Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 1;78(Pt 3):255–258. doi: 10.1107/S2056989022000731

Synthesis and crystal structure of poly[[bis­(aqua-κO)tetra­kis­(μ-4,4′-bi­pyridine-κ2 N:N′)hexa­kis­(3-chloro­benzoato)-κ5 O2 O:O′-tricobalt(II)] methanol disolvate]

Phakamat Promwit a, Kittipong Chainok b, Nanthawat Wannarit a,b,*
PMCID: PMC8900501  PMID: 35371544

The synthesis, crystal structure and properties of a novel ladder-chain CoII coordination polymer constructed from 4,4′-bi­pyridine (4,4′-bipy) and m-chloro­benzoate (3-Clbenz), {[Co3(4,4′-bipy)4(3-Clbenz)6(H2O)2]·2CH3OH} n , are reported.

Keywords: cobalt(II); one-dimensional coord­in­ation polymer; ladder-chain structure; 4,4′-bi­pyridine; 3-Clbenz; crystal structure

Abstract

A novel ladder-chain cobalt(II) coordination polymer, {[Co3(C7H4ClO2)6(C10H8N2)4(H2O)2]·2CH3OH} n , was synthesized and characterized. The structure contains two CoII centres with different octa­hedral environments, [Co(1)N3O3] and [Co(2)N2O4]. The O-donating 3-chloro­benzoate anions (3-Clbenz) act as the terminal ligands, while the N-donating 4,4′-bipy mol­ecules play the role of linkers. The Co(1) ions are linked by 4,4′-bipy mol­ecules into linear chains. Two such chains are joined by [Co(2)(3-Clbenz)2(H2O)2] units via two 4,4′-bipy bridging ligands, thus forming the ladder-chain structure. The crystal packing of the title compound is stabilized by supra­molecular inter­actions, such as hydrogen bonding, π–π and halogen⋯π contacts, giving a three-dimensional framework. The spectroscopic and thermal properties of the title compound have also been investigated.

Chemical context

The exploration and synthesis of new one-dimensional coordination polymers based on transition metals and mixed N- and O-donating ligands such as 4,4′-bi­pyridine (4,4′-bipy) and benzoate derivatives have been intensively developed (Kaes et al., 2000; Saelim et al., 2020; Topor et al., 2021). The substituent groups at the benzoate ligands play an important role not only for electron densities on the aromatic ring, but also for flexible supra­molecular inter­actions, resulting in various bulk physical properties, such as CO2 adsorption (Takahashi et al., 2014, 2015), photoluminescence (Lin, 2015) and conductivity (Islam et al., 2019). Among the reported compounds, the majority contain mixed 4,4′-bipy and para-substituted benzoate deriv­atives, but there is a limited number of examples containing meta-substituent benzoate ligands (Fang & Nie, 2011; Kar et al., 2011; Xin-Jian et al., 2013; Lin, 2015). We have therefore tried to expand investigations in this area by using various meta-substituted benzoate ligands containing hy­droxy, nitro and halogen substituents. During this study, we employed 3-chloro­benzoate (3-Clbenz), which is expected to support crystal structures via π–π and halogen⋯π inter­molecular inter­actions, together with the 4,4′-bipy organic linker and have synthesized the new CoII coordination polymer {[Co3(4,4′-bipy)4(3-Clbenz)6(H2O)2]·2CH3OH} n , which has an inter­esting one-dimensional ladder-chain structure. This report describes the synthesis, crystal structure, spectroscopic and thermal properties of the title compound. graphic file with name e-78-00255-scheme1.jpg

Structural commentary

The asymmetric unit of the title compound comprises two Co2+ ions, three 3-Clbenz anions, two 4,4′-bipy mol­ecules, one coordinated water mol­ecule and one methanol solvate mol­ecule as shown in Fig. 1. One of the Co2+ ions (containing Co2), is situated at an inversion centre. One pyridine ring (C1–C5) and the methanol solvate mol­ecule are disordered over two sets of sites with occupancies of 0.584 (19):0.416 (19) and 0.72 (3):0.28 (3), respectively. Both Co2+ ions are six-coordinated and have octa­hedral environments. The Co1 ion is coordinated by three nitro­gen atoms from three 4,4′-bipy bridging ligands and three oxygen atoms from the carboxyl­ate groups of one monodentate and one bidentate 3-Clbenz ligands, providing a distorted octa­hedral geometry with angles O2—Co1—O1, O2—Co1—O3 and O2—Co1—N1 of 59.88 (6), 119.93 (7) and 148.87 (7)°, respectively. The Co2 ion is coordinated by two nitro­gen atoms from two 4,4′-bipy bridging ligands and four oxygen atoms from two monodentate 3-Clbenz ligands and two coordinated water mol­ecules. The angles in its environment deviate from ideal values no more than by 3.5°. There is an intra­molecular hydrogen bond in the coordination environment of Co2 between the aqua and 3-Clbenz ligands (see Table 1). The Co1 ions are connected by the 4,4′-bipy linkers into linear chains along the a-axis direction, and adjacent chains are linked via the Co2 ions by the 4,4′-bipy ligands, thus forming the ladder-chain structure shown in Fig. 2.

Figure 1.

Figure 1

Asymmetric unit of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O6i 0.85 (2) 1.84 (2) 2.648 (3) 158 (3)
O7—H7B⋯O8ii 0.85 (2) 1.93 (2) 2.777 (10) 177 (3)
O7—H7B⋯O8A ii 0.85 (2) 1.88 (4) 2.72 (3) 168 (3)
O8—H8A⋯O4 0.82 1.90 2.708 (10) 169
O8A—H8AA⋯O4 0.82 2.04 2.67 (3) 133
C1—H1⋯O3 0.93 2.59 3.102 (7) 115
C5—H5⋯O1 0.93 2.48 3.057 (9) 121
C1A—H1A⋯O3 0.93 2.52 3.088 (9) 120
C5A—H5A⋯O1 0.93 2.33 2.991 (12) 128
C9—H9⋯O5 0.93 2.71 3.189 (3) 113
C11—H11⋯O2 0.93 2.57 3.084 (3) 115
C15—H15⋯N1 0.93 2.60 3.198 (4) 123
C26—H26⋯O6iii 0.93 2.60 3.524 (4) 176

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

View of the ladder-chain structure along the a-axis direction. The hydrogen atoms located at carbon atoms and methanol solvate mol­ecules are omitted for clarity.

Supra­molecular features

The crystal packing is stabilized by inter­molecular inter­actions such as hydrogen bonds (classical O—H⋯O and non-classical C—H⋯O and C—H⋯N), aromatic π–π and Cl⋯π inter­actions (see Table 1, Figs. 3 and 4). The solvate methanol mol­ecule forms hydrogen bonds to the non-coordinated O4 atom of the 3-Clbenz ligand at Co1 as an H-atom donor and to the coordinated water mol­ecule at Co2 as an H-atom acceptor (see Figs. S1–S3 in the supporting information). Aromatic π–π inter­actions involving the phenyl rings of two 3-Clbenz ligands have an inter­centroid Cg6⋯Cg7 (1 + x, −1 + y, z) separation of 3.917 (2) Å (Fig. 3) (Cg6 and Cg7 are the centroids of the C22–C27 and C29–C34 rings, respectively). There are also halogen⋯π inter­actions between the 3-Clbenz ligands and the pyridine rings of 4,4′-bipy ligands with C24—Cl1⋯Cg5 (x, −1 + y, z) = 3.5833 (14) Å and C31—Cl2⋯Cg4 (−1 + x, 1 + y, z) = 3.7558 (15) Å (Fig. 3) (Cg4 and Cg5 are the centroids of the N3/C11–C15 and N4/C16–C20 rings, respectively). These inter­actions stabilize the structure, leading to a three-dimensional supra­molecular framework (Fig. 4).

Figure 3.

Figure 3

Views of the inter­molecular π–π and Cl⋯π inter­actions between adjacent ladder chains [symmetry codes: (vi) x, −1 + y, z; (vii) −1 + x, 1 + y, z; (viii) 1 + x, −1 + y, z].

Figure 4.

Figure 4

Packing diagram of the title compound viewed along the [011] direction. C-bound hydrogen atoms are omitted for clarity. Methanol solvate mol­ecules are indicated by larger balls.

Spectroscopic characterization

The FT–IR spectrum of the title compound (Fig. S4) has a characteristic broad peak centred at 3330 cm−1 assigned to the O—H stretching vibrations of coordinated water mol­ecules and the methanol solvate. The strong and sharp peaks at about 1608 and 1382 cm−1 are attributed to the asymmetric and symmetric COO stretching vibration of the monodentate 3-Clbenz ligands, and the peaks appearing at about 1557 and 1488 cm−1 are attributed to the asymmetric and symmetric COO stretching vibration of the chelating 3-Clbenz ligand (Xin-Jian et al., 2013). The strong superimposed bands appearing at 1557 and 1488 cm−1 could be assigned to the C=C/C=N stretching vibration of the aromatic rings of the 3-Clbenz and 4,4′-bipy ligands. The medium-strong peaks in the region of 760 and 731 cm−1 are assigned to C—Cl vibration and C—H bending vibration of the 3-Clbenz ligands. In addition, the medium-strong peak at 1219 cm−1 is assigned to the weak C—N stretching vibration (Xin-Jian et al., 2013) and the bands between 1016 and 1145 cm−1 are assignable to the pyridine ring-breathing modes (Dey et al., 2011) of the 4,4′-bipy ligands. The characteristic C—H out-of-plane and in-plane deformation bands for pyridine rings are observed at 808 and 631 cm−1, and are shifted to a higher frequency as compared to the values observed for the free ligand (805 and 607 cm−1), suggesting coordinated 4,4′-bipy ligands (Seidel et al., 2011). The solid-state electronic spectrum (Fig. S5) of the title compound shows d–d transitions with two broad bands at 489 and 1099 nm, assigned to the ν3: 4 T 1g 4 T 1g (P) and ν1: 4 T 1g4 T 2g transitions, respectively (Fu et al., 2007; Piromchom et al., 2014). The results correspond to the typical d–d transitions for CoII in a distorted octa­hedral geometry, as confirmed by the X-ray structure.

PXRD and thermal analysis

The PXRD patterns (Fig. S6) of the title compound used to check the phase purity show good accordance with its simulated PXRD pattern generated from the single-crystal X-ray diffraction data, confirming that the title compound has high phase purity. The TGA curve (Fig. S7) shows the thermal stability of the title compound below 325°C. The first complex step with a weight loss of 29.57% (calculated 30.88%) was found in the temperature range from 100 to 325°C, which was attributed to the loss of methanol mol­ecule of crystallization, two coordinated water and three 3-Clbenz mol­ecules. Then, the structure starts to collapse with a weight loss of 49.24% (calculated 49.44%) in the temperature range from 325–685°C that can be attributed to the removal of three remaining 3-Clbenz and three remaining 4,4′-bipy mol­ecules. After that, the residual product is assumed to be CoO.

Database survey

To the best of our knowledge, only two transition-metal-based coordination polymers structurally related to the title compound, namely [Co3(dca)2(nic)4(H2O)8]·2H2O (CSD refcode XOGLOU; Kutasi et al., 2002) and [Cu3(dca)2(nic)4(H2O)8]·2H2O (KAPMOE; Madalan et al., 2005) (dca = dicyanamide and nic = 3-pyridine­carboxyl­ate) are reported in the literature. These compounds are isostructural to each other and differ only by the kind of transition metal.

Synthesis and crystallization

A methano­lic solution (5 ml) of 4,4′-bipy (0.4586 g, 3 mmol) was added to a solution of Co(NO3)2·6H2O (0.2910 g, 1 mmol) in 10 mL of MeOH/H2O (v:v = 8:2) solution. After stirring for 30 min, a methano­lic solution (5 mL) of m-chloro­benzoic acid (0.3131 g, 2 mmol) was added slowly, and the mixture was stirred continuously at room temperature for 15 minutes. The resulting clear red solution was allowed to evaporate slowly in air. After 4 days, red rod-shaped crystals suitable for single-crystal X-ray diffraction were obtained. Yield 115.2 mg (32.6% based on CoII salt). Analysis calculated for C84H68Cl6Co3N8O16: C, 54.98; H, 3.74; N, 6.11%. Found: C, 53.28; H, 3.60; N, 6.50%. IR (KBr, cm−1): 3330(w), 2348(w), 1608(s), 1557(s), 1488(w), 1415(s), 1382(s), 1263(w), 1219(m), 1145(w), 1068(m), 1031(w), 1010(w), 817(m), 808(m), 760(m), 731(m), 674(w), 657(w), 631(m), 574(w), 499(w), 439(w).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound hydrogen atoms were positioned geometrically and refined as riding, with C—H = 0.96 Å for methyl groups [U iso(H) = 1.5 U eq(C)], C—H = 0.93 Å for aromatic [U iso(H) = 1.2 U eq(C)]. The oxygen-bound hydrogen atom of methanol was positioned with O—H = 0.82 Å [U iso(H) = 1.5U eq(O)], and the OH group was allowed to rotate (AFIX 147). Hydrogen atoms of the coordinated water mol­ecule were located in the differential electron density map and refined with the O—H distance contrained to 0.84 Å.

Table 2. Experimental details.

Crystal data
Chemical formula [Co3(C7H4ClO2)6(C10H8N2)4(H2O)2]·2CH4O
M r 1834.95
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 11.388 (2), 11.868 (2), 18.055 (3)
α, β, γ (°) 79.516 (6), 79.088 (6), 62.148 (6)
V3) 2106.3 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.84
Crystal size (mm) 0.43 × 0.32 × 0.26
 
Data collection
Diffractometer Bruker D8 QUEST CMOS PHOTON II
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.684, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 78843, 8352, 6158
R int 0.077
(sin θ/λ)max−1) 0.621
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.093, 1.02
No. of reflections 8352
No. of parameters 598
No. of restraints 43
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.36

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022000731/yk2163sup1.cif

e-78-00255-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022000731/yk2163Isup2.hkl

e-78-00255-Isup2.hkl (663KB, hkl)

Supporting data of crystal structure, characterization and physical properties. DOI: 10.1107/S2056989022000731/yk2163sup4.pdf

e-78-00255-sup4.pdf (1.6MB, pdf)

CCDC reference: 2143539

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Faculty of Science and Technology, Thammasat University for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Crystal data

[Co3(C7H4ClO2)6(C10H8N2)4(H2O)2]·2CH4O Z = 1
Mr = 1834.95 F(000) = 939
Triclinic, P1 Dx = 1.447 Mg m3
a = 11.388 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.868 (2) Å Cell parameters from 9884 reflections
c = 18.055 (3) Å θ = 2.9–25.9°
α = 79.516 (6)° µ = 0.84 mm1
β = 79.088 (6)° T = 296 K
γ = 62.148 (6)° Block, red
V = 2106.3 (7) Å3 0.43 × 0.32 × 0.26 mm

Data collection

Bruker D8 QUEST CMOS PHOTON II diffractometer 8352 independent reflections
Radiation source: sealed x-ray tube, Mo 6158 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.077
Detector resolution: 7.39 pixels mm-1 θmax = 26.2°, θmin = 2.9°
ω and φ scans h = −14→14
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −14→14
Tmin = 0.684, Tmax = 0.745 l = −22→22
78843 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.2109P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093 (Δ/σ)max = 0.001
S = 1.02 Δρmax = 0.39 e Å3
8352 reflections Δρmin = −0.36 e Å3
598 parameters Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 restraints Extinction coefficient: 0.0034 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.50698 (3) 0.68260 (3) 0.63422 (2) 0.03063 (10)
Co2 0.500000 1.000000 0.000000 0.03999 (13)
Cl1 0.99436 (12) 0.00343 (9) 0.59982 (7) 0.1103 (4)
Cl2 0.05072 (9) 1.34860 (8) 0.61650 (5) 0.0794 (3)
Cl3 1.09130 (10) 0.45840 (8) −0.12014 (5) 0.0856 (3)
O1 0.63032 (18) 0.48413 (16) 0.60490 (10) 0.0500 (4)
O2 0.56402 (17) 0.52368 (16) 0.72324 (10) 0.0471 (4)
O3 0.39489 (17) 0.86355 (16) 0.66137 (10) 0.0500 (4)
O4 0.3946 (2) 0.80593 (19) 0.78514 (12) 0.0682 (6)
O5 0.70423 (17) 0.88325 (17) −0.02018 (9) 0.0489 (4)
O6 0.79423 (19) 1.0110 (2) −0.00999 (12) 0.0637 (5)
O7 0.4670 (2) 0.83959 (19) −0.00306 (11) 0.0554 (5)
H7A 0.3828 (18) 0.870 (3) −0.0018 (18) 0.070 (10)*
H7B 0.504 (3) 0.789 (3) −0.0370 (14) 0.074 (11)*
O8 0.5835 (9) 0.6811 (6) 0.8812 (6) 0.070 (2) 0.72 (3)
H8A 0.534267 0.713202 0.847635 0.105* 0.72 (3)
O8A 0.552 (4) 0.669 (3) 0.893 (2) 0.118 (10) 0.28 (3)
H8AA 0.513149 0.667322 0.860315 0.177* 0.28 (3)
N1 0.50401 (17) 0.74863 (17) 0.51524 (10) 0.0320 (4)
N2 0.5003 (2) 0.94739 (19) 0.12052 (10) 0.0436 (5)
N3 0.68941 (18) 0.69508 (18) 0.63878 (11) 0.0373 (4)
N4 1.32607 (18) 0.66423 (18) 0.63798 (11) 0.0378 (4)
C1 0.4041 (7) 0.8562 (8) 0.4894 (4) 0.0409 (18) 0.584 (19)
H1 0.336133 0.906039 0.524106 0.049* 0.584 (19)
C2 0.3979 (7) 0.8961 (8) 0.4134 (3) 0.0422 (17) 0.584 (19)
H2 0.324386 0.970146 0.397732 0.051* 0.584 (19)
C4 0.6000 (9) 0.7124 (8) 0.3873 (5) 0.0385 (19) 0.584 (19)
H4 0.668235 0.658787 0.354224 0.046* 0.584 (19)
C5 0.5979 (9) 0.6781 (9) 0.4639 (4) 0.0368 (19) 0.584 (19)
H5 0.666182 0.600802 0.481176 0.044* 0.584 (19)
C1A 0.4507 (18) 0.8730 (9) 0.4867 (5) 0.052 (3) 0.416 (19)
H1A 0.411651 0.934175 0.520990 0.062* 0.416 (19)
C2A 0.4498 (19) 0.9156 (8) 0.4113 (4) 0.056 (4) 0.416 (19)
H2A 0.415636 1.002838 0.395275 0.067* 0.416 (19)
C4A 0.5608 (15) 0.7006 (10) 0.3868 (6) 0.038 (3) 0.416 (19)
H4A 0.602070 0.637977 0.353428 0.045* 0.416 (19)
C5A 0.5608 (15) 0.6653 (12) 0.4634 (6) 0.038 (3) 0.416 (19)
H5A 0.602681 0.578372 0.480289 0.046* 0.416 (19)
C3 0.5007 (2) 0.8269 (2) 0.35885 (12) 0.0355 (5)
C6 0.5011 (2) 0.8683 (2) 0.27628 (12) 0.0374 (5)
C7 0.4220 (3) 0.9934 (2) 0.24883 (13) 0.0470 (6)
H7 0.367277 1.053757 0.282340 0.056*
C8 0.4246 (3) 1.0285 (2) 0.17172 (14) 0.0504 (7)
H8 0.370780 1.113144 0.154564 0.060*
C9 0.5766 (3) 0.8273 (3) 0.14692 (14) 0.0582 (8)
H9 0.630829 0.769104 0.112168 0.070*
C10 0.5794 (3) 0.7848 (3) 0.22277 (14) 0.0563 (7)
H10 0.634247 0.699523 0.238210 0.068*
C11 0.7468 (2) 0.6564 (2) 0.70265 (13) 0.0415 (6)
H11 0.702007 0.632002 0.746159 0.050*
C12 0.8689 (2) 0.6506 (2) 0.70775 (13) 0.0401 (5)
H12 0.904054 0.623321 0.753865 0.048*
C13 0.9389 (2) 0.6852 (2) 0.64437 (13) 0.0350 (5)
C14 0.8759 (3) 0.7325 (3) 0.57973 (15) 0.0589 (8)
H14 0.915922 0.762362 0.536209 0.071*
C15 0.7537 (3) 0.7356 (3) 0.57951 (15) 0.0599 (8)
H15 0.713650 0.768076 0.534968 0.072*
C16 1.0742 (2) 0.6734 (2) 0.64405 (13) 0.0341 (5)
C17 1.1168 (2) 0.6868 (2) 0.70762 (13) 0.0405 (6)
H17 1.061642 0.698869 0.753556 0.049*
C18 1.2415 (2) 0.6820 (2) 0.70222 (14) 0.0433 (6)
H18 1.268121 0.691561 0.745340 0.052*
C19 1.2866 (2) 0.6468 (2) 0.57783 (14) 0.0433 (6)
H19 1.344921 0.631851 0.533042 0.052*
C20 1.1646 (2) 0.6498 (2) 0.57855 (14) 0.0439 (6)
H20 1.142397 0.635907 0.535167 0.053*
C21 0.6305 (2) 0.4468 (2) 0.67475 (15) 0.0407 (6)
C22 0.7160 (2) 0.3079 (2) 0.69985 (14) 0.0425 (6)
C23 0.8002 (3) 0.2268 (2) 0.64613 (16) 0.0516 (7)
H23 0.798960 0.256315 0.594778 0.062*
C24 0.8861 (3) 0.1018 (3) 0.66913 (18) 0.0633 (8)
C25 0.8881 (4) 0.0552 (3) 0.7441 (2) 0.0755 (10)
H25 0.946344 −0.029321 0.758825 0.091*
C26 0.8032 (4) 0.1350 (3) 0.79735 (18) 0.0734 (9)
H26 0.803440 0.103845 0.848487 0.088*
C27 0.7169 (3) 0.2615 (3) 0.77596 (16) 0.0566 (7)
H27 0.659947 0.314862 0.812564 0.068*
C28 0.3553 (2) 0.8863 (2) 0.73000 (15) 0.0433 (6)
C29 0.2493 (2) 1.0208 (2) 0.74272 (14) 0.0409 (6)
C30 0.2048 (2) 1.1118 (2) 0.68156 (14) 0.0443 (6)
H30 0.241121 1.091367 0.632359 0.053*
C31 0.1062 (3) 1.2331 (2) 0.69406 (15) 0.0497 (6)
C32 0.0488 (3) 1.2658 (3) 0.76603 (18) 0.0640 (8)
H32 −0.019254 1.347439 0.773607 0.077*
C33 0.0945 (3) 1.1749 (3) 0.82652 (18) 0.0721 (9)
H33 0.057886 1.195925 0.875601 0.086*
C34 0.1941 (3) 1.0526 (3) 0.81560 (15) 0.0582 (7)
H34 0.223845 0.992042 0.857068 0.070*
C35 0.8013 (3) 0.9088 (3) −0.02400 (13) 0.0460 (6)
C36 0.9385 (3) 0.8046 (3) −0.04884 (13) 0.0477 (6)
C37 0.9508 (3) 0.6923 (3) −0.06973 (14) 0.0502 (6)
H37 0.875389 0.680489 −0.068912 0.060*
C38 1.0771 (3) 0.5980 (3) −0.09184 (15) 0.0590 (8)
C39 1.1901 (3) 0.6134 (4) −0.09343 (19) 0.0752 (10)
H39 1.274104 0.549159 −0.108321 0.090*
C40 1.1773 (3) 0.7249 (4) −0.0728 (2) 0.0822 (10)
H40 1.253102 0.736253 −0.073692 0.099*
C41 1.0521 (3) 0.8204 (3) −0.05062 (17) 0.0663 (8)
H41 1.044221 0.895601 −0.036837 0.080*
C42 0.601 (2) 0.5527 (8) 0.9055 (6) 0.098 (4) 0.72 (3)
H42A 0.690754 0.492804 0.889708 0.148* 0.72 (3)
H42B 0.539583 0.537897 0.883146 0.148* 0.72 (3)
H42C 0.582855 0.541560 0.959750 0.148* 0.72 (3)
C42A 0.661 (3) 0.544 (2) 0.909 (2) 0.112 (9) 0.28 (3)
H42D 0.743858 0.542832 0.884862 0.168* 0.28 (3)
H42E 0.646889 0.480899 0.890648 0.168* 0.28 (3)
H42F 0.664034 0.524534 0.963145 0.168* 0.28 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02389 (15) 0.03470 (17) 0.03223 (17) −0.01262 (13) −0.00512 (12) −0.00071 (12)
Co2 0.0419 (3) 0.0426 (3) 0.0269 (2) −0.0121 (2) −0.00361 (19) −0.00320 (19)
Cl1 0.1260 (9) 0.0567 (5) 0.1072 (8) −0.0018 (5) −0.0107 (7) −0.0273 (5)
Cl2 0.0859 (6) 0.0508 (4) 0.0776 (6) −0.0133 (4) −0.0140 (4) 0.0039 (4)
Cl3 0.0938 (6) 0.0531 (5) 0.0815 (6) −0.0070 (4) −0.0091 (5) −0.0155 (4)
O1 0.0551 (11) 0.0391 (10) 0.0466 (11) −0.0144 (8) −0.0147 (8) 0.0069 (8)
O2 0.0441 (10) 0.0418 (10) 0.0529 (11) −0.0168 (8) −0.0090 (8) −0.0025 (8)
O3 0.0432 (10) 0.0454 (10) 0.0546 (11) −0.0130 (8) 0.0027 (8) −0.0172 (8)
O4 0.0709 (14) 0.0511 (12) 0.0674 (14) −0.0140 (10) −0.0191 (11) 0.0024 (10)
O5 0.0422 (10) 0.0506 (11) 0.0456 (10) −0.0136 (8) −0.0041 (8) −0.0071 (8)
O6 0.0567 (12) 0.0623 (13) 0.0704 (14) −0.0230 (10) 0.0014 (10) −0.0232 (11)
O7 0.0581 (14) 0.0516 (12) 0.0523 (12) −0.0193 (10) −0.0037 (10) −0.0137 (9)
O8 0.081 (4) 0.064 (3) 0.051 (3) −0.018 (2) −0.011 (2) −0.0108 (18)
O8A 0.136 (14) 0.118 (12) 0.091 (15) −0.030 (9) −0.047 (12) −0.031 (9)
N1 0.0288 (10) 0.0362 (10) 0.0299 (10) −0.0132 (8) −0.0064 (8) −0.0021 (8)
N2 0.0467 (12) 0.0432 (12) 0.0300 (10) −0.0117 (10) −0.0034 (9) −0.0034 (9)
N3 0.0281 (10) 0.0439 (11) 0.0415 (11) −0.0184 (9) −0.0064 (8) 0.0002 (9)
N4 0.0296 (10) 0.0452 (11) 0.0416 (11) −0.0198 (9) −0.0066 (8) −0.0010 (9)
C1 0.033 (3) 0.043 (3) 0.033 (3) −0.009 (2) −0.001 (2) −0.001 (2)
C2 0.035 (3) 0.041 (3) 0.036 (3) −0.007 (2) −0.003 (2) 0.000 (2)
C4 0.035 (4) 0.041 (3) 0.033 (3) −0.014 (3) 0.000 (2) −0.003 (2)
C5 0.032 (4) 0.036 (3) 0.036 (3) −0.011 (3) −0.002 (2) −0.001 (2)
C1A 0.079 (9) 0.034 (4) 0.034 (4) −0.019 (5) −0.002 (5) −0.006 (3)
C2A 0.087 (9) 0.031 (4) 0.030 (4) −0.014 (5) −0.004 (5) 0.004 (3)
C4A 0.046 (7) 0.031 (4) 0.033 (4) −0.016 (4) 0.004 (4) −0.007 (3)
C5A 0.047 (7) 0.028 (4) 0.037 (4) −0.017 (4) 0.001 (4) 0.003 (3)
C3 0.0372 (12) 0.0389 (13) 0.0301 (12) −0.0165 (10) −0.0051 (9) −0.0034 (10)
C6 0.0401 (13) 0.0395 (13) 0.0301 (12) −0.0153 (11) −0.0057 (10) −0.0034 (10)
C7 0.0592 (16) 0.0401 (14) 0.0299 (12) −0.0131 (12) −0.0017 (11) −0.0059 (10)
C8 0.0598 (17) 0.0391 (14) 0.0357 (13) −0.0099 (12) −0.0057 (12) −0.0002 (11)
C9 0.0654 (18) 0.0500 (16) 0.0313 (13) −0.0024 (14) −0.0022 (12) −0.0089 (12)
C10 0.0663 (18) 0.0410 (15) 0.0354 (14) −0.0018 (13) −0.0082 (12) −0.0033 (11)
C11 0.0324 (12) 0.0595 (16) 0.0356 (13) −0.0246 (12) 0.0005 (10) −0.0055 (11)
C12 0.0346 (12) 0.0540 (15) 0.0359 (13) −0.0227 (11) −0.0075 (10) −0.0034 (11)
C13 0.0297 (11) 0.0378 (13) 0.0404 (13) −0.0171 (10) −0.0066 (10) −0.0025 (10)
C14 0.0499 (16) 0.096 (2) 0.0457 (15) −0.0507 (17) −0.0148 (12) 0.0187 (15)
C15 0.0509 (16) 0.097 (2) 0.0464 (15) −0.0487 (17) −0.0236 (13) 0.0225 (15)
C16 0.0305 (12) 0.0360 (12) 0.0393 (13) −0.0181 (10) −0.0061 (10) −0.0009 (10)
C17 0.0338 (12) 0.0567 (15) 0.0358 (13) −0.0260 (12) −0.0021 (10) −0.0018 (11)
C18 0.0403 (13) 0.0622 (16) 0.0359 (13) −0.0297 (13) −0.0110 (11) 0.0011 (11)
C19 0.0344 (13) 0.0591 (16) 0.0427 (14) −0.0257 (12) 0.0014 (10) −0.0135 (12)
C20 0.0379 (13) 0.0619 (16) 0.0418 (14) −0.0279 (12) −0.0028 (11) −0.0154 (12)
C21 0.0364 (13) 0.0386 (13) 0.0512 (16) −0.0207 (11) −0.0122 (11) 0.0037 (12)
C22 0.0454 (14) 0.0383 (13) 0.0486 (15) −0.0221 (12) −0.0159 (12) 0.0048 (11)
C23 0.0588 (17) 0.0414 (15) 0.0524 (16) −0.0206 (13) −0.0148 (13) 0.0030 (12)
C24 0.069 (2) 0.0385 (15) 0.073 (2) −0.0139 (14) −0.0186 (16) −0.0039 (14)
C25 0.095 (3) 0.0388 (16) 0.083 (2) −0.0189 (17) −0.037 (2) 0.0115 (17)
C26 0.104 (3) 0.0550 (19) 0.0584 (19) −0.0361 (19) −0.0314 (19) 0.0229 (16)
C27 0.0692 (19) 0.0516 (17) 0.0501 (16) −0.0285 (15) −0.0152 (14) 0.0045 (13)
C28 0.0356 (13) 0.0472 (15) 0.0518 (16) −0.0213 (11) −0.0043 (12) −0.0099 (13)
C29 0.0390 (13) 0.0431 (14) 0.0436 (14) −0.0182 (11) −0.0046 (11) −0.0121 (11)
C30 0.0426 (14) 0.0451 (14) 0.0436 (14) −0.0173 (12) −0.0006 (11) −0.0124 (11)
C31 0.0467 (15) 0.0429 (15) 0.0558 (16) −0.0155 (12) −0.0068 (12) −0.0087 (12)
C32 0.0641 (19) 0.0477 (17) 0.068 (2) −0.0122 (14) 0.0007 (15) −0.0239 (15)
C33 0.082 (2) 0.068 (2) 0.0523 (18) −0.0204 (18) 0.0089 (16) −0.0305 (16)
C34 0.0671 (19) 0.0606 (18) 0.0422 (15) −0.0228 (15) −0.0057 (13) −0.0117 (13)
C35 0.0473 (15) 0.0530 (16) 0.0273 (12) −0.0147 (13) −0.0036 (11) −0.0027 (11)
C36 0.0445 (15) 0.0586 (17) 0.0299 (13) −0.0164 (13) −0.0016 (11) −0.0025 (11)
C37 0.0510 (16) 0.0524 (16) 0.0375 (14) −0.0160 (13) −0.0064 (12) −0.0008 (12)
C38 0.0604 (18) 0.0526 (17) 0.0397 (15) −0.0056 (14) −0.0045 (13) −0.0056 (12)
C39 0.0452 (18) 0.085 (2) 0.066 (2) −0.0058 (17) 0.0022 (15) −0.0128 (18)
C40 0.0489 (19) 0.103 (3) 0.088 (3) −0.0281 (19) 0.0047 (17) −0.023 (2)
C41 0.0550 (18) 0.076 (2) 0.066 (2) −0.0276 (16) 0.0037 (15) −0.0194 (16)
C42 0.136 (10) 0.072 (4) 0.077 (4) −0.035 (4) −0.039 (5) 0.009 (3)
C42A 0.114 (12) 0.102 (11) 0.121 (15) −0.044 (8) −0.020 (11) −0.022 (9)

Geometric parameters (Å, º)

Co1—O1 2.2096 (18) C9—H9 0.9300
Co1—O2 2.1703 (17) C9—C10 1.372 (3)
Co1—O3 2.0166 (17) C10—H10 0.9300
Co1—N1 2.1494 (18) C11—H11 0.9300
Co1—N3 2.1683 (18) C11—C12 1.380 (3)
Co1—N4i 2.1584 (18) C12—H12 0.9300
Co2—O5ii 2.0770 (17) C12—C13 1.380 (3)
Co2—O5 2.0770 (17) C13—C14 1.376 (3)
Co2—O7ii 2.117 (2) C13—C16 1.479 (3)
Co2—O7 2.117 (2) C14—H14 0.9300
Co2—N2ii 2.1520 (19) C14—C15 1.376 (3)
Co2—N2 2.1519 (19) C15—H15 0.9300
Cl1—C24 1.747 (3) C16—C17 1.388 (3)
Cl2—C31 1.751 (3) C16—C20 1.388 (3)
Cl3—C38 1.749 (3) C17—H17 0.9300
O1—C21 1.259 (3) C17—C18 1.380 (3)
O2—C21 1.252 (3) C18—H18 0.9300
O3—C28 1.268 (3) C19—H19 0.9300
O4—C28 1.235 (3) C19—C20 1.372 (3)
O5—C35 1.263 (3) C20—H20 0.9300
O6—C35 1.247 (3) C21—C22 1.505 (3)
O7—H7A 0.849 (17) C22—C23 1.383 (4)
O7—H7B 0.848 (18) C22—C27 1.385 (4)
O8—H8A 0.8200 C23—H23 0.9300
O8—C42 1.436 (9) C23—C24 1.380 (4)
O8A—H8AA 0.8200 C24—C25 1.366 (4)
O8A—C42A 1.445 (17) C25—H25 0.9300
N1—C1 1.330 (7) C25—C26 1.371 (5)
N1—C5 1.332 (8) C26—H26 0.9300
N1—C1A 1.348 (9) C26—C27 1.387 (4)
N1—C5A 1.335 (10) C27—H27 0.9300
N2—C8 1.331 (3) C28—C29 1.511 (3)
N2—C9 1.329 (3) C29—C30 1.382 (3)
N3—C11 1.334 (3) C29—C34 1.384 (3)
N3—C15 1.325 (3) C30—H30 0.9300
N4—C18 1.340 (3) C30—C31 1.377 (3)
N4—C19 1.333 (3) C31—C32 1.375 (4)
C1—H1 0.9300 C32—H32 0.9300
C1—C2 1.372 (7) C32—C33 1.375 (4)
C2—H2 0.9300 C33—H33 0.9300
C2—C3 1.405 (6) C33—C34 1.383 (4)
C4—H4 0.9300 C34—H34 0.9300
C4—C5 1.368 (8) C35—C36 1.518 (4)
C4—C3 1.386 (8) C36—C37 1.387 (4)
C5—H5 0.9300 C36—C41 1.386 (4)
C1A—H1A 0.9300 C37—H37 0.9300
C1A—C2A 1.364 (10) C37—C38 1.387 (4)
C2A—H2A 0.9300 C38—C39 1.376 (5)
C2A—C3 1.388 (8) C39—H39 0.9300
C4A—H4A 0.9300 C39—C40 1.375 (5)
C4A—C5A 1.372 (11) C40—H40 0.9300
C4A—C3 1.366 (10) C40—C41 1.384 (4)
C5A—H5A 0.9300 C41—H41 0.9300
C3—C6 1.482 (3) C42—H42A 0.9600
C6—C7 1.383 (3) C42—H42B 0.9600
C6—C10 1.381 (3) C42—H42C 0.9600
C7—H7 0.9300 C42A—H42D 0.9600
C7—C8 1.377 (3) C42A—H42E 0.9600
C8—H8 0.9300 C42A—H42F 0.9600
O2—Co1—O1 59.88 (6) C11—C12—H12 120.0
O3—Co1—O1 179.75 (7) C13—C12—C11 119.9 (2)
O3—Co1—O2 119.93 (7) C13—C12—H12 120.0
O3—Co1—N1 91.08 (7) C12—C13—C16 123.1 (2)
O3—Co1—N3 91.04 (7) C14—C13—C12 116.3 (2)
O3—Co1—N4i 89.24 (7) C14—C13—C16 120.6 (2)
N1—Co1—O1 89.12 (7) C13—C14—H14 120.0
N1—Co1—O2 148.87 (7) C15—C14—C13 120.0 (2)
N1—Co1—N3 93.25 (7) C15—C14—H14 120.0
N1—Co1—N4i 90.81 (7) N3—C15—C14 124.1 (2)
N3—Co1—O1 88.80 (7) N3—C15—H15 117.9
N3—Co1—O2 89.10 (7) C14—C15—H15 117.9
N4i—Co1—O1 90.91 (7) C17—C16—C13 122.6 (2)
N4i—Co1—O2 87.24 (7) C20—C16—C13 120.7 (2)
N4i—Co1—N3 175.93 (7) C20—C16—C17 116.7 (2)
O5—Co2—O5ii 180.0 C16—C17—H17 120.2
O5ii—Co2—O7ii 88.68 (8) C18—C17—C16 119.6 (2)
O5—Co2—O7ii 91.32 (8) C18—C17—H17 120.2
O5—Co2—O7 88.68 (8) N4—C18—C17 123.3 (2)
O5ii—Co2—O7 91.32 (8) N4—C18—H18 118.4
O5—Co2—N2 91.93 (7) C17—C18—H18 118.4
O5ii—Co2—N2ii 91.93 (7) N4—C19—H19 118.3
O5ii—Co2—N2 88.07 (7) N4—C19—C20 123.4 (2)
O5—Co2—N2ii 88.07 (7) C20—C19—H19 118.3
O7ii—Co2—O7 180.00 (11) C16—C20—H20 120.0
O7—Co2—N2ii 93.42 (8) C19—C20—C16 120.0 (2)
O7ii—Co2—N2ii 86.58 (8) C19—C20—H20 120.0
O7—Co2—N2 86.58 (8) O1—C21—C22 119.0 (2)
O7ii—Co2—N2 93.42 (8) O2—C21—O1 121.1 (2)
N2—Co2—N2ii 180.0 O2—C21—C22 119.8 (2)
C21—O1—Co1 88.42 (15) C23—C22—C21 119.3 (2)
C21—O2—Co1 90.38 (14) C23—C22—C27 119.4 (2)
C28—O3—Co1 120.99 (17) C27—C22—C21 121.2 (2)
C35—O5—Co2 129.83 (17) C22—C23—H23 120.2
Co2—O7—H7A 104 (2) C24—C23—C22 119.7 (3)
Co2—O7—H7B 125 (2) C24—C23—H23 120.2
H7A—O7—H7B 108 (3) C23—C24—Cl1 118.4 (2)
C42—O8—H8A 109.5 C25—C24—Cl1 120.3 (2)
C42A—O8A—H8AA 109.5 C25—C24—C23 121.4 (3)
C1—N1—Co1 121.7 (3) C24—C25—H25 120.5
C1—N1—C5 117.2 (5) C24—C25—C26 119.0 (3)
C5—N1—Co1 120.9 (4) C26—C25—H25 120.5
C1A—N1—Co1 124.4 (4) C25—C26—H26 119.6
C5A—N1—Co1 120.6 (5) C25—C26—C27 120.9 (3)
C5A—N1—C1A 115.0 (7) C27—C26—H26 119.6
C8—N2—Co2 123.55 (16) C22—C27—C26 119.7 (3)
C9—N2—Co2 119.64 (16) C22—C27—H27 120.2
C9—N2—C8 116.8 (2) C26—C27—H27 120.2
C11—N3—Co1 120.60 (15) O3—C28—C29 116.0 (2)
C15—N3—Co1 123.58 (16) O4—C28—O3 124.4 (2)
C15—N3—C11 115.8 (2) O4—C28—C29 119.6 (2)
C18—N4—Co1iii 119.07 (15) C30—C29—C28 120.2 (2)
C19—N4—Co1iii 123.78 (15) C30—C29—C34 119.6 (2)
C19—N4—C18 116.89 (19) C34—C29—C28 120.2 (2)
N1—C1—H1 118.9 C29—C30—H30 120.3
N1—C1—C2 122.3 (6) C31—C30—C29 119.5 (2)
C2—C1—H1 118.9 C31—C30—H30 120.3
C1—C2—H2 119.5 C30—C31—Cl2 119.4 (2)
C1—C2—C3 121.1 (5) C32—C31—Cl2 119.0 (2)
C3—C2—H2 119.5 C32—C31—C30 121.7 (3)
C5—C4—H4 120.0 C31—C32—H32 120.8
C5—C4—C3 120.1 (8) C33—C32—C31 118.4 (3)
C3—C4—H4 120.0 C33—C32—H32 120.8
N1—C5—C4 124.0 (8) C32—C33—H33 119.5
N1—C5—H5 118.0 C32—C33—C34 121.1 (3)
C4—C5—H5 118.0 C34—C33—H33 119.5
N1—C1A—H1A 117.6 C29—C34—H34 120.1
N1—C1A—C2A 124.7 (8) C33—C34—C29 119.8 (3)
C2A—C1A—H1A 117.6 C33—C34—H34 120.1
C1A—C2A—H2A 120.5 O5—C35—C36 116.0 (2)
C1A—C2A—C3 119.1 (8) O6—C35—O5 126.2 (2)
C3—C2A—H2A 120.5 O6—C35—C36 117.8 (2)
C5A—C4A—H4A 119.7 C37—C36—C35 120.0 (2)
C3—C4A—H4A 119.7 C41—C36—C35 120.5 (3)
C3—C4A—C5A 120.7 (10) C41—C36—C37 119.5 (3)
N1—C5A—C4A 123.7 (11) C36—C37—H37 120.4
N1—C5A—H5A 118.2 C38—C37—C36 119.1 (3)
C4A—C5A—H5A 118.2 C38—C37—H37 120.4
C2—C3—C6 123.2 (3) C37—C38—Cl3 118.7 (3)
C4—C3—C2 115.1 (5) C39—C38—Cl3 119.8 (2)
C4—C3—C6 121.6 (4) C39—C38—C37 121.4 (3)
C2A—C3—C6 121.2 (4) C38—C39—H39 120.4
C4A—C3—C2A 116.6 (6) C40—C39—C38 119.3 (3)
C4A—C3—C6 121.9 (5) C40—C39—H39 120.4
C7—C6—C3 121.4 (2) C39—C40—H40 119.9
C10—C6—C3 122.2 (2) C39—C40—C41 120.2 (3)
C10—C6—C7 116.5 (2) C41—C40—H40 119.9
C6—C7—H7 120.1 C36—C41—H41 119.8
C8—C7—C6 119.8 (2) C40—C41—C36 120.5 (3)
C8—C7—H7 120.1 C40—C41—H41 119.8
N2—C8—C7 123.4 (2) O8—C42—H42A 109.5
N2—C8—H8 118.3 O8—C42—H42B 109.5
C7—C8—H8 118.3 O8—C42—H42C 109.5
N2—C9—H9 118.3 H42A—C42—H42B 109.5
N2—C9—C10 123.4 (2) H42A—C42—H42C 109.5
C10—C9—H9 118.3 H42B—C42—H42C 109.5
C6—C10—H10 119.9 O8A—C42A—H42D 109.5
C9—C10—C6 120.2 (2) O8A—C42A—H42E 109.5
C9—C10—H10 119.9 O8A—C42A—H42F 109.5
N3—C11—H11 118.2 H42D—C42A—H42E 109.5
N3—C11—C12 123.7 (2) H42D—C42A—H42F 109.5
C12—C11—H11 118.2 H42E—C42A—H42F 109.5
Co1—O1—C21—O2 4.4 (2) C5A—C4A—C3—C2A 4.7 (12)
Co1—O1—C21—C22 −173.47 (19) C5A—C4A—C3—C6 178.9 (7)
Co1—O2—C21—O1 −4.5 (2) C3—C4—C5—N1 0.3 (10)
Co1—O2—C21—C22 173.37 (19) C3—C4A—C5A—N1 0.0 (14)
Co1—O3—C28—O4 10.1 (3) C3—C6—C7—C8 −179.9 (2)
Co1—O3—C28—C29 −167.67 (15) C3—C6—C10—C9 −180.0 (3)
Co1—N1—C1—C2 −176.8 (4) C6—C7—C8—N2 0.1 (4)
Co1—N1—C5—C4 178.0 (5) C7—C6—C10—C9 0.1 (4)
Co1—N1—C1A—C2A 179.2 (7) C8—N2—C9—C10 0.5 (4)
Co1—N1—C5A—C4A 179.0 (7) C9—N2—C8—C7 −0.4 (4)
Co1—N3—C11—C12 173.84 (19) C10—C6—C7—C8 0.0 (4)
Co1—N3—C15—C14 −173.5 (3) C11—N3—C15—C14 3.8 (4)
Co1iii—N4—C18—C17 172.36 (19) C11—C12—C13—C14 4.2 (4)
Co1iii—N4—C19—C20 −172.32 (19) C11—C12—C13—C16 −175.8 (2)
Co2—O5—C35—O6 6.2 (4) C12—C13—C14—C15 −4.0 (4)
Co2—O5—C35—C36 −173.12 (14) C12—C13—C16—C17 −31.6 (3)
Co2—N2—C8—C7 177.9 (2) C12—C13—C16—C20 149.3 (2)
Co2—N2—C9—C10 −177.8 (2) C13—C14—C15—N3 0.0 (5)
Cl1—C24—C25—C26 179.2 (3) C13—C16—C17—C18 −176.3 (2)
Cl2—C31—C32—C33 −179.1 (3) C13—C16—C20—C19 176.0 (2)
Cl3—C38—C39—C40 178.5 (3) C14—C13—C16—C17 148.4 (3)
O1—C21—C22—C23 5.0 (3) C14—C13—C16—C20 −30.7 (4)
O1—C21—C22—C27 −178.3 (2) C15—N3—C11—C12 −3.6 (4)
O2—C21—C22—C23 −172.9 (2) C16—C13—C14—C15 176.0 (3)
O2—C21—C22—C27 3.8 (3) C16—C17—C18—N4 −0.3 (4)
O3—C28—C29—C30 −2.4 (3) C17—C16—C20—C19 −3.1 (4)
O3—C28—C29—C34 176.1 (2) C18—N4—C19—C20 1.8 (4)
O4—C28—C29—C30 179.7 (2) C19—N4—C18—C17 −2.1 (4)
O4—C28—C29—C34 −1.7 (4) C20—C16—C17—C18 2.9 (4)
O5—C35—C36—C37 3.5 (3) C21—C22—C23—C24 175.2 (2)
O5—C35—C36—C41 −176.3 (2) C21—C22—C27—C26 −175.9 (3)
O6—C35—C36—C37 −175.9 (2) C22—C23—C24—Cl1 −178.1 (2)
O6—C35—C36—C41 4.3 (4) C22—C23—C24—C25 1.2 (5)
N1—C1—C2—C3 −2.6 (9) C23—C22—C27—C26 0.8 (4)
N1—C1A—C2A—C3 3.5 (15) C23—C24—C25—C26 −0.2 (5)
N2—C9—C10—C6 −0.4 (5) C24—C25—C26—C27 −0.6 (5)
N3—C11—C12—C13 −0.4 (4) C25—C26—C27—C22 0.2 (5)
N4—C19—C20—C16 0.8 (4) C27—C22—C23—C24 −1.5 (4)
C1—N1—C5—C4 2.8 (8) C28—C29—C30—C31 178.6 (2)
C1—C2—C3—C4 5.3 (7) C28—C29—C34—C33 −178.2 (3)
C1—C2—C3—C6 −177.8 (4) C29—C30—C31—Cl2 179.59 (19)
C2—C3—C6—C7 18.7 (6) C29—C30—C31—C32 −1.1 (4)
C2—C3—C6—C10 −161.2 (6) C30—C29—C34—C33 0.3 (4)
C4—C3—C6—C7 −164.7 (6) C30—C31—C32—C33 1.6 (5)
C4—C3—C6—C10 15.5 (6) C31—C32—C33—C34 −1.1 (5)
C5—N1—C1—C2 −1.6 (8) C32—C33—C34—C29 0.2 (5)
C5—C4—C3—C2 −4.2 (8) C34—C29—C30—C31 0.1 (4)
C5—C4—C3—C6 178.9 (5) C35—C36—C37—C38 −179.6 (2)
C1A—N1—C5A—C4A −3.0 (12) C35—C36—C41—C40 179.6 (3)
C1A—C2A—C3—C4A −6.2 (12) C36—C37—C38—Cl3 −178.55 (19)
C1A—C2A—C3—C6 179.5 (7) C36—C37—C38—C39 0.0 (4)
C2A—C3—C6—C7 −16.8 (11) C37—C36—C41—C40 −0.2 (4)
C2A—C3—C6—C10 163.3 (11) C37—C38—C39—C40 −0.1 (5)
C4A—C3—C6—C7 169.2 (8) C38—C39—C40—C41 0.0 (5)
C4A—C3—C6—C10 −10.7 (9) C39—C40—C41—C36 0.2 (5)
C5A—N1—C1A—C2A 1.2 (12) C41—C36—C37—C38 0.1 (4)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+2, −z; (iii) x+1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H7A···O6ii 0.85 (2) 1.84 (2) 2.648 (3) 158 (3)
O7—H7B···O8iv 0.85 (2) 1.93 (2) 2.777 (10) 177 (3)
O7—H7B···O8Aiv 0.85 (2) 1.88 (4) 2.72 (3) 168 (3)
O8—H8A···O4 0.82 1.90 2.708 (10) 169
O8A—H8AA···O4 0.82 2.04 2.67 (3) 133
C1—H1···O3 0.93 2.59 3.102 (7) 115
C5—H5···O1 0.93 2.48 3.057 (9) 121
C1A—H1A···O3 0.93 2.52 3.088 (9) 120
C5A—H5A···O1 0.93 2.33 2.991 (12) 128
C9—H9···O5 0.93 2.71 3.189 (3) 113
C11—H11···O2 0.93 2.57 3.084 (3) 115
C15—H15···N1 0.93 2.60 3.198 (4) 123
C26—H26···O6v 0.93 2.60 3.524 (4) 176

Symmetry codes: (ii) −x+1, −y+2, −z; (iv) x, y, z−1; (v) x, y−1, z+1.

Funding Statement

This work was funded by Financial assistance from the Graduate Development Scholarship 2020, 189 National Research Council of Thailand. grant 4/2563 to P. Promwit; Scholarship for talent student to study graduate program in Faculty of Science and Technology Thammasat University grant TB23/2560 to P. Promwit; the Thammasat University Research unit in Multifunctional Crystalline Materials and Applications Research Unit (TU-MCMA).

References

  1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dey, D., Roy, S., Purkayastha, R. N. D., Pallepogu, R., Male, L. & Mckee, V. (2011). J. Coord. Chem. 64, 1165–1176.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Fang, Z. & Nie, Q. (2011). J. Coord. Chem. 64, 2573–2582.
  5. Fu, S.-J., Cheng, C.-Y. & Lin, K.-J. (2007). Cryst. Growth Des. 7, 1381–1384.
  6. Islam, S., Datta, J., Maity, S., Dutta, B., Ahmed, F., Ghosh, P., Ray, P. P. & Mir, M. H. (2019). ChemistrySelect, 4, 3294–3299.
  7. Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590. [DOI] [PubMed]
  8. Kar, P., Biswas, R., Ida, Y., Ishida, T. & Ghosh, A. (2011). Cryst. Growth Des. 11, 5305–5315.
  9. Kutasi, A. M., Batten, S. R., Harris, A. R., Moubaraki, B. & Murray, K. S. (2002). CrystEngComm, 4, 202–204.
  10. Lin, R.-G. (2015). Inorg. Chim. Acta, 432, 46–49.
  11. Madalan, A. M., Paraschiv, C., Sutter, J.-P., Schmidtmann, M., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 707–711.
  12. Piromchom, J., Wannarit, N., Boonmak, J., Pakawatchai, C. & Youngme, S. (2014). Inorg. Chem. Commun. 40, 59–61.
  13. Saelim, T., Chainok, K., Kielar, F. & Wannarit, N. (2020). Acta Cryst. E76, 1302–1306. [DOI] [PMC free article] [PubMed]
  14. Seidel, R. W., Goddard, R., Zibrowius, B. & Oppel, I. M. (2011). Polymers, 3, 1458–1474.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Takahashi, K., Hoshino, N., Takeda, T., Noro, S., Nakamura, T., Takeda, S. & Akutagawa, T. (2014). Dalton Trans. 43, 9081–9089. [DOI] [PubMed]
  18. Takahashi, K., Hoshino, N., Takeda, T., Noro, S., Nakamura, T., Takeda, S. & Akutagawa, T. (2015). Inorg. Chem. 54, 9423–9431. [DOI] [PubMed]
  19. Topor, A., Avram, D., Dascalu, R., Maxim, C., Tiseanu, C. & Andruh, M. (2021). Dalton Trans. 50, 9881–9890. [DOI] [PubMed]
  20. Xin-Jian, W., Yi-Ping, C., Ze-Min, X., Su-Zhi, G., Feng, C., Ling-Yan, Z. & Jian-Zhong, C. (2013). J. Mol. Struct. 1035, 318–325.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022000731/yk2163sup1.cif

e-78-00255-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022000731/yk2163Isup2.hkl

e-78-00255-Isup2.hkl (663KB, hkl)

Supporting data of crystal structure, characterization and physical properties. DOI: 10.1107/S2056989022000731/yk2163sup4.pdf

e-78-00255-sup4.pdf (1.6MB, pdf)

CCDC reference: 2143539

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES