Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 15;78(Pt 3):326–329. doi: 10.1107/S2056989022001530

Crystal structure of (7-{[bis­(pyridin-2-ylmeth­yl)amino-κ3 N,N′,N′′]meth­yl}-5-chloro­quinolin-8-ol)di­bromidozinc(II)

Koji Kubono a,*, Yukiyasu Kashiwagi b, Keita Tani a, Kunihiko Yokoi a
PMCID: PMC8900503  PMID: 35371540

In the title compound, the ZnII atom has a distorted square-pyramidal coordination environment. The mol­ecular structure exhibits an intra­molecular O—H⋯N hydrogen bond. In the crystal, the mol­ecules are linked by inter­molecular C—H⋯Br hydrogen bonds, generating ribbon structures. These ribbons are linked though inter­molecular C—H⋯Br hydrogen bonds, forming a two-dimensional network sheet.

Keywords: crystal structure, zinc(II) complex, 8-quinolinol, bis­(2-picoly)amine, C—H⋯Br inter­actions

Abstract

In the title compound, [ZnBr2(C22H19ClN4O)], the ZnII atom adopts a distorted square-pyramidal coordination geometry, formed by two bromido ligands and three N atoms of the bis­(pyridin-2-ylmeth­yl)amine moiety in the penta­dentate ligand containing quinolinol. The ZnII atom is located well above the mean basal plane of the square-based pyramid. The apical position is occupied by a Br atom. The O and N atoms of the quinolinol moiety in the ligand are not coordinated to the ZnII atom. An intra­molecular O—H⋯N hydrogen bond, generating an S(5) ring motif, stabilizes the mol­ecular structure. In the crystal, the mol­ecules are linked by inter­molecular C—H⋯Br hydrogen bonds, generating ribbon structures containing alternating R 2 2(22) and R 2 2(14) rings. These ribbons are linked through an inter­molecular C—H⋯Br hydrogen bond, forming a two-dimensional network sheet.

Chemical context

8-Quinolinol (Hq) is a notable bidentate ligand and an excellent analytical reagent for the determination of the concentration and separation of metal ions (Medlin, 1960; Eguchi et al., 2019). Hq derivatives and their metal complexes have wide applications in diverse areas such as pharmaceuticals (Lai et al., 2009) and organic light-emitting diodes (Li et al., 2020). Bis(pyridin-2-ylmeth­yl)amine [di(2-picol­yl)amine, dpa] is a well-known tridentate ligand and highly selective for ZnII. Its derivatives are utilized as chemosensors for detecting ZnII at low concentration in biological samples (Lin et al., 2013) . In addition, some ZnII complexes with dpa derivatives comprise a binding site for polyphosphates such as diphos­phate and adenosine triphosphate, and can act as respective anion sensors (Aoki et al., 2020; Bazany-Rodríguez et al., 2020). We, hence, developed the penta­dentate ligand, 7-{[bis(pyridin-2-ylmeth­yl)amino]­meth­yl}-5-chloro­quinolin-8-ol (HClqdpa) containing Hq and dpa moieties (Kubono et al., 2015). Subsequently, reactions between HClqdpa and ZnII salts were carried out in order to develop fluorescent anion sensors. In the course of these studies, a crystalline complex was obtained from the reaction with zinc(II) bromide. Here, the crystal structure of the respective title compound is reported.

Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1. The ZnII atom adopts a distorted square-pyramidal geometry and coordinates two bromido ligands (Br1 and Br2) and three N atoms (N7, N8 and N9) of the dpa moiety in HClqdpa forming the ZnBr2(dpa) unit. The Hq moiety of the penta­dentate ligand (HClqdpa) is not coordinated to the ZnII center. The five-coordinate geometry parameter, τ = (β − α)/60, derived from the two largest angles (α < β) in a structure has ideal values of 0 for square-pyramidal and of 1 for trigonal–bipyramidal geometry (Addison et al., 1984). In the title compound it is equal to 0.138. The ZnII atom is located 0.5574 (3) Å above the mean basal plane (Br2/N8/N7/N9) of the square-based pyramid. The dpa moiety is meridionally bound to the ZnII atom. The apical position is occupied by the Br1 atom with the apical bond being slightly elongated to 2.4419 (4) Å compared to the equatorial Br2—Zn3 bond length of 2.4085 (4) Å. The Zn—N bond lengths in the title compound are 2.1455 (18) and 2.1497 (18) Å for the pyridyl atoms (N8, N9), and 2.2670 (18) Å for the tertiary atom N7. In comparison, the Zn—N bond lengths in the crystal structure of a related complex with a mesityl methyl­ene-appended dpa derivative are 2.093 (3), 2.066 (3), and 2.521 (3) Å (MUDWEQ; Acharya et al., 2020). The bond lengths for the pyridyl N atoms are, hence, shorter and the bond length for the tertiary N atom is longer than those in the title compound. The dihedral angle between the two pyridine rings in the title compound is 15.84 (13)°. In a related complex (MUDWEQ; Acharya et al., 2020), this dihedral angle between two pyridine rings is widened to 23.53 (18)°, concomitant with an increased τ parameter of 0.211. The phenolic oxygen O5 of the Hq moiety is bound to hydrogen atom H5, which was found and refined freely. The proton, therefore, does not dissociate and no phen­oxy function is formed. There is an intra­molecular hydrogen bond, O5—H5⋯N6, generating an S(5) ring motif (Fig. 1 and Table 1). The quinoline ring system is slightly bent with an r.m.s. deviation of 0.018 (3) Å. In the quinoline ring system, the largest deviation from the mean plane is 0.020 (4) Å for carbon atom C15. The quinoline plane subtends dihedral angles of 24.14 (11) and 36.65 (11)° with the two pyridine rings. graphic file with name e-78-00326-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N6 0.79 (4) 2.14 (4) 2.653 (3) 124 (3)
C16—H16⋯Br2i 0.95 2.87 3.808 (3) 170
C22—H22⋯Br2ii 0.95 2.88 3.581 (3) 131
C29—H29⋯Br1iii 0.95 2.90 3.798 (3) 158

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Supra­molecular features

In the crystal, two mol­ecules are associated through a pair of inter­molecular C—H⋯Br hydrogen bonds [C16—H16⋯Br2i; symmetry code: (i) 1 − x, −y, −z] (Table 1), forming a centrosymmetric dimer with an Inline graphic (22) ring motif. Another pair of inter­molecular C—H⋯Br hydrogen bonds is observed [C29—H29⋯Br1iii; symmetry code: (iii) 1 − x, 1 − y, 1 − z] (Table 1), which forms another centrosymmetric dimer with an Inline graphic (14) ring motif. The different hydrogen-bonded pairs of mol­ecules are also linked to each other by these inter­molecular C—H⋯Br hydrogen bonds, generating a ribbon structure along [0 Inline graphic 1] based on alternating Inline graphic (22) and Inline graphic (14) hydrogen-bonding motifs (Fig. 2). In the crystal, mol­ecules are further linked by an inter­molecular C—H⋯Br hydrogen bond [C22—H22⋯Br2ii; symmetry code: (ii) x + 1, y − 1, z] (Table 1), forming a C(6) chain motif running along [2 Inline graphic 0] (Fig. 3). The ribbon structures are, therefore, linked through the inter­molecular C22—H22⋯Br2ii hydrogen bonds and form a two-dimensional network sheet parallel to [22 Inline graphic ] (Fig. 3).

Figure 2.

Figure 2

A portion of the crystal packing of the title compound showing the ribbon structure motif built from alternating Inline graphic (22) and Inline graphic (14) rings. The C—H⋯Br hydrogen bonds between the dimers and the intra­molecular hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions were omitted for clarity.

Figure 3.

Figure 3

A packing diagram of the title compound showing the two-dimensional network sheet structure. The inter­molecular C—H⋯Br and intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions were omitted for clarity.

Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; May 2021; Groom et al., 2016) using ConQuest (Bruno et al., 2002) for ZnII complexes with the [bis­(pyridin-2-ylmeth­yl)amino]­methyl fragment as ligand gave 517 hits, and among those, eight hits with two bromido ligands. Of these eight analogues, three structures are complexes with dpa bearing a tertiary N donor atom directly bound to an aromatic moiety (IRISEJ; Zhang et al., 2016; ZEGZOC; Gao et al., 2012; TORLUH; Plenio et al., 1996). In the remaining five di­bromido ZnII complexes with dpa derivatives (comprising four compounds), the tertiary N atoms are bound to aliphatic carbon atoms as in the title complex. Four of these five closely related structures exhibit square-pyramidal geometries with dpa being meridionally coordinated (YOZZOC; Abufarag et al., 1995; RUVCUI; Škalamera et al., 2016; MUDWEQ; Acharya et al., 2020; IHIJIV; Juraj et al., 2020). The remaining exceptional structure is fac-{N,N′-bis­[(pyridine-2-yl)meth­yl]propan-2-amine}­dibromido­zinc(II) (IHIJOB; Juraj et al., 2020), which adopts a trigonal–bipyramidal geometry with dpa being facially coordinated. This structure is a polymorph of one complex with a more typical geometry mentioned above (IHIJIV; Juraj et al., 2020). A search for mol­ecular structures containing ZnII and the Hq moiety in which the H atom of the phenolic hy­droxy group is not dissociated gave 29 hits (comprising 25 compounds). Of these, six structures (three compounds) are ion-pairs between tetra­chlorido­zincate(II) and an 8-hy­droxy­quinolin-1-ium (H2q+) derivative, for example, (H2q)2[ZnCl4] (FARFIP; Lamshöft et al., 2011). Eight structures are ion-pairs between H2q+ derivatives and anionic complexes consisting of ZnX 2 (X = Cl, Br, or I) and quinolin-8-lato derivatives, e.g. 8-hy­droxy-2-methyl­quinolino­linium di­iodo­(2-methyl­uinolin-8-lato)zinc(II) (AYOCOH; Najafi et al., 2011). Two structures are ion-pairs between H2q+ derivatives and anionic ZnII complexes with other chelate ligands, e.g. bis­(8-hy­droxy­quinolin-1-ium) tris­(4-nitro­phenol) bis­(pyridine-2,6-carboxyl­ato)zinc(II) dihydrate (MIYKEN; Singh et al., 2019). The remaining 13 structures (12 compounds) are ZnII chelate complexes containing the Hq ligand with an undissociated phenolic functional group, e.g., bis­(8-hy­droxy­quinolin-2-carboxyl­ato)zinc(II) trihydrate (QOCRAC; McDonald et al., 2008). A crystal structure of a ZnII complex containing the Hq moiety which is neither the counter-cation of an ion-pair nor bound to ZnII has not been reported yet. A search for ZnII complexes in which the entire ligand scaffold and substitution is also more analogous to the title compound, i.e. with [bis(pyridin-2-ylmeth­yl)amino]­methyl at the 2-position of Hq or respective derivatives, gave three hits (CIGJAF; Royzen et al., 2013; RIZROI; Xue et al., 2008; TEHDOA; Royzen et al., 2006). In the three structures, the phenolic hy­droxy group is deprotonated and coordinated by ZnII.

Synthesis and crystallization

The HClqdpa ligand (97.7 mg, 0.250 mmol) was dissolved in 15 mL of hot aceto­nitrile. Then a solution of zinc(II) bromide (56.4 mg, 0.250 mmol) in 15 mL of hot aceto­nitrile was added to the ligand solution. The mixture was stirred for 20 min at 333 K. After removal of the solvent at room temperature in air for one week, colorless crystals of the title compound were obtained (yield 35%; m.p. 496–497 K). Analysis calculated for C22H19Br2ClN4OZn: C 42.89, H 3.11, N 9.09%; found: C 42.94, H 3.02, N 8.95%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hy­droxy H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.99 Å with U iso(H) = 1.2U eq(C). One outlier reflex (002) was omitted from the refinement.

Table 2. Experimental details.

Crystal data
Chemical formula [ZnBr2(C22H19ClN4O)]
M r 616.05
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 7.6779 (3), 8.7860 (4), 18.1379 (8)
α, β, γ (°) 89.460 (6), 89.617 (6), 66.878 (5)
V3) 1125.21 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.78
Crystal size (mm) 0.35 × 0.20 × 0.15
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.316, 0.487
No. of measured, independent and observed [F 2 > 2.0σ(F 2)] reflections 11009, 5114, 4386
R int 0.017
(sin θ/λ)max−1) 0.648
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.059, 1.07
No. of reflections 5114
No. of parameters 284
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.65

Computer programs: RAPID-AUTO (Rigaku, 2006), SIR92 (Altomare, et al., 1993), SHELXL2014/7 (Sheldrick, 2015), PLATON (Spek, 2020), and CrystalStructure (Rigaku, 2016).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022001530/yz2016sup1.cif

e-78-00326-sup1.cif (342.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001530/yz2016Isup2.hkl

e-78-00326-Isup2.hkl (406.9KB, hkl)

CCDC reference: 2150991

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[ZnBr2(C22H19ClN4O)] Z = 2
Mr = 616.05 F(000) = 608.00
Triclinic, P1 Dx = 1.818 Mg m3
a = 7.6779 (3) Å Mo Kα radiation, λ = 0.71075 Å
b = 8.7860 (4) Å Cell parameters from 9577 reflections
c = 18.1379 (8) Å θ = 2.5–27.4°
α = 89.460 (6)° µ = 4.78 mm1
β = 89.617 (6)° T = 173 K
γ = 66.878 (5)° Block, colorless
V = 1125.21 (9) Å3 0.35 × 0.20 × 0.15 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 4386 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.017
ω scans θmax = 27.4°, θmin = 2.8°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −9→9
Tmin = 0.316, Tmax = 0.487 k = −11→11
11009 measured reflections l = −23→23
5114 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.024P)2 + 0.8532P] where P = (Fo2 + 2Fc2)/3
5114 reflections (Δ/σ)max < 0.001
284 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.65 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.27928 (3) 0.13134 (3) 0.42388 (2) 0.02925 (7)
Br2 0.21673 (4) 0.34246 (3) 0.22122 (2) 0.03710 (7)
Zn3 0.43550 (3) 0.18902 (3) 0.31584 (2) 0.02169 (7)
Cl4 0.52345 (11) 0.31327 (11) 0.04318 (5) 0.0578 (2)
O5 1.0962 (2) −0.2077 (2) 0.21912 (11) 0.0350 (4)
N6 1.0498 (3) −0.2729 (3) 0.07984 (13) 0.0399 (5)
N7 0.7489 (3) 0.0783 (2) 0.34256 (10) 0.0226 (4)
N8 0.5357 (3) −0.0510 (2) 0.26615 (11) 0.0249 (4)
N9 0.4920 (3) 0.3899 (2) 0.36144 (10) 0.0252 (4)
C10 0.9635 (3) −0.0864 (3) 0.17935 (13) 0.0259 (5)
C11 0.8577 (3) 0.0643 (3) 0.21048 (13) 0.0248 (5)
C12 0.7210 (3) 0.1857 (3) 0.16621 (14) 0.0294 (5)
H12 0.649031 0.290977 0.186741 0.035*
C13 0.6895 (4) 0.1560 (3) 0.09501 (15) 0.0337 (5)
C14 0.7943 (4) 0.0008 (3) 0.06192 (14) 0.0337 (6)
C15 0.7731 (5) −0.0458 (4) −0.01112 (16) 0.0489 (8)
H15 0.679789 0.029174 −0.042671 0.059*
C16 0.8870 (5) −0.1980 (5) −0.03553 (17) 0.0595 (10)
H16 0.873842 −0.230341 −0.084318 0.071*
C17 1.0237 (5) −0.3070 (4) 0.01133 (17) 0.0521 (8)
H17 1.102771 −0.412396 −0.007394 0.063*
C18 0.9343 (3) −0.1194 (3) 0.10505 (13) 0.0297 (5)
C19 0.8847 (3) 0.1035 (3) 0.28896 (13) 0.0291 (5)
H19A 1.015382 0.032903 0.304228 0.035*
H19B 0.870946 0.220136 0.291434 0.035*
C20 0.7877 (3) −0.0985 (3) 0.35371 (14) 0.0278 (5)
H20A 0.736052 −0.114214 0.402007 0.033*
H20B 0.926284 −0.163249 0.354144 0.033*
C21 0.6994 (3) −0.1604 (3) 0.29331 (13) 0.0255 (5)
C22 0.7819 (4) −0.3211 (3) 0.26675 (15) 0.0334 (6)
H22 0.896330 −0.397844 0.287479 0.040*
C23 0.6955 (4) −0.3673 (3) 0.21001 (17) 0.0401 (6)
H23 0.751460 −0.475780 0.190356 0.048*
C24 0.5265 (4) −0.2547 (3) 0.18174 (16) 0.0396 (6)
H24 0.464442 −0.284338 0.142650 0.048*
C25 0.4499 (3) −0.0976 (3) 0.21191 (14) 0.0325 (5)
H25 0.332682 −0.020331 0.193508 0.039*
C26 0.7580 (3) 0.1610 (3) 0.41217 (12) 0.0260 (5)
H26A 0.891471 0.138494 0.424156 0.031*
H26B 0.703999 0.117546 0.452978 0.031*
C27 0.6470 (3) 0.3453 (3) 0.40353 (12) 0.0258 (5)
C28 0.6961 (4) 0.4618 (3) 0.43949 (14) 0.0349 (6)
H28 0.808069 0.428428 0.468254 0.042*
C29 0.5782 (5) 0.6278 (3) 0.43250 (15) 0.0412 (7)
H29 0.607517 0.709633 0.457163 0.049*
C30 0.4187 (4) 0.6729 (3) 0.38959 (15) 0.0380 (6)
H30 0.336091 0.785945 0.384380 0.046*
C31 0.3804 (4) 0.5510 (3) 0.35418 (14) 0.0327 (5)
H31 0.271613 0.582321 0.323689 0.039*
H5 1.131 (6) −0.285 (5) 0.193 (2) 0.071 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02994 (12) 0.03405 (13) 0.02819 (12) −0.01729 (10) 0.00204 (9) −0.00401 (9)
Br2 0.03370 (13) 0.03205 (13) 0.03195 (13) 0.00201 (10) −0.00934 (10) −0.00635 (10)
Zn3 0.01991 (12) 0.01955 (12) 0.02461 (13) −0.00657 (10) −0.00128 (10) −0.00394 (10)
Cl4 0.0467 (4) 0.0647 (5) 0.0546 (5) −0.0144 (4) −0.0121 (4) 0.0322 (4)
O5 0.0269 (9) 0.0347 (10) 0.0364 (10) −0.0046 (8) 0.0016 (8) 0.0014 (8)
N6 0.0514 (14) 0.0411 (13) 0.0359 (12) −0.0276 (11) 0.0146 (11) −0.0090 (10)
N7 0.0225 (9) 0.0236 (9) 0.0229 (9) −0.0104 (8) −0.0006 (7) −0.0011 (7)
N8 0.0220 (9) 0.0220 (9) 0.0308 (10) −0.0089 (8) 0.0037 (8) −0.0054 (8)
N9 0.0297 (10) 0.0228 (9) 0.0243 (10) −0.0114 (8) 0.0001 (8) −0.0022 (8)
C10 0.0246 (11) 0.0282 (11) 0.0273 (12) −0.0131 (10) 0.0011 (9) 0.0033 (9)
C11 0.0240 (11) 0.0275 (11) 0.0266 (11) −0.0140 (9) 0.0021 (9) −0.0002 (9)
C12 0.0289 (12) 0.0257 (12) 0.0354 (13) −0.0128 (10) 0.0030 (10) 0.0036 (10)
C13 0.0309 (12) 0.0373 (14) 0.0351 (13) −0.0161 (11) −0.0043 (11) 0.0146 (11)
C14 0.0398 (14) 0.0455 (15) 0.0274 (12) −0.0295 (13) −0.0022 (11) 0.0052 (11)
C15 0.0577 (19) 0.074 (2) 0.0294 (14) −0.0417 (18) −0.0053 (13) 0.0042 (14)
C16 0.082 (2) 0.087 (3) 0.0349 (16) −0.060 (2) 0.0105 (16) −0.0206 (17)
C17 0.072 (2) 0.0547 (19) 0.0442 (17) −0.0404 (18) 0.0201 (16) −0.0204 (15)
C18 0.0347 (13) 0.0332 (13) 0.0286 (12) −0.0216 (11) 0.0066 (10) −0.0022 (10)
C19 0.0277 (12) 0.0354 (13) 0.0284 (12) −0.0167 (10) 0.0039 (9) −0.0059 (10)
C20 0.0231 (11) 0.0241 (11) 0.0335 (13) −0.0063 (9) −0.0015 (10) 0.0020 (10)
C21 0.0226 (10) 0.0211 (11) 0.0334 (12) −0.0092 (9) 0.0071 (9) −0.0021 (9)
C22 0.0290 (12) 0.0198 (11) 0.0488 (16) −0.0067 (10) 0.0130 (11) −0.0038 (11)
C23 0.0406 (15) 0.0268 (13) 0.0563 (17) −0.0169 (12) 0.0190 (13) −0.0170 (12)
C24 0.0438 (15) 0.0392 (15) 0.0447 (16) −0.0255 (13) 0.0087 (12) −0.0165 (12)
C25 0.0287 (12) 0.0323 (13) 0.0389 (14) −0.0142 (11) 0.0032 (11) −0.0102 (11)
C26 0.0251 (11) 0.0328 (12) 0.0225 (11) −0.0137 (10) −0.0033 (9) −0.0009 (9)
C27 0.0313 (12) 0.0322 (12) 0.0200 (10) −0.0189 (10) 0.0046 (9) −0.0044 (9)
C28 0.0456 (15) 0.0472 (15) 0.0254 (12) −0.0327 (13) 0.0033 (11) −0.0065 (11)
C29 0.0684 (19) 0.0396 (15) 0.0326 (14) −0.0393 (15) 0.0181 (13) −0.0140 (11)
C30 0.0573 (17) 0.0252 (12) 0.0356 (14) −0.0206 (12) 0.0143 (13) −0.0059 (10)
C31 0.0415 (14) 0.0252 (12) 0.0313 (13) −0.0129 (11) 0.0049 (11) −0.0017 (10)

Geometric parameters (Å, º)

Br1—Zn3 2.4419 (4) C16—C17 1.396 (5)
Br2—Zn3 2.4085 (4) C16—H16 0.9500
Zn3—N8 2.1455 (18) C17—H17 0.9500
Zn3—N9 2.1497 (18) C19—H19A 0.9900
Zn3—N7 2.2670 (18) C19—H19B 0.9900
Cl4—C13 1.740 (3) C20—C21 1.506 (3)
O5—C10 1.355 (3) C20—H20A 0.9900
O5—H5 0.79 (4) C20—H20B 0.9900
N6—C17 1.316 (4) C21—C22 1.390 (3)
N6—C18 1.371 (3) C22—C23 1.376 (4)
N7—C20 1.474 (3) C22—H22 0.9500
N7—C26 1.478 (3) C23—C24 1.385 (4)
N7—C19 1.498 (3) C23—H23 0.9500
N8—C21 1.341 (3) C24—C25 1.387 (3)
N8—C25 1.341 (3) C24—H24 0.9500
N9—C27 1.339 (3) C25—H25 0.9500
N9—C31 1.342 (3) C26—C27 1.512 (3)
C10—C11 1.377 (3) C26—H26A 0.9900
C10—C18 1.419 (3) C26—H26B 0.9900
C11—C12 1.414 (3) C27—C28 1.391 (3)
C11—C19 1.502 (3) C28—C29 1.386 (4)
C12—C13 1.362 (4) C28—H28 0.9500
C12—H12 0.9500 C29—C30 1.374 (4)
C13—C14 1.420 (4) C29—H29 0.9500
C14—C18 1.409 (4) C30—C31 1.381 (3)
C14—C15 1.419 (4) C30—H30 0.9500
C15—C16 1.355 (5) C31—H31 0.9500
C15—H15 0.9500
N8—Zn3—N9 149.88 (7) C14—C18—C10 120.6 (2)
N8—Zn3—N7 76.13 (7) N7—C19—C11 114.29 (18)
N9—Zn3—N7 75.20 (7) N7—C19—H19A 108.7
N8—Zn3—Br2 98.53 (5) C11—C19—H19A 108.7
N9—Zn3—Br2 98.16 (5) N7—C19—H19B 108.7
N7—Zn3—Br2 141.63 (5) C11—C19—H19B 108.7
N8—Zn3—Br1 98.76 (5) H19A—C19—H19B 107.6
N9—Zn3—Br1 97.48 (5) N7—C20—C21 110.67 (19)
N7—Zn3—Br1 105.26 (5) N7—C20—H20A 109.5
Br2—Zn3—Br1 113.102 (14) C21—C20—H20A 109.5
C10—O5—H5 104 (3) N7—C20—H20B 109.5
C17—N6—C18 116.6 (3) C21—C20—H20B 109.5
C20—N7—C26 112.22 (18) H20A—C20—H20B 108.1
C20—N7—C19 111.92 (18) N8—C21—C22 121.6 (2)
C26—N7—C19 108.08 (16) N8—C21—C20 116.01 (19)
C20—N7—Zn3 102.79 (13) C22—C21—C20 122.4 (2)
C26—N7—Zn3 102.85 (13) C23—C22—C21 119.1 (2)
C19—N7—Zn3 118.69 (14) C23—C22—H22 120.5
C21—N8—C25 119.2 (2) C21—C22—H22 120.5
C21—N8—Zn3 114.94 (14) C22—C23—C24 119.5 (2)
C25—N8—Zn3 125.90 (16) C22—C23—H23 120.2
C27—N9—C31 119.2 (2) C24—C23—H23 120.2
C27—N9—Zn3 115.33 (15) C23—C24—C25 118.3 (2)
C31—N9—Zn3 125.38 (16) C23—C24—H24 120.8
O5—C10—C11 120.9 (2) C25—C24—H24 120.8
O5—C10—C18 118.3 (2) N8—C25—C24 122.3 (2)
C11—C10—C18 120.8 (2) N8—C25—H25 118.9
C10—C11—C12 118.2 (2) C24—C25—H25 118.9
C10—C11—C19 122.2 (2) N7—C26—C27 109.09 (18)
C12—C11—C19 119.6 (2) N7—C26—H26A 109.9
C13—C12—C11 122.0 (2) C27—C26—H26A 109.9
C13—C12—H12 119.0 N7—C26—H26B 109.9
C11—C12—H12 119.0 C27—C26—H26B 109.9
C12—C13—C14 121.0 (2) H26A—C26—H26B 108.3
C12—C13—Cl4 119.3 (2) N9—C27—C28 121.6 (2)
C14—C13—Cl4 119.7 (2) N9—C27—C26 115.59 (19)
C18—C14—C15 116.3 (3) C28—C27—C26 122.7 (2)
C18—C14—C13 117.4 (2) C29—C28—C27 118.6 (2)
C15—C14—C13 126.3 (3) C29—C28—H28 120.7
C16—C15—C14 119.5 (3) C27—C28—H28 120.7
C16—C15—H15 120.2 C30—C29—C28 119.5 (2)
C14—C15—H15 120.2 C30—C29—H29 120.3
C15—C16—C17 119.7 (3) C28—C29—H29 120.3
C15—C16—H16 120.1 C29—C30—C31 118.9 (3)
C17—C16—H16 120.1 C29—C30—H30 120.6
N6—C17—C16 124.0 (3) C31—C30—H30 120.6
N6—C17—H17 118.0 N9—C31—C30 122.1 (3)
C16—C17—H17 118.0 N9—C31—H31 118.9
N6—C18—C14 123.9 (2) C30—C31—H31 118.9
N6—C18—C10 115.5 (2)
O5—C10—C11—C12 −179.8 (2) C26—N7—C20—C21 155.72 (18)
C18—C10—C11—C12 −0.7 (3) C19—N7—C20—C21 −82.6 (2)
O5—C10—C11—C19 0.8 (3) Zn3—N7—C20—C21 45.9 (2)
C18—C10—C11—C19 179.9 (2) C25—N8—C21—C22 −0.2 (3)
C10—C11—C12—C13 1.3 (3) Zn3—N8—C21—C22 179.88 (18)
C19—C11—C12—C13 −179.3 (2) C25—N8—C21—C20 179.6 (2)
C11—C12—C13—C14 −0.3 (4) Zn3—N8—C21—C20 −0.3 (3)
C11—C12—C13—Cl4 −178.28 (18) N7—C20—C21—N8 −33.3 (3)
C12—C13—C14—C18 −1.4 (4) N7—C20—C21—C22 146.4 (2)
Cl4—C13—C14—C18 176.63 (18) N8—C21—C22—C23 1.6 (4)
C12—C13—C14—C15 179.1 (2) C20—C21—C22—C23 −178.2 (2)
Cl4—C13—C14—C15 −2.9 (4) C21—C22—C23—C24 −1.5 (4)
C18—C14—C15—C16 −1.0 (4) C22—C23—C24—C25 0.2 (4)
C13—C14—C15—C16 178.5 (3) C21—N8—C25—C24 −1.3 (4)
C14—C15—C16—C17 0.0 (5) Zn3—N8—C25—C24 178.66 (19)
C18—N6—C17—C16 −0.5 (4) C23—C24—C25—N8 1.3 (4)
C15—C16—C17—N6 0.8 (5) C20—N7—C26—C27 −158.30 (18)
C17—N6—C18—C14 −0.7 (4) C19—N7—C26—C27 77.8 (2)
C17—N6—C18—C10 179.2 (2) Zn3—N7—C26—C27 −48.52 (19)
C15—C14—C18—N6 1.4 (4) C31—N9—C27—C28 −0.5 (3)
C13—C14—C18—N6 −178.1 (2) Zn3—N9—C27—C28 −176.89 (17)
C15—C14—C18—C10 −178.5 (2) C31—N9—C27—C26 176.6 (2)
C13—C14—C18—C10 2.0 (3) Zn3—N9—C27—C26 0.2 (2)
O5—C10—C18—N6 −1.7 (3) N7—C26—C27—N9 35.0 (3)
C11—C10—C18—N6 179.1 (2) N7—C26—C27—C28 −147.9 (2)
O5—C10—C18—C14 178.2 (2) N9—C27—C28—C29 1.5 (4)
C11—C10—C18—C14 −1.0 (3) C26—C27—C28—C29 −175.4 (2)
C20—N7—C19—C11 70.4 (3) C27—C28—C29—C30 −1.0 (4)
C26—N7—C19—C11 −165.5 (2) C28—C29—C30—C31 −0.3 (4)
Zn3—N7—C19—C11 −49.1 (2) C27—N9—C31—C30 −0.9 (4)
C10—C11—C19—N7 −96.5 (3) Zn3—N9—C31—C30 175.09 (18)
C12—C11—C19—N7 84.1 (3) C29—C30—C31—N9 1.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5···N6 0.79 (4) 2.14 (4) 2.653 (3) 124 (3)
C16—H16···Br2i 0.95 2.87 3.808 (3) 170
C22—H22···Br2ii 0.95 2.88 3.581 (3) 131
C29—H29···Br1iii 0.95 2.90 3.798 (3) 158

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y−1, z; (iii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by JSPS KAKENHI grant JP20K05565.

References

  1. Abufarag, A. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 2207–2216.
  2. Acharya, J., Sarkar, A., Kumar, P., Kumar, V., Gonzalez, J. F., Cador, O., Pointillart, F., Rajaraman, G. & Chandrasekhar, V. (2020). Dalton Trans. 49, 4785–4796. [DOI] [PubMed]
  3. Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  4. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  5. Aoki, K., Osako, R., Deng, J., Hayashita, T., Hashimoto, T. & Suzuki, Y. (2020). RSC Adv. 10, 15299–15306. [DOI] [PMC free article] [PubMed]
  6. Bazany-Rodríguez, I. J., Salomón-Flores, M. K., Bautista-Renedo, J. M., González-Rivas, N. & Dorazco-González, A. (2020). Inorg. Chem. 59, 7739–7751. [DOI] [PubMed]
  7. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  8. Eguchi, A., Morita, K. & Hirayama, N. (2019). Anal. Sci. 35, 1003–1007. [DOI] [PubMed]
  9. Gao, C.-Y., Qiao, X., Ma, Z.-Y., Wang, Z.-G., Lu, J., Tian, J.-L., Xu, J.-Y. & Yan, S.-P. (2012). Dalton Trans. 41, 12220–12232. [DOI] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  12. Juraj, N. P., Muratović, S., Perić, B., Vujičić, N. Š., Vianello, R., Žilić, D., Jagličić, Z. & Kirin, S. I. (2020). Cryst. Growth Des. 20, 2440–2453.
  13. Kubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545–1547. [DOI] [PMC free article] [PubMed]
  14. Lai, H., Feng, M., Roxas-Duncan, V., Dakshanamurthy, S., Smith, L. A. & Yang, D. C. H. (2009). Arch. Biochem. Biophys. 491, 75–84. [DOI] [PubMed]
  15. Lamshöft, M., Storp, J., Ivanova, B. & Spiteller, M. (2011). Polyhedron, 30, 2564–2573.
  16. Li, S., Wen, H., Yuan, N., Xie, P., Qin, J. & Wang, Z. (2020). RSC Adv. 10, 32490–32496. [DOI] [PMC free article] [PubMed]
  17. Lin, W., Buccella, D. & Lippard, S. J. (2013). J. Am. Chem. Soc. 135, 13512–13520. [DOI] [PMC free article] [PubMed]
  18. McDonald, F. C., Applefield, R. C., Halkides, C. J., Reibenspies, J. H. & Hancock, R. D. (2008). Inorg. Chim. Acta, 361, 1937–1946.
  19. Medlin, W. L. (1960). Anal. Chem. 32, 632–634.
  20. Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1282. [DOI] [PMC free article] [PubMed]
  21. Plenio, H. & Burth, D. (1996). Organometallics, 15, 4054–4062.
  22. Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  23. Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  24. Royzen, M. & Canary, J. W. (2013). Polyhedron, 58, 85–91.
  25. Royzen, M., Durandin, A., Young, V. G. Jr, Geacintov, N. E. & Canary, J. W. (2006). J. Am. Chem. Soc. 128, 3854–3855. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  27. Singh, M. P., Shankar, K. & Baruah, J. B. (2019). Inorg. Chim. Acta, 489, 204–210.
  28. Škalamera, Đ., Sanders, E., Vianello, R., Maršavelski, A., Pevec, A., Turel, I. & Kirin, S. I. (2016). Dalton Trans. 45, 2845–2858. [DOI] [PubMed]
  29. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  30. Xue, L., Wang, H.-H., Wang, X.-J. & Jiang, H. (2008). Inorg. Chem. 47, 4310–4318. [DOI] [PubMed]
  31. Zhang, Y.-P., Ma, Z.-Y., Gao, C.-Y., Qiao, X., Tian, J.-L., Gu, W., Liu, X., Xu, J.-Y., Zhao, J.-Z. & Yan, S.-P. (2016). New J. Chem. 40, 7513–7521.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022001530/yz2016sup1.cif

e-78-00326-sup1.cif (342.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001530/yz2016Isup2.hkl

e-78-00326-Isup2.hkl (406.9KB, hkl)

CCDC reference: 2150991

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES