Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 15;78(Pt 3):322–325. doi: 10.1107/S2056989022001517

Crystal structure and Hirshfeld surface analysis of 2-oxo-2-phenyl­ethyl 3-nitroso-2-phenyl­imidazo[1,2-a]pyridine-8-carboxyl­ate

Fouad El Kalai a, Cemile Baydere b,*, Necmi Dege b, Abdulmalik Abudunia c,*, Noureddine Benchat a, Khalid Karrouchi d
PMCID: PMC8900504  PMID: 35371553

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, generating Inline graphic (5) and Inline graphic (28) ring motifs. In addition, weak C—H⋯π and π-stacking inter­actions are observed.

Keywords: crystal structure; hydrogen bonding; Hirshfeld surface analysis; imidazo[1,2-a]pyridine

Abstract

The title compound, C22H15N3O4, is built up from a central imidazo[1,2-a]pyridine ring system connected to a nitroso group, a phenyl ring and a 2-oxo-2-phenyl­ethyl acetate group. The imidazo[1,2-a] pyridine ring system is almost planar (r.m.s. deviation = 0.017 Å) and forms dihedral angles of 22.74 (5) and 45.37 (5)°, respectively, with the phenyl ring and the 2-oxo-2-phenyl­ethyl acetate group. In the crystal, the mol­ecules are linked into chains parallel to the b axis by C—H⋯O hydrogen bonds, generating R 2 1 (5) and R 4 4 (28) graph-set motifs. The chains are further linked into a three-dimensional network by C—H⋯π and π-stacking inter­actions. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.5%), H⋯O/O⋯H (20.0%), C⋯O/O⋯C (6.5%), C⋯N/N⋯C (6.2%), H⋯N/N⋯H (4.5%) and C⋯C (4.3%) inter­actions.

Chemical context

Numerous drugs contain N-heterocycles as the core structure, including imidazo[1,2-a]pyridine and its derivatives, which are used in medicinal chemistry (Swainston Harrison & Keating, 2005; Deep et al., 2017) or that exhibit diverse biological properties, such as anti­bacterial (Mishra et al., 2021), anti­tubercular (Wang et al., 2019), tyrosinase inhibitory (Damghani et al., 2020), HIV inhibitory (Bode et al., 2011), anti­diabetic (Saeedi et al., 2021), anti-inflammatory (Gundlewad et al., 2020) or anti­cancer activities (Yu et al., 2020; Sigalapalli et al., 2021). Encouraged by these features and in a continuation of our exploration of the synthesis, mol­ecular structures and Hirshfeld surface analysis of new N-heterocyclic compounds (Daoui et al., 2021, 2022; El Kalai et al., 2021a ,b ), we report herein the crystal structure and Hirshfeld surface analysis of 2-oxo-2-phenyl­ethyl 3-nitroso-2-phenyl­imidazo[1,2-a]pyridine-8-carboxyl­ate, C22H15N3O4 (I). graphic file with name e-78-00322-scheme1.jpg

Structural commentary

The mol­ecular structure of (I) is shown in Fig. 1. The imidazo[1,2-a] pyridine ring system is planar with an r.m.s deviation of 0.017 Å and a maximum deviation of 0.028 (1) Å for atom C11. The mean plane through the fused ring system makes dihedral angles of 22.74 (5) and 45.37 (5)° with the phenyl ring (C1–C6) and the 2-oxo-2-phenyl­ethyl acetate group (C14–C22), respectively. The dihedral angle between the two aromatic rings (C1–C6 and C17–C22) is 59.63 (5)°. The mol­ecular conformation is stabilized by two weak intra­molecular C9—H9⋯O1 and C1—H1⋯N1 hydrogen bonds, generating S(6) ring motifs (Table 1, Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular hydrogen bonds are indicated by dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C17–C22 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O4i 0.97 2.54 3.1257 (19) 119
C15—H15B⋯O1ii 0.97 2.61 3.4841 (18) 150
C9—H9⋯O2iii 0.93 2.46 3.1176 (16) 128
C10—H10⋯O2iii 0.93 2.67 3.2243 (17) 119
C9—H9⋯O1 0.93 2.35 2.8736 (18) 116
C1—H1⋯N1 0.93 2.51 3.081 (2) 120
C22—H22⋯Cg4iv 0.93 2.80 3.657 (2) 153

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Supra­molecular features

In the crystal, mol­ecules are linked by C9—H9⋯O2iii and C10—H10⋯O2iii hydrogen bonds, forming chains that propagate parallel to the b axis and enclose Inline graphic (5) ring motifs (Table 1, Fig. 2). Additionally, inter­molecular C15—H15A⋯O4i and C15—H15B⋯O1ii hydrogen bonds with Inline graphic (28) ring motifs are also present, generating a three-dimensional supra­molecular network that also comprises a weak C22—H22⋯Cg4iv inter­action (Cg4 is the centroid of the C17–C22 phenyl ring) as well as π–π stacking inter­actions involving the centroids (Cg1 and Cg2) of the N2/C13/N3/C7–C8 and N2/C9–C13 rings with a centroid-to-centroid distance Cg1⋯Cg2 (x, 1/2 − y, −1/2 + z) of 3.5750 (9) Å and a slippage of 0.685 Å (Fig. 2).

Figure 2.

Figure 2

A view along the a axis of the crystal structure of (I). Blue, black, purple and orange dashed lines symbolize inter­molecular C15—H15A⋯O4i, C15—H15B⋯O1ii, C9—H9⋯O2iii and C10—H10⋯O2iii hydrogen bonds, respectively; π–π and C—H⋯π inter­actions are shown as green dashed lines.

Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016) using 2-phenyl­imidazo[1,2-a]pyridin-3-amine as the main skeleton revealed the presence of 54 structures with different substit­uents on the imidazo[1,2-a]pyridine ring. The two structures most similar to (I) are N-(2-phenyl­imidazo[1,2-a]pyridin-3-yl)acetamide (MIXZOJ; Anaflous et al., 2008) and 4-[(7-methyl-2-phenyl­imidazo[1,2-a]pyridin-3-yl)carbonoimido­yl]phenol (TUQCEP; Elaatiaoui et al., 2015). In MIXZOJ, C15H13N3O, the crystal structure consists of mol­ecular columns that are inter­connected by N—H⋯N hydrogen bonds along the b-axis direction. The torsion angle between the imidazo[1,2-a]pyridine ring system and the phenyl ring is 9.04 (5)°. In TUQCEP, C21H17N3O, the fused ring system is almost planar (r.m.s. deviation = 0.031 Å) and forms dihedral angles of 64.97 (7) and 18.52 (6)° with the phenyl ring and the (imino­meth­yl)phenol group, respectively. In its crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions into centrosymmetric dimeric units, which are further connected by O—H⋯N hydrogen bonds, forming layers parallel to (101).

Hirshfeld surface analysis

Hirshfeld surface analysis was used to qu­antify the inter­molecular contacts of the title compound, using Crystal Explorer (Turner et al., 2017). The Hirshfeld surface was generated with a standard (high) surface resolution and with the three-dimensional d norm surface plotted over a fixed colour scale of −0.1706 (red) to 1.2371 (blue) a.u. (Fig. 3 a). The shape-index map of the title mol­ecule was generated in the range −1 to 1 Å (Fig. 3 b), revealing the presence of red and blue triangles that are indicative of the presence of π–π stacking inter­actions. The curvedness map of the title complex was generated in the range −4.0 to 4.0 Å (Fig. 3 c) and shows flat surface patches characteristic of planar stacking. The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯O/O⋯C, C⋯N/N⋯C, H⋯N/N⋯H and C⋯C inter­actions in Fig. 4 a–g, respectively. The overall two-dimensional fingerprint plot is illustrated in Fig. 5 a, with those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯O/O⋯C, C⋯N/N⋯C, H⋯N/N⋯H and C⋯C contacts associated with their relative contributions to the Hirshfeld surface in Fig. 5 bh, respectively. The most important inter­molecular inter­action is H⋯H, contributing 36.2% to the overall crystal packing (Fig. 5 b). H⋯C/C⋯H contacts, with a 20.5% contribution to the Hirshfeld surface, indicate the presence of the weak C—H⋯π inter­action (Table 1). Two pairs of characteristic wings in the fingerprint plot with pairs of tips at d e + d i ∼2.74 Å are present (Fig. 5 c). H⋯O/O⋯H contacts arising from inter­molecular C—H⋯O hydrogen bonding make a 20.0% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region d e + d i ∼2.34 Å (Fig. 5 d). The C⋯C contacts are a measure of π–π stacking inter­actions and contribute 4.3% of the Hirshfeld surface (Fig. 5 h). The contributions of the other contacts to the Hirshfeld surface are C⋯O/O⋯C of 6.5%, C⋯N/N⋯C of 6.2% and H⋯N/N⋯H of 4.5%.

Figure 3.

Figure 3

(a) d norm mapped on the Hirshfeld surface to visualize the inter­molecular inter­actions, (b) shape-index map of the title compound and (c) curvedness map of the title compound using a range from −4 to 4 Å.

Figure 4.

Figure 4

The Hirshfeld surface representations of (I) with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H, (d) C⋯O/O⋯C, (e) C⋯N/N⋯C, (f) H⋯N/N⋯H and (g) C⋯C inter­actions.

Figure 5.

Figure 5

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/ O⋯H, (e) C⋯O/O⋯C, (f) C⋯N/N⋯C, (g) H⋯N/N⋯H and (h) C⋯C inter­actions, together with their relative contributions.

Synthesis and crystallization

To a solution of 2-oxo-2-phenyl­ethyl 2-phenyl­imidazo[1,2-a]pyridine-8-carboxyl­ate (0.71 g, 2 mmol) in acetic acid (50 ml), sodium nitrite (1.4 g, 2 mmol) was added at room temperature. The resulting precipitate was washed with water and extracted with di­chloro­methane (3 × 20 ml). The combined di­chloro­methane extracts were dried over anhydrous sodium sulfate and filtered. The remaining solution was concentrated under reduced pressure. The residue was purified chromatographically on a neutral alumina gel column using di­chloro­methane as eluent. Single crystals were obtained by slow evaporation of a di­chloro­methane solution at room temperature (yield 80%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å for methyl­ene [U iso(H) = 1.5U eq(C)], C—H = 0.93 Å for aromatic [U iso(H) = 1.2U eq(C)] and C—H = 0.98 Å for methine [U iso(H) = 1.2U eq(C)] H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C22H15N3O4
M r 385.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.9256 (14), 14.8256 (14), 7.6787 (6)
β (°) 90.566 (7)
V3) 1812.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.56 × 0.38 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2012)
T min, T max 0.946, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 27945, 6703, 3040
R int 0.070
(sin θ/λ)max−1) 0.765
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.118, 0.92
No. of reflections 6703
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.16

Computer programs: X-AREA and X-RED (Stoe & Cie, 2012), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001517/wm5632sup1.cif

e-78-00322-sup1.cif (928KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001517/wm5632Isup2.hkl

e-78-00322-Isup2.hkl (532.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022001517/wm5632Isup3.cml

CCDC reference: 2106558

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). Authors’ contributions are as follows. conceptualization, FE, CB, and ND; formal analysis, CB and ND; writing (original draft), CB and KK; writing (review and editing of the manuscript), CB and KK; resources, AA; supervision, NB and KK.

supplementary crystallographic information

Crystal data

C22H15N3O4 F(000) = 800
Mr = 385.37 Dx = 1.412 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.9256 (14) Å Cell parameters from 18578 reflections
b = 14.8256 (14) Å θ = 1.9–32.8°
c = 7.6787 (6) Å µ = 0.10 mm1
β = 90.566 (7)° T = 296 K
V = 1812.9 (3) Å3 Rod, green
Z = 4 0.56 × 0.38 × 0.15 mm

Data collection

Stoe IPDS 2 diffractometer 6703 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3040 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.070
Detector resolution: 6.67 pixels mm-1 θmax = 32.9°, θmin = 2.6°
rotation method scans h = −24→24
Absorption correction: integration (X-RED32; Stoe & Cie, 2012) k = −22→22
Tmin = 0.946, Tmax = 0.969 l = −10→11
27945 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0506P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92 (Δ/σ)max < 0.001
6703 reflections Δρmax = 0.15 e Å3
262 parameters Δρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.63005 (6) 0.31601 (7) 0.48667 (14) 0.0542 (3)
O2 0.58609 (6) 0.39797 (6) 0.25605 (15) 0.0595 (3)
N3 0.40012 (7) 0.34790 (7) 0.20621 (16) 0.0441 (3)
N2 0.39287 (6) 0.19477 (7) 0.20006 (16) 0.0435 (3)
O4 0.75836 (8) 0.26469 (8) 0.30406 (19) 0.0788 (4)
O1 0.25639 (7) 0.09653 (7) 0.0672 (2) 0.0780 (4)
N1 0.25076 (8) 0.18024 (9) 0.06361 (19) 0.0599 (4)
C14 0.58089 (8) 0.33230 (9) 0.34708 (19) 0.0416 (3)
C12 0.52135 (8) 0.25563 (8) 0.31845 (18) 0.0414 (3)
C13 0.44102 (8) 0.27009 (8) 0.24261 (18) 0.0404 (3)
C7 0.32472 (8) 0.32353 (9) 0.13986 (19) 0.0441 (3)
C17 0.86457 (9) 0.34187 (9) 0.46238 (19) 0.0464 (3)
C8 0.31681 (8) 0.22879 (9) 0.1315 (2) 0.0465 (3)
C6 0.26278 (8) 0.39215 (9) 0.08286 (19) 0.0459 (3)
C11 0.54667 (9) 0.16813 (9) 0.3493 (2) 0.0483 (3)
H11 0.598339 0.157821 0.403177 0.058*
C16 0.77582 (9) 0.32058 (9) 0.4145 (2) 0.0495 (3)
C15 0.70537 (8) 0.36842 (9) 0.5070 (2) 0.0498 (3)
H15A 0.719202 0.375040 0.629688 0.060*
H15B 0.697194 0.428055 0.457752 0.060*
C18 0.88553 (9) 0.40814 (10) 0.5833 (2) 0.0524 (4)
H18 0.843669 0.443252 0.632786 0.063*
C9 0.42025 (9) 0.10793 (9) 0.2257 (2) 0.0508 (4)
H9 0.387103 0.059250 0.191712 0.061*
C10 0.49660 (9) 0.09435 (9) 0.3016 (2) 0.0529 (4)
H10 0.515667 0.035964 0.321857 0.063*
C5 0.28989 (9) 0.47829 (10) 0.0411 (2) 0.0537 (4)
H5 0.346539 0.492649 0.052027 0.064*
C4 0.23357 (10) 0.54324 (11) −0.0168 (2) 0.0618 (4)
H4 0.252468 0.600751 −0.044788 0.074*
C19 0.96856 (10) 0.42184 (11) 0.6299 (3) 0.0645 (4)
H19 0.982383 0.465939 0.711376 0.077*
C3 0.14938 (11) 0.52236 (12) −0.0328 (2) 0.0669 (5)
H3 0.111528 0.565477 −0.073272 0.080*
C1 0.17725 (9) 0.37247 (11) 0.0689 (3) 0.0633 (4)
H1 0.157736 0.315422 0.098519 0.076*
C22 0.92826 (10) 0.29109 (11) 0.3880 (2) 0.0639 (4)
H22 0.914895 0.247016 0.306093 0.077*
C20 1.03132 (10) 0.37028 (13) 0.5559 (3) 0.0719 (5)
H20 1.087105 0.379435 0.588214 0.086*
C2 0.12162 (10) 0.43762 (13) 0.0113 (3) 0.0727 (5)
H2 0.064726 0.424057 0.002223 0.087*
C21 1.01088 (11) 0.30541 (13) 0.4343 (3) 0.0736 (5)
H21 1.053005 0.271212 0.383457 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0450 (5) 0.0615 (6) 0.0559 (7) −0.0123 (4) −0.0143 (5) 0.0119 (5)
O2 0.0558 (6) 0.0431 (5) 0.0792 (8) −0.0076 (4) −0.0223 (5) 0.0138 (5)
N3 0.0351 (5) 0.0412 (5) 0.0558 (7) −0.0003 (4) −0.0046 (5) 0.0017 (5)
N2 0.0354 (5) 0.0418 (6) 0.0534 (7) −0.0037 (4) −0.0030 (5) 0.0028 (5)
O4 0.0687 (7) 0.0791 (8) 0.0882 (9) 0.0000 (6) −0.0168 (7) −0.0363 (7)
O1 0.0631 (7) 0.0515 (6) 0.1188 (11) −0.0111 (5) −0.0220 (7) −0.0053 (6)
N1 0.0451 (7) 0.0562 (7) 0.0783 (10) −0.0071 (6) −0.0122 (6) −0.0018 (7)
C14 0.0327 (6) 0.0428 (7) 0.0492 (8) 0.0027 (5) −0.0041 (6) 0.0002 (6)
C12 0.0360 (6) 0.0430 (7) 0.0451 (8) −0.0008 (5) −0.0008 (6) 0.0031 (6)
C13 0.0362 (6) 0.0389 (6) 0.0461 (8) −0.0031 (5) 0.0003 (6) 0.0024 (6)
C7 0.0348 (6) 0.0467 (7) 0.0508 (8) −0.0018 (5) −0.0025 (6) 0.0013 (6)
C17 0.0450 (7) 0.0460 (7) 0.0481 (8) −0.0002 (5) −0.0044 (6) 0.0044 (6)
C8 0.0352 (6) 0.0478 (7) 0.0565 (9) −0.0034 (5) −0.0068 (6) 0.0020 (6)
C6 0.0382 (7) 0.0485 (7) 0.0511 (9) 0.0024 (5) −0.0056 (6) −0.0015 (6)
C11 0.0391 (7) 0.0487 (7) 0.0569 (9) 0.0006 (6) −0.0046 (6) 0.0084 (6)
C16 0.0525 (8) 0.0448 (7) 0.0511 (9) −0.0020 (6) −0.0115 (7) 0.0009 (6)
C15 0.0424 (7) 0.0488 (7) 0.0579 (9) −0.0040 (6) −0.0137 (6) 0.0008 (7)
C18 0.0424 (7) 0.0526 (8) 0.0621 (10) −0.0019 (6) −0.0039 (7) −0.0011 (7)
C9 0.0479 (8) 0.0384 (7) 0.0659 (10) −0.0038 (6) −0.0058 (7) 0.0021 (6)
C10 0.0482 (8) 0.0385 (7) 0.0719 (11) 0.0012 (6) −0.0054 (7) 0.0077 (7)
C5 0.0432 (7) 0.0497 (8) 0.0680 (11) 0.0025 (6) −0.0064 (7) 0.0001 (7)
C4 0.0622 (10) 0.0507 (8) 0.0727 (12) 0.0089 (7) −0.0027 (8) 0.0057 (8)
C19 0.0520 (9) 0.0631 (9) 0.0780 (12) −0.0102 (7) −0.0117 (8) −0.0004 (9)
C3 0.0594 (10) 0.0706 (10) 0.0704 (12) 0.0231 (8) −0.0138 (8) 0.0037 (9)
C1 0.0421 (8) 0.0605 (9) 0.0871 (13) −0.0009 (7) −0.0118 (8) 0.0028 (8)
C22 0.0569 (9) 0.0647 (10) 0.0702 (12) 0.0109 (7) −0.0026 (8) −0.0061 (8)
C20 0.0408 (8) 0.0788 (11) 0.0959 (15) −0.0031 (8) −0.0076 (8) 0.0195 (11)
C2 0.0422 (8) 0.0765 (11) 0.0990 (15) 0.0076 (8) −0.0172 (8) −0.0003 (10)
C21 0.0534 (9) 0.0793 (12) 0.0880 (15) 0.0150 (9) 0.0052 (9) 0.0043 (10)

Geometric parameters (Å, º)

O3—C14 1.3431 (16) C15—H15A 0.9700
O3—C15 1.4365 (16) C15—H15B 0.9700
O2—C14 1.2018 (16) C18—C19 1.381 (2)
N3—C7 1.3491 (16) C18—H18 0.9300
N3—C13 1.3526 (16) C9—C10 1.3581 (19)
N2—C9 1.3729 (17) C9—H9 0.9300
N2—C13 1.3918 (16) C10—H10 0.9300
N2—C8 1.4092 (16) C5—C4 1.386 (2)
O4—C16 1.2157 (17) C5—H5 0.9300
O1—N1 1.2446 (16) C4—C3 1.380 (2)
N1—C8 1.3732 (17) C4—H4 0.9300
C14—C12 1.4951 (18) C19—C20 1.385 (3)
C12—C11 1.3783 (18) C19—H19 0.9300
C12—C13 1.4166 (18) C3—C2 1.375 (3)
C7—C8 1.4115 (19) C3—H3 0.9300
C7—C6 1.4803 (18) C1—C2 1.381 (2)
C17—C18 1.390 (2) C1—H1 0.9300
C17—C22 1.391 (2) C22—C21 1.376 (2)
C17—C16 1.4907 (19) C22—H22 0.9300
C6—C5 1.387 (2) C20—C21 1.377 (3)
C6—C1 1.396 (2) C20—H20 0.9300
C11—C10 1.4002 (19) C2—H2 0.9300
C11—H11 0.9300 C21—H21 0.9300
C16—C15 1.511 (2)
C14—O3—C15 117.98 (11) H15A—C15—H15B 108.4
C7—N3—C13 105.94 (10) C19—C18—C17 119.98 (15)
C9—N2—C13 123.04 (11) C19—C18—H18 120.0
C9—N2—C8 131.29 (11) C17—C18—H18 120.0
C13—N2—C8 105.67 (10) C10—C9—N2 118.84 (12)
O1—N1—C8 117.36 (12) C10—C9—H9 120.6
O2—C14—O3 124.53 (12) N2—C9—H9 120.6
O2—C14—C12 125.28 (12) C9—C10—C11 120.11 (13)
O3—C14—C12 110.15 (11) C9—C10—H10 119.9
C11—C12—C13 118.33 (11) C11—C10—H10 119.9
C11—C12—C14 120.41 (11) C4—C5—C6 120.80 (14)
C13—C12—C14 120.94 (11) C4—C5—H5 119.6
N3—C13—N2 111.88 (10) C6—C5—H5 119.6
N3—C13—C12 130.17 (11) C3—C4—C5 119.83 (15)
N2—C13—C12 117.93 (11) C3—C4—H4 120.1
N3—C7—C8 111.24 (11) C5—C4—H4 120.1
N3—C7—C6 121.04 (11) C18—C19—C20 120.37 (16)
C8—C7—C6 127.70 (11) C18—C19—H19 119.8
C18—C17—C22 119.06 (13) C20—C19—H19 119.8
C18—C17—C16 122.36 (13) C2—C3—C4 119.82 (14)
C22—C17—C16 118.53 (13) C2—C3—H3 120.1
N1—C8—N2 127.33 (12) C4—C3—H3 120.1
N1—C8—C7 127.34 (12) C2—C1—C6 120.06 (16)
N2—C8—C7 105.26 (10) C2—C1—H1 120.0
C5—C6—C1 118.72 (13) C6—C1—H1 120.0
C5—C6—C7 119.55 (12) C21—C22—C17 120.64 (16)
C1—C6—C7 121.73 (13) C21—C22—H22 119.7
C12—C11—C10 121.69 (12) C17—C22—H22 119.7
C12—C11—H11 119.2 C21—C20—C19 119.80 (15)
C10—C11—H11 119.2 C21—C20—H20 120.1
O4—C16—C17 121.74 (14) C19—C20—H20 120.1
O4—C16—C15 118.84 (13) C3—C2—C1 120.74 (15)
C17—C16—C15 119.41 (12) C3—C2—H2 119.6
O3—C15—C16 108.54 (11) C1—C2—H2 119.6
O3—C15—H15A 110.0 C22—C21—C20 120.14 (17)
C16—C15—H15A 110.0 C22—C21—H21 119.9
O3—C15—H15B 110.0 C20—C21—H21 119.9
C16—C15—H15B 110.0
C15—O3—C14—O2 −14.9 (2) C8—C7—C6—C1 23.0 (3)
C15—O3—C14—C12 163.13 (11) C13—C12—C11—C10 2.5 (2)
O2—C14—C12—C11 141.14 (16) C14—C12—C11—C10 −171.16 (15)
O3—C14—C12—C11 −36.82 (19) C18—C17—C16—O4 177.35 (15)
O2—C14—C12—C13 −32.3 (2) C22—C17—C16—O4 −5.1 (2)
O3—C14—C12—C13 149.69 (13) C18—C17—C16—C15 −3.6 (2)
C7—N3—C13—N2 0.14 (16) C22—C17—C16—C15 173.89 (14)
C7—N3—C13—C12 −178.13 (15) C14—O3—C15—C16 −89.28 (14)
C9—N2—C13—N3 −179.58 (13) O4—C16—C15—O3 19.49 (19)
C8—N2—C13—N3 0.31 (16) C17—C16—C15—O3 −159.56 (12)
C9—N2—C13—C12 −1.1 (2) C22—C17—C18—C19 −1.0 (2)
C8—N2—C13—C12 178.82 (12) C16—C17—C18—C19 176.52 (14)
C11—C12—C13—N3 176.84 (15) C13—N2—C9—C10 2.4 (2)
C14—C12—C13—N3 −9.5 (2) C8—N2—C9—C10 −177.50 (15)
C11—C12—C13—N2 −1.3 (2) N2—C9—C10—C11 −1.2 (2)
C14—C12—C13—N2 172.27 (13) C12—C11—C10—C9 −1.2 (3)
C13—N3—C7—C8 −0.56 (17) C1—C6—C5—C4 −1.3 (2)
C13—N3—C7—C6 −179.33 (13) C7—C6—C5—C4 178.39 (15)
O1—N1—C8—N2 2.6 (2) C6—C5—C4—C3 0.2 (3)
O1—N1—C8—C7 179.29 (16) C17—C18—C19—C20 0.4 (2)
C9—N2—C8—N1 −3.5 (3) C5—C4—C3—C2 1.0 (3)
C13—N2—C8—N1 176.62 (15) C5—C6—C1—C2 1.2 (3)
C9—N2—C8—C7 179.26 (15) C7—C6—C1—C2 −178.44 (16)
C13—N2—C8—C7 −0.61 (15) C18—C17—C22—C21 0.7 (2)
N3—C7—C8—N1 −176.49 (15) C16—C17—C22—C21 −176.95 (16)
C6—C7—C8—N1 2.2 (3) C18—C19—C20—C21 0.4 (3)
N3—C7—C8—N2 0.74 (17) C4—C3—C2—C1 −1.0 (3)
C6—C7—C8—N2 179.42 (14) C6—C1—C2—C3 −0.1 (3)
N3—C7—C6—C5 21.9 (2) C17—C22—C21—C20 0.2 (3)
C8—C7—C6—C5 −156.69 (16) C19—C20—C21—C22 −0.8 (3)
N3—C7—C6—C1 −158.46 (15)

Hydrogen-bond geometry (Å, º)

Cg4 is the centroid of the C17–C22 phenyl ring.

D—H···A D—H H···A D···A D—H···A
C15—H15A···O4i 0.97 2.54 3.1257 (19) 119
C15—H15B···O1ii 0.97 2.61 3.4841 (18) 150
C9—H9···O2iii 0.93 2.46 3.1176 (16) 128
C10—H10···O2iii 0.93 2.67 3.2243 (17) 119
C9—H9···O1 0.93 2.35 2.8736 (18) 116
C1—H1···N1 0.93 2.51 3.081 (2) 120
C22—H22···Cg4iv 0.93 2.80 3.657 (2) 153

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2.

References

  1. Anaflous, A., Albay, H., Benchat, N., El Bali, B., Dušek, M. & Fejfarová, K. (2008). Acta Cryst. E64, o926. [DOI] [PMC free article] [PubMed]
  2. Bode, M. L., Gravestock, D., Moleele, S. S., van der Westhuyzen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T. & Nkabinde, L. A. (2011). Bioorg. Med. Chem. 19, 4227–4237. [DOI] [PubMed]
  3. Damghani, T., Hadaegh, S., Khoshneviszadeh, M., Pirhadi, S., Sabet, R., Khoshneviszadeh, M. & Edraki, N. (2020). J. Mol. Struct. 1222, 128876.
  4. Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27. [DOI] [PMC free article] [PubMed]
  5. Daoui, S., Muwafaq, I., Çınar, E. B., Abudunia, A., Dege, N., Benchat, N. & Karrouchi, K. (2022). Acta Cryst. E78, 8–11. [DOI] [PMC free article] [PubMed]
  6. Deep, A., Bhatia, R. K., Kaur, R., Kumar, S., Jain, U. K., Singh, H., Batra, S., Kaushik, D. & Deb, P. K. (2017). Curr. Top. Med. Chem. 17, 238–250. [DOI] [PubMed]
  7. Elaatiaoui, A., Saddik, R., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o803–o804. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Gundlewad, G. B., Wagh, S. S. & Patil, B. R. (2020). Asia. J. Org. Med. Chem. 5, 221–226.
  11. El Kalai, F., Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435. [DOI] [PMC free article] [PubMed]
  12. El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.
  13. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  14. Mishra, N. P., Mohapatra, S., Sahoo, C. R., Raiguru, B. P., Nayak, S., Jena, S. & Padhy, R. N. (2021). J. Mol. Struct. 1246, 131183.
  15. Saeedi, M., Raeisi-Nafchi, M., Sobhani, S., Mirfazli, S. S., Zardkanlou, M., Mojtabavi, S., Faramarzi, M. A. & Akbarzadeh, T. (2021). Mol. Divers. 25, 2399–2409. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Sigalapalli, D. K., Kiranmai, G., Parimala Devi, G., Tokala, R., Sana, S., Tripura, C., Jadhav, G. S., Kadagathur, M., Shankaraiah, N., Nagesh, N., Babu, B. N. & Tangellamudi, N. D. (2021). Bioorg. Med. Chem. 43, 116277. [DOI] [PubMed]
  19. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  20. Stoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  21. Swainston Harrison, T. & Keating, G. M. (2005). CNS Drugs, 19, 65–89. [DOI] [PubMed]
  22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
  23. Wang, A., Lv, K., Li, L., Liu, H., Tao, Z., Wang, B., Liu, M., Ma, C., Ma, X., Han, B., Wang, A. & Lu, Y. (2019). Eur. J. Med. Chem. 178, 715–725. [DOI] [PubMed]
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Yu, Y. N., Han, Y., Zhang, F., Gao, Z., Zhu, T., Dong, S. & Ma, M. (2020). J. Med. Chem. 63, 3028–3046. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001517/wm5632sup1.cif

e-78-00322-sup1.cif (928KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001517/wm5632Isup2.hkl

e-78-00322-Isup2.hkl (532.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022001517/wm5632Isup3.cml

CCDC reference: 2106558

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES