14—H14A 109.5
H3A—N3—H3B 108.0 N2—C14—H14B 109.5
C15—N3—H3A 109.3 N2—C14—C15 110.6 (2)
C15—N3—H3B 109.3 H14A—C14—H14B 108.1
C16—N3—H3A 109.3 C15—C14—H14A 109.5
C16—N3—H3B 109.3 C15—C14—H14B 109.5
C16—N3—C15 111.4 (2) N3—C15—C14 110.2 (2)
O1—C1—O2 121.8 (3) N3—C15—H15A 109.6
O1—C1—C2 121.2 (3) N3—C15—H15B 109.6
O2—C1—C2 117.0 (3) C14—C15—H15A 109.6
C3—C2—C1 121.3 (3) C14—C15—H15B 109.6
C10—C2—C1 117.3 (3) H15A—C15—H15B 108.1
C10—C2—C3 121.4 (3) N3—C16—H16A 109.5
O3—C3—C2 122.5 (3) N3—C16—H16B 109.5
O3—C3—C4 122.3 (3) N3—C16—C17 110.7 (2)
C2—C3—C4 115.2 (3) H16A—C16—H16B 108.1
C5—C4—C3 120.8 (3) C17—C16—H16A 109.5
C5—C4—C9 118.6 (3) C17—C16—H16B 109.5
C9—C4—C3 120.6 (3) N2—C17—C16 109.4 (2)
C4—C5—H5 120.3 N2—C17—H17A 109.8
C6—C5—C4 119.5 (3) N2—C17—H17B 109.8
C6—C5—H5 120.3 C16—C17—H17A 109.8
F1—C6—C5 119.0 (3) C16—C17—H17B 109.8
F1—C6—C7 117.8 (2) H17A—C17—H17B 108.2
C5—C6—C7 123.2 (3) C18—O4—H4 109.5
N2—C7—C6 120.4 (3) C21—O6—H6 109.5
C8—C7—N2 122.6 (3) C23—O7—H7 109.5
C8—C7—C6 116.9 (3) O4—C18—C19 113.1 (3)
C7—C8—H8 119.4 O5—C18—O4 123.1 (3)
C7—C8—C9 121.1 (3) O5—C18—C19 123.8 (3)
C9—C8—H8 119.4 C20—C19—C18 117.9 (3)
N1—C9—C4 119.8 (2) C20—C19—C24 121.7 (3)
C8—C9—N1 119.6 (3) C24—C19—C18 120.4 (3)
C8—C9—C4 120.7 (3) C19—C20—H20 120.3
N1—C10—C2 123.0 (3) C19—C20—C21 119.3 (3)
N1—C10—H10 118.5 C21—C20—H20 120.3
C2—C10—H10 118.5 O6—C21—C20 122.8 (3)
N1—C11—H11 116.2 O6—C21—C22 117.1 (3)
N1—C11—C12 118.9 (3) C20—C21—C22 120.1 (3)
N1—C11—C13 117.2 (2) C21—C22—H22 120.2
C12—C11—H11 116.2 C23—C22—C21 119.6 (3)
C13—C11—H11 116.2 C23—C22—H22 120.2
C13—C11—C12 60.8 (2) O7—C23—C22 121.6 (3)
C11—C12—H12A 117.8 O7—C23—C24 117.3 (3)
C11—C12—H12B 117.8 C22—C23—C24 121.1 (3)
C11—C12—C13 59.4 (2) C19—C24—C23 118.2 (3)
H12A—C12—H12B 115.0 C19—C24—H24 120.9
C13—C12—H12A 117.8 C23—C24—H24 120.9
C13—C12—H12B 117.8 H8A—O8—H8B 112 (5)
F1—C6—C7—N2 −2.4 (4) C9—N1—C11—C13 −140.3 (3)
F1—C6—C7—C8 −178.8 (3) C9—C4—C5—C6 0.7 (4)
O1—C1—C2—C3 −173.3 (3) C10—N1—C9—C4 −3.6 (4)
O1—C1—C2—C10 4.3 (4) C10—N1—C9—C8 175.5 (3)
O2—C1—C2—C3 5.9 (4) C10—N1—C11—C12 117.4 (3)
O2—C1—C2—C10 −176.5 (3) C10—N1—C11—C13 47.5 (4)
O3—C3—C4—C5 2.6 (4) C10—C2—C3—O3 178.2 (3)
O3—C3—C4—C9 −179.1 (3) C10—C2—C3—C4 −2.9 (4)
N1—C11—C12—C13 −106.9 (3) C11—N1—C9—C4 −175.7 (2)
N1—C11—C13—C12 109.5 (3) C11—N1—C9—C8 3.4 (4)
N2—C7—C8—C9 −175.5 (3) C11—N1—C10—C2 175.1 (3)
N2—C14—C15—N3 −55.7 (3) C14—N2—C7—C6 62.4 (4)
N3—C16—C17—N2 58.0 (3) C14—N2—C7—C8 −121.4 (3)
C1—C2—C3—O3 −4.2 (4) C14—N2—C17—C16 −59.9 (3)
C1—C2—C3—C4 174.7 (3) C15—N3—C16—C17 −56.1 (3)
C1—C2—C10—N1 −177.1 (3) C16—N3—C15—C14 54.5 (3)
C2—C3—C4—C5 −176.4 (3) C17—N2—C7—C6 −166.4 (3)
C2—C3—C4—C9 2.0 (4) C17—N2—C7—C8 9.8 (4)
C3—C2—C10—N1 0.5 (4) C17—N2—C14—C15 59.2 (3)
C3—C4—C5—C6 179.1 (3) O4—C18—C19—C20 −168.3 (3)
C3—C4—C9—N1 1.1 (4) O4—C18—C19—C24 11.9 (4)
C3—C4—C9—C8 −178.0 (3) O5—C18—C19—C20 11.1 (5)
C4—C5—C6—F1 178.0 (3) O5—C18—C19—C24 −168.6 (3)
C4—C5—C6—C7 −1.1 (5) O6—C21—C22—C23 −179.4 (3)
C5—C4—C9—N1 179.5 (3) O7—C23—C24—C19 −177.1 (3)
C5—C4—C9—C8 0.4 (4) C18—C19—C20—C21 178.9 (3)
C5—C6—C7—N2 176.7 (3) C18—C19—C24—C23 179.2 (3)
C5—C6—C7—C8 0.3 (4) C19—C20—C21—O6 −178.9 (3)
C6—C7—C8—C9 0.8 (4) C19—C20—C21—C22 1.4 (4)
C7—N2—C14—C15 −167.8 (2) C20—C19—C24—C23 −0.5 (4)
C7—N2—C17—C16 166.7 (2) C20—C21—C22—C23 0.3 (4)
C7—C8—C9—N1 179.7 (3) C21—C22—C23—O7 177.1 (3)
C7—C8—C9—C4 −1.2 (4) C21—C22—C23—C24 −2.2 (4)
C9—N1—C10—C2 2.9 (4) C22—C23—C24—C19 2.3 (4)
C9—N1—C11—C12 −70.4 (4) C24—C19—C20—C21 −1.3 (4)

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride–3,5-hydroxybenzoic acid–water (1/1/1) (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O3 0.84 1.78 2.551 (3) 152
N3—H3A···O1i 0.91 1.75 2.652 (3) 172
N3—H3B···Cl1 0.91 2.30 3.106 (3) 148
C10—H10···F1ii 0.95 2.46 3.158 (4) 130
C12—H12B···O7iii 0.99 2.47 3.435 (4) 166
C14—H14B···F1 0.99 2.27 2.927 (3) 123
C16—H16B···Cl1iv 0.99 2.78 3.609 (3) 142
O4—H4···Cl1 0.84 2.28 3.082 (2) 160
O6—H6···Cl1v 0.84 2.40 3.232 (2) 170
O7—H7···O8 0.84 1.96 2.769 (3) 161
O8—H8A···Cl1i 0.88 (6) 2.51 (6) 3.362 (3) 164 (4)
O8—H8B···O5vi 0.82 (6) 2.05 (6) 2.865 (4) 170 (5)

Symmetry codes: (i) x, y+1, z−1; (ii) x, y−1, z; (iii) x−1, y−1, z+1; (iv) x−1, y, z; (v) x, y+1, z; (vi) x, y, z−1.

References

  1. Aakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480.
  2. Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. [DOI] [PubMed]
  3. Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Fujito, T., Oshima, T., Higashi, K., Ueda, K., Ito, M., Masu, H., Noguchi, S. & Moribe, K. (2021). Cryst. Growth Des. https://doi.org/10.1021/acs.cgd.1c01050.
  6. Gdaniec, M., Gilski, M. & Denisov, G. S. (1994). Acta Cryst. C50, 1622–1626.
  7. Habibi-yangjeh, A., Danandeh-jenagharad, M. & Nooshyar, M. (2005). Bull. Korean Chem. Soc. 26, 2007–2016.
  8. Kavanagh, O. N., Croker, D. M., Walker, G. M. & Zaworotko, M. J. (2019). Drug Discovery Today, 24, 796–804. [DOI] [PubMed]
  9. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  10. Martínez-Alejo, J. M., Domínguez-Chávez, J. G., Rivera-Islas, J., Herrera-Ruiz, D., Höpfl, H., Morales-Rojas, H. & Senosiain, J. P. (2014). Cryst. Growth Des. 14, 3078–3095.
  11. Nagalapalli, R. & Yaga Bheem, S. (2014). J. Crystallogr. pp. 1–5.
  12. Nugraha, Y. P. & Uekusa, H. (2018). CrystEngComm, 20, 2653–2662.
  13. Nugrahani, I., Tjengal, B., Gusdinar, T., Horikawa, A. & Uekusa, H. (2020). Crystals, 10, 1–19.
  14. Olivera, M. E., Manzo, R. H., Junginger, H. E., Midha, K. K., Shah, V. P., Stavchansky, S., Dressman, J. B. & Barends, D. M. (2011). J. Pharm. Sci. 100, 22–33. [DOI] [PubMed]
  15. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  16. Putra, O. D. & Uekusa, H. (2020). Advances in Organic Crystal Chemistry, pp. 153–184. Singapore: Springer Singapore.
  17. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  18. Rojas, H. M., Chávez, J. G. D., Höpfl, D. H. R., Alejo, J. M. M. & Peláez, J. P. S. (2016). Solid forms of antibiotics. United States Patent and Trademark Office.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Sun, J., Sakai, S., Tauchi, Y., Deguchi, Y., Chen, J., Zhang, R. & Morimoto, K. (2002). Eur. J. Pharm. Biopharm. 54, 51–58. [DOI] [PubMed]
  22. Surov, A. O., Vasilev, N. A., Churakov, A. V., Stroh, J., Emmerling, F. & Perlovich, G. L. (2019). Cryst. Growth Des. 19, 2979–2990.
  23. Surov, A. O., Vasilev, N. A., Voronin, A. P., Churakov, A. V., Emmerling, F. & Perlovich, G. L. (2020). CrystEngComm, 22, 4238–4249.
  24. Thakur, T. S. & Thakuria, R. (2020). Cryst. Growth Des. 20, 6245–6265.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989022001177/dx2042sup1.cif

e-78-00259-sup1.cif (987.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001177/dx2042Isup2.hkl

e-78-00259-Isup2.hkl (348.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022001177/dx2042IIsup3.hkl

e-78-00259-IIsup3.hkl (351.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022001177/dx2042Isup4.cml

CCDC references: 2098049, 2098403

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES