Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 3;78(Pt 3):287–290. doi: 10.1107/S2056989022001189

Crystal structure of 1,1′,2,2′,4,4′-hexa­iso­propyl­magnesocene

Nico Bachmann a, Lisa Wirtz a, Bernd Morgenstern a, Carsten Müller a, André Schäfer a,*
PMCID: PMC8900506  PMID: 35371551

The title compound was synthesized from the corresponding triiso­propyl­cyclo­penta­diene by treatment with n-butyl-sec-butyl­magnesium and crystallizes in the triclinic space group P Inline graphic with half a mol­ecule per asymmetric unit and a staggered arrangement of the cyclo­penta­dienide ligands.

Keywords: crystal structure, magnesocene, cyclo­penta­dienide

Abstract

The title compound, 3Cp2Mg or [Mg(C14H23)2], was synthesized from the cor­res­ponding triiso­propyl­cyclo­penta­diene by treatment with n-butyl-sec-butyl­magnesium. The structural characterization by single-crystal X-ray diffraction revealed that the compound crystallizes in the triclinic space group P Inline graphic with half a mol­ecule per asymmetric unit and a staggered arrangement of the cyclo­penta­dienide ligands.

Chemical context

Magnesocene (Cp2Mg) was initially reported by Wilkinson and Fischer and co-workers in 1954, just a few years after the discovery of ferrocene (Wilkinson & Cotton, 1954; Fischer & Hafner, 1954). Although magnesocene exhibits distinctively different chemical properties, it is isostructural to ferrocene and marked the beginning of main-group metallocene chemistry. One of the key differences in reactivity between alkaline-earth metallocenes and ferrocenes is that the central atoms of the former exhibit Lewis acidic character. Therefore, many crystal structures of magnesocenes are actually of donor complexes, such as magnesocene mono- and bis­(tetra­hydro­furan) adduct, Cp2Mg·(thf) and Cp2Mg·(thf)2 (Lehmkuhl et al., 1986; Jaenschke et al., 2003; Kim et al., 2007). Nevertheless, solvent-free crystal structures are also known, especially in case of highly substituted magnesocenes (Morley et al., 1987; Gardiner et al., 1991; Weber et al., 2002; Vollet et al., 2003; Deacon et al., 2015; Müller et al., 2021). Hanusa and coworkers had reported the synthesis of 1,1′,2,2′,4,4′-hexa­iso­propyl­magnesocene, 3Cp2Mg, -calcocene, 3Cp2Ca, -strontocene, 3Cp2Sr, and -barocene, 3Cp2Ba (the triiso­propyl­cyclo­penta­dienide ligand is commonly abbreviated as ‘3Cp’), via treatment of potassium 1,2,4-triiso­propyl­cyclo­penta­dienide, 3CpK, with the corresponding metal(II) bromide or iodide and described the magnesocene to be oily or waxy in composition (Burkey et al., 1993, 1994). Thus, no crystal structure was obtained of the title compound. We found that the title compound may also be obtained through treatment of an isomeric mixture of triiso­propyl­cyclo­penta­diene with n-butyl-sec-butyl­magnesium in hexane. graphic file with name e-78-00287-scheme1.jpg

Structural commentary

The title compound crystallizes in the triclinic space group P Inline graphic with half a mol­ecule per asymmetric unit, due to an inversion center at the magnesium atom position (Fig. 1), resulting in C 2h symmetry for the mol­ecule. Accordingly, the Cp rings adopt a staggered arrangement with the single isopropyl group at the C4 position facing the two isopropyl groups at the C1 and C2 positions and are perfectly coplanar to each other (Fig. 2). The C—C bond lengths within the Cp ring are almost equal [C1—C2: 1.4237 (18) Å; C2—C3: 1.4268 (17) Å; C3—C4: 1.4172 (19) Å; C4—C5: 1.4220 (18) Å; C5—C1: 1.4277 (18) Å] implying a high degree of 6π electron aromaticity, and the Mg⋯Cpcentroid distance is 1.9852 (1) Å, which is within the normal range [e.g.: Cp2Mg: 1.9897 (5) Å] for magnesocenes (Bünder & Weiss, 1975).

Figure 1.

Figure 1

Asymmetric unit of the title compound (displacement ellipsoids are drawn at the 50% probability level).

Figure 2.

Figure 2

(a) Side view and (b) top view of the mol­ecular structure of the title compound in the crystal. Symmetry code: (’) 1 − x, 1 − y, 1 − z. Displacement ellipsoids are drawn at the 50% probability level; H atoms omitted for clarity.

Supra­molecular features

The mol­ecules of the title compound are well separated from each other in the crystal structure, with one magnesocene mol­ecule per unit cell. Each mol­ecule has eight neighboring mol­ecules, forming a distorted hexa­gonal bipyramidal coordination geometry (Fig. 3 a and 3b), with distances of d min (Mg1⋯Mg1i) = 8.7025 (4) Å, d max (Mg1⋯Mg1iii) = 9.3031 (3) Å and d axial (Mg1⋯Mg1iv) = 9.2033 (4) Å [symmetry codes: (i) −1 + x, y, z; (iii) 1 + x, −1 + y, z; (iv) x, y, 1 + z]. The angles between the equatorial Mg atoms, the central magnesium atom and the axial magnesium atom are between θmin = 90.68° (Mg1iii—Mg1—Mg1iv) and θmax = 99.17° (Mg1ii—Mg1—Mg1iv).

Figure 3.

Figure 3

(a) Supra­molecular coordination geometry of the title compound in the crystal and (b) the corresponding polyhedron. Symmetry codes: (i) −1 + x, y, z; (ii) x, −1 + y, z; (iii) 1 + x, −1 + y, z; (iv) x, y, 1 + z. H atoms and isopropyl groups are omitted for clarity.

Each 3Cp2Mg moiety has eight neighboring mol­ecules within the bc and ac planes (Fig. 4 a and 4b), but only six neighboring mol­ecules within the ab plane, forming an almost hexa­gonal layer (γ = 63.00°), but with the layers being congruent to each other (Fig. 4 c).

Figure 4.

Figure 4

Arrangement of the layers of the title compound along the crystallographic a, b and c axes (H atoms and isopropyl groups omitted for clarity).

Database survey

A search in the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) showed that 14 crystal structures of magnesocenes of the type (C5 R 5)2Mg had previously been reported. In this search, any type of donor complexes of magnesocenes of the form (C5 R 5)2Mg· Dn are not counted. The Mg⋯Cpcentroid bonding distances in these structures lie between 1.9562 (1) and 2.0628 (11) Å and the dihedral angles between the Cp planes are between 0° (co-planar geometry) and 17.892°. Thus, the bond distances and angles in the title compound are within normal ranges of known magnesocenes.

Synthesis and crystallization

Hanusa and coworkers had previously reported that 1,1′,2,2′,4,4′-hexa­iso­propyl­magnesocene, 3Cp2Mg, could be obtained by the reaction of potassium 1,2,4-triiso­propyl­cyclo­penta­dienide with magnesium(II) bromide. However, in this work, we utilized di­butyl­magnesium as a strong base to deprotonate the triiso­propyl­cyclo­penta­diene (Fig. 5).

Figure 5.

Figure 5

Reaction scheme for the formation of the title compound 3Cp2Mg.

To a solution of 4.00 g (20.8 mmol) of an isomeric mixture of triiso­propyl­cyclo­penta­diene in 100 mL of hexane were added 15.0 mL of a 0.7 M solution of n-butyl-sec-butyl­magnesium in hexane (10.5 mmol). The light-yellow reaction solution was stirred at 333 K overnight. Subsequently, all volatiles were removed in vacuo and a yellow oil was obtained, from which the title compound crystallized over the course of one day at ambient temperature. The crystallized material was washed with small portions of hexane and dried in vacuo to obtain the title compound as a pure, colorless, crystalline solid in 43% yield (1.83 g; 4.50 mmol).

In addition to a structural characterization by single-crystal X-ray diffraction, the title compound was also characterized by 1H and 13C NMR spectroscopy: 1H NMR (400 MHz, C6D6, 295 K): δ (in ppm) = 1.07 [d, J = 7Hz, 12H, CH(CH3)2], 1.28 [d, J = 7Hz, 12H, CH(CH3)2], 1.36 [d, J = 7Hz, 12H, CH(CH3)2], 2.82–2.92 [m, 6H, CH(CH3)2], 5.77 (s, 4H, Cp-H); 1H NMR (400 MHz, DMSO-D6, 294 K): δ (in ppm) = 1.06 [d, J = 7Hz, 36H, CH(CH3)2], 2.68 [sep, J = 7Hz, 2H, CH(CH3)2], 2.76 [sep, J = 7Hz, 2H, CH(CH3)2], 4.94 (s, 4H, Cp-H); 13C{1H} NMR (101 MHz, C6D6, 295 K): δ (in ppm) = 24.0 ( i Pr), 24.4 ( i Pr), 26.4 ( i Pr), 26.6 ( i Pr), 28.7 ( i Pr), 98.7 (Cp), 125.3 (Cp), 128.6 (Cp); 13C{1H} NMR (101 MHz, DMSO-D6, 294 K): δ (in ppm) = 25.9 ( i Pr), 26.8 ( i Pr), 27.0 ( i Pr), 29.1 ( i Pr), 94.6 (Cp), 119.4 (Cp), 120.9 (Cp).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All non H-atoms were located in the electron density maps and refined anisotropically. C-bound H atoms were placed in positions of optimized geometry and treated as riding atoms: C—H = 1.00 Å (CH), 0.98 Å (CH3), and with U iso(H) = kU eq(C), where k = 1.2 for CH and 1.5 for CH3.

Table 1. Experimental details.

Crystal data
Chemical formula [Mg(C14H23)2]
M r 406.96
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 133
a, b, c (Å) 8.7025 (4), 9.0903 (4), 9.2033 (4)
α, β, γ (°) 80.829 (2), 81.151 (2), 63.004 (1)
V3) 637.68 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.27 × 0.20 × 0.07
 
Data collection
Diffractometer Bruker D8 Venture Photon II
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.712, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24343, 2808, 2339
R int 0.046
(sin θ/λ)max−1) 0.642
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.100, 1.06
No. of reflections 2808
No. of parameters 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.20

Computer programs: APEX3 and SAINT (Bruker, 2019), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), shelXle (Hübschle et al., 2011) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001189/pk2661sup1.cif

e-78-00287-sup1.cif (715.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001189/pk2661Isup2.hkl

e-78-00287-Isup2.hkl (224.5KB, hkl)

CCDC reference: 2149608

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Instrumentation and technical assistance for this work were provided by the Service Center X-ray Diffraction, with financial support from Saarland University and the German Science Foundation (INST 256/506–1).

supplementary crystallographic information

Crystal data

[Mg(C14H23)2] Z = 1
Mr = 406.96 F(000) = 226
Triclinic, P1 Dx = 1.060 Mg m3
a = 8.7025 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.0903 (4) Å Cell parameters from 7985 reflections
c = 9.2033 (4) Å θ = 2.5–27.1°
α = 80.829 (2)° µ = 0.08 mm1
β = 81.151 (2)° T = 133 K
γ = 63.004 (1)° Plate, yellow
V = 637.68 (5) Å3 0.27 × 0.20 × 0.07 mm

Data collection

Bruker D8 Venture Photon II diffractometer 2339 reflections with I > 2σ(I)
Radiation source: INCOATEC IµS microfocus sealed tube Rint = 0.046
φ and ω scans θmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −11→11
Tmin = 0.712, Tmax = 0.746 k = −11→11
24343 measured reflections l = −11→11
2808 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.2575P] where P = (Fo2 + 2Fc2)/3
2808 reflections (Δ/σ)max < 0.001
138 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mg1 0.500000 0.500000 0.500000 0.02198 (16)
C1 0.58902 (16) 0.29370 (15) 0.34104 (14) 0.0220 (3)
C2 0.68748 (15) 0.38509 (15) 0.29476 (14) 0.0222 (3)
C3 0.78805 (16) 0.36201 (16) 0.41245 (14) 0.0230 (3)
H3 0.876899 0.404101 0.408093 0.028*
C4 0.75424 (15) 0.25725 (15) 0.53102 (14) 0.0223 (3)
C5 0.63013 (16) 0.21621 (15) 0.48667 (14) 0.0232 (3)
H5 0.587559 0.136717 0.544119 0.028*
C6 0.47318 (17) 0.27043 (16) 0.24895 (15) 0.0257 (3)
H6 0.444736 0.359348 0.164188 0.031*
C7 0.30301 (19) 0.2858 (2) 0.33539 (19) 0.0371 (4)
H7A 0.233030 0.269800 0.271125 0.056*
H7B 0.327426 0.201156 0.420434 0.056*
H7C 0.239326 0.396273 0.370110 0.056*
C8 0.5672 (2) 0.10251 (19) 0.18531 (18) 0.0368 (4)
H8A 0.491531 0.091596 0.123487 0.055*
H8B 0.597174 0.012997 0.266371 0.055*
H8C 0.673219 0.095503 0.125346 0.055*
C9 0.69613 (17) 0.47897 (17) 0.14521 (15) 0.0261 (3)
H9 0.585123 0.513065 0.101394 0.031*
C10 0.7151 (2) 0.6358 (2) 0.15456 (18) 0.0422 (4)
H10A 0.719212 0.692389 0.055076 0.063*
H10B 0.822300 0.606089 0.198629 0.063*
H10C 0.615986 0.709829 0.215971 0.063*
C11 0.8434 (2) 0.3681 (2) 0.04173 (17) 0.0401 (4)
H11A 0.843621 0.430001 −0.055715 0.060*
H11B 0.827146 0.270336 0.032239 0.060*
H11C 0.954060 0.332769 0.082140 0.060*
C12 0.82800 (17) 0.20815 (17) 0.68044 (15) 0.0274 (3)
H12 0.750729 0.296459 0.745989 0.033*
C13 1.00801 (19) 0.1994 (2) 0.66748 (18) 0.0408 (4)
H13A 1.087252 0.112649 0.604724 0.061*
H13B 1.049205 0.173474 0.765945 0.061*
H13C 1.003708 0.306602 0.623400 0.061*
C14 0.8308 (3) 0.0458 (2) 0.75386 (19) 0.0463 (4)
H14A 0.712755 0.055338 0.767566 0.069*
H14B 0.876845 0.019984 0.850239 0.069*
H14C 0.904440 −0.043197 0.691324 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mg1 0.0202 (3) 0.0207 (3) 0.0236 (3) −0.0070 (2) 0.0002 (2) −0.0067 (2)
C1 0.0213 (6) 0.0189 (6) 0.0243 (6) −0.0064 (5) −0.0012 (5) −0.0066 (5)
C2 0.0195 (6) 0.0222 (6) 0.0227 (6) −0.0066 (5) 0.0004 (5) −0.0063 (5)
C3 0.0183 (6) 0.0259 (6) 0.0246 (6) −0.0088 (5) −0.0004 (5) −0.0064 (5)
C4 0.0191 (6) 0.0209 (6) 0.0238 (6) −0.0049 (5) −0.0011 (5) −0.0065 (5)
C5 0.0247 (6) 0.0196 (6) 0.0247 (6) −0.0089 (5) −0.0015 (5) −0.0040 (5)
C6 0.0281 (7) 0.0234 (6) 0.0278 (7) −0.0116 (5) −0.0063 (5) −0.0040 (5)
C7 0.0287 (7) 0.0408 (8) 0.0478 (9) −0.0168 (6) −0.0016 (6) −0.0174 (7)
C8 0.0358 (8) 0.0375 (8) 0.0415 (9) −0.0151 (7) −0.0044 (7) −0.0184 (7)
C9 0.0246 (6) 0.0300 (7) 0.0236 (7) −0.0123 (5) −0.0010 (5) −0.0027 (5)
C10 0.0609 (11) 0.0354 (8) 0.0335 (8) −0.0274 (8) 0.0068 (7) −0.0033 (7)
C11 0.0467 (9) 0.0395 (8) 0.0274 (8) −0.0156 (7) 0.0090 (7) −0.0075 (6)
C12 0.0268 (7) 0.0270 (6) 0.0246 (7) −0.0071 (5) −0.0034 (5) −0.0059 (5)
C13 0.0298 (8) 0.0566 (10) 0.0338 (8) −0.0146 (7) −0.0090 (6) −0.0067 (7)
C14 0.0652 (11) 0.0427 (9) 0.0356 (9) −0.0270 (9) −0.0204 (8) 0.0085 (7)

Geometric parameters (Å, º)

Mg1—C3i 2.3136 (12) C7—H7B 0.9800
Mg1—C3 2.3136 (12) C7—H7C 0.9800
Mg1—C5 2.3148 (12) C8—H8A 0.9800
Mg1—C5i 2.3148 (12) C8—H8B 0.9800
Mg1—C4 2.3253 (12) C8—H8C 0.9800
Mg1—C4i 2.3253 (12) C9—C11 1.5239 (19)
Mg1—C2i 2.3355 (12) C9—C10 1.525 (2)
Mg1—C2 2.3355 (12) C9—H9 1.0000
Mg1—C1i 2.3375 (12) C10—H10A 0.9800
Mg1—C1 2.3376 (12) C10—H10B 0.9800
C1—C2 1.4237 (18) C10—H10C 0.9800
C1—C5 1.4277 (18) C11—H11A 0.9800
C1—C6 1.5143 (17) C11—H11B 0.9800
C2—C3 1.4268 (17) C11—H11C 0.9800
C2—C9 1.5101 (18) C12—C14 1.514 (2)
C3—C4 1.4172 (19) C12—C13 1.519 (2)
C3—H3 1.0000 C12—H12 1.0000
C4—C5 1.4220 (18) C13—H13A 0.9800
C4—C12 1.5226 (18) C13—H13B 0.9800
C5—H5 1.0000 C13—H13C 0.9800
C6—C7 1.527 (2) C14—H14A 0.9800
C6—C8 1.5317 (18) C14—H14B 0.9800
C6—H6 1.0000 C14—H14C 0.9800
C7—H7A 0.9800
C3i—Mg1—C3 180.0 C5—C4—C12 126.88 (12)
C3i—Mg1—C5 121.04 (5) C3—C4—Mg1 71.76 (7)
C3—Mg1—C5 58.96 (5) C5—C4—Mg1 71.75 (7)
C3i—Mg1—C5i 58.96 (5) C12—C4—Mg1 118.67 (8)
C3—Mg1—C5i 121.04 (5) C4—C5—C1 109.12 (11)
C5—Mg1—C5i 180.0 C4—C5—Mg1 72.56 (7)
C3i—Mg1—C4 144.42 (5) C1—C5—Mg1 73.00 (7)
C3—Mg1—C4 35.58 (5) C4—C5—H5 125.3
C5—Mg1—C4 35.69 (4) C1—C5—H5 125.3
C5i—Mg1—C4 144.31 (4) Mg1—C5—H5 125.3
C3i—Mg1—C4i 35.58 (5) C1—C6—C7 112.68 (11)
C3—Mg1—C4i 144.42 (5) C1—C6—C8 110.81 (11)
C5—Mg1—C4i 144.31 (4) C7—C6—C8 109.65 (12)
C5i—Mg1—C4i 35.69 (4) C1—C6—H6 107.8
C4—Mg1—C4i 180.0 C7—C6—H6 107.8
C3i—Mg1—C2i 35.74 (4) C8—C6—H6 107.8
C3—Mg1—C2i 144.26 (4) C6—C7—H7A 109.5
C5—Mg1—C2i 120.74 (5) C6—C7—H7B 109.5
C5i—Mg1—C2i 59.26 (5) H7A—C7—H7B 109.5
C4—Mg1—C2i 120.27 (4) C6—C7—H7C 109.5
C4i—Mg1—C2i 59.73 (4) H7A—C7—H7C 109.5
C3i—Mg1—C2 144.26 (4) H7B—C7—H7C 109.5
C3—Mg1—C2 35.74 (4) C6—C8—H8A 109.5
C5—Mg1—C2 59.26 (5) C6—C8—H8B 109.5
C5i—Mg1—C2 120.74 (5) H8A—C8—H8B 109.5
C4—Mg1—C2 59.73 (4) C6—C8—H8C 109.5
C4i—Mg1—C2 120.27 (4) H8A—C8—H8C 109.5
C2i—Mg1—C2 180.0 H8B—C8—H8C 109.5
C3i—Mg1—C1i 59.17 (4) C2—C9—C11 110.83 (11)
C3—Mg1—C1i 120.83 (4) C2—C9—C10 112.69 (11)
C5—Mg1—C1i 144.26 (4) C11—C9—C10 109.89 (12)
C5i—Mg1—C1i 35.74 (4) C2—C9—H9 107.7
C4—Mg1—C1i 120.28 (4) C11—C9—H9 107.7
C4i—Mg1—C1i 59.72 (4) C10—C9—H9 107.7
C2i—Mg1—C1i 35.48 (4) C9—C10—H10A 109.5
C2—Mg1—C1i 144.52 (4) C9—C10—H10B 109.5
C3i—Mg1—C1 120.83 (4) H10A—C10—H10B 109.5
C3—Mg1—C1 59.17 (4) C9—C10—H10C 109.5
C5—Mg1—C1 35.74 (4) H10A—C10—H10C 109.5
C5i—Mg1—C1 144.26 (4) H10B—C10—H10C 109.5
C4—Mg1—C1 59.72 (4) C9—C11—H11A 109.5
C4i—Mg1—C1 120.28 (4) C9—C11—H11B 109.5
C2i—Mg1—C1 144.52 (4) H11A—C11—H11B 109.5
C2—Mg1—C1 35.48 (4) C9—C11—H11C 109.5
C1i—Mg1—C1 180.0 H11A—C11—H11C 109.5
C2—C1—C5 107.47 (11) H11B—C11—H11C 109.5
C2—C1—C6 126.57 (12) C14—C12—C13 110.23 (13)
C5—C1—C6 125.78 (12) C14—C12—C4 112.14 (12)
C2—C1—Mg1 72.18 (7) C13—C12—C4 111.48 (12)
C5—C1—Mg1 71.26 (7) C14—C12—H12 107.6
C6—C1—Mg1 125.75 (8) C13—C12—H12 107.6
C1—C2—C3 107.35 (11) C4—C12—H12 107.6
C1—C2—C9 126.99 (11) C12—C13—H13A 109.5
C3—C2—C9 125.51 (12) C12—C13—H13B 109.5
C1—C2—Mg1 72.34 (7) H13A—C13—H13B 109.5
C3—C2—Mg1 71.29 (7) C12—C13—H13C 109.5
C9—C2—Mg1 125.19 (8) H13A—C13—H13C 109.5
C4—C3—C2 109.38 (11) H13B—C13—H13C 109.5
C4—C3—Mg1 72.66 (7) C12—C14—H14A 109.5
C2—C3—Mg1 72.97 (7) C12—C14—H14B 109.5
C4—C3—H3 125.2 H14A—C14—H14B 109.5
C2—C3—H3 125.2 C12—C14—H14C 109.5
Mg1—C3—H3 125.2 H14A—C14—H14C 109.5
C3—C4—C5 106.69 (11) H14B—C14—H14C 109.5
C3—C4—C12 126.32 (12)
C5—C1—C2—C3 0.18 (13) C2—C1—C5—C4 −0.49 (13)
C6—C1—C2—C3 −175.17 (11) C6—C1—C5—C4 174.90 (11)
Mg1—C1—C2—C3 63.12 (8) Mg1—C1—C5—C4 −64.04 (8)
C5—C1—C2—C9 175.90 (11) C2—C1—C5—Mg1 63.55 (8)
C6—C1—C2—C9 0.6 (2) C6—C1—C5—Mg1 −121.06 (12)
Mg1—C1—C2—C9 −121.16 (12) C2—C1—C6—C7 −138.10 (13)
C5—C1—C2—Mg1 −62.94 (8) C5—C1—C6—C7 47.38 (17)
C6—C1—C2—Mg1 121.71 (12) Mg1—C1—C6—C7 −44.39 (16)
C1—C2—C3—C4 0.21 (14) C2—C1—C6—C8 98.62 (15)
C9—C2—C3—C4 −175.60 (11) C5—C1—C6—C8 −75.90 (16)
Mg1—C2—C3—C4 64.02 (9) Mg1—C1—C6—C8 −167.68 (10)
C1—C2—C3—Mg1 −63.81 (8) C1—C2—C9—C11 −90.94 (15)
C9—C2—C3—Mg1 120.39 (12) C3—C2—C9—C11 84.04 (16)
C2—C3—C4—C5 −0.50 (13) Mg1—C2—C9—C11 175.25 (10)
Mg1—C3—C4—C5 63.71 (8) C1—C2—C9—C10 145.44 (13)
C2—C3—C4—C12 −176.84 (11) C3—C2—C9—C10 −39.58 (18)
Mg1—C3—C4—C12 −112.63 (12) Mg1—C2—C9—C10 51.63 (15)
C2—C3—C4—Mg1 −64.21 (8) C3—C4—C12—C14 −155.61 (13)
C3—C4—C5—C1 0.61 (13) C5—C4—C12—C14 28.78 (18)
C12—C4—C5—C1 176.92 (11) Mg1—C4—C12—C14 116.73 (12)
Mg1—C4—C5—C1 64.33 (8) C3—C4—C12—C13 −31.46 (18)
C3—C4—C5—Mg1 −63.71 (8) C5—C4—C12—C13 152.93 (13)
C12—C4—C5—Mg1 112.60 (12) Mg1—C4—C12—C13 −119.13 (11)

Symmetry code: (i) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant SCHA1915/3-1.

References

  1. Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bünder, W. & Weiss, E. (1975). J. Organomet. Chem. 92, 1–6.
  3. Burkey, D. J., Hanusa, T. P. & Huffman, J. C. (1994). Adv. Mater. Opt. Electron. 4, 1–8.
  4. Burkey, D. J., Williams, R. A. & Hanusa, T. P. (1993). Organometallics, 12, 1331–1337.
  5. Deacon, G. B., Jaroschik, F., Junk, P. C. & Kelly, R. P. (2015). Organometallics, 34, 2369–2377.
  6. Fischer, E. O. & Hafner, W. (1954). Z. Naturforsch. 9, 503–505.
  7. Gardiner, M. G., Raston, C. L. & Kennard, C. H. L. (1991). Organometallics, 10, 3680–3686.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  10. Jaenschke, A., Paap, J. & Behrens, U. (2003). Organometallics, 22, 1167–1169.
  11. Kim, D. Y., Yang, Y., Abelson, J. R. & Girolami, G. S. (2007). Inorg. Chem. 46, 9060–9066. [DOI] [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Lehmkuhl, H., Mehler, K., Benn, R., Rufińska, A. & Krüger, C. (1986). Chem. Ber. 119, 1054–1069.
  14. Morley, C. P., Jutzi, P., Krueger, C. & Wallis, J. M. (1987). Organometallics, 6, 1084–1090.
  15. Müller, C., Warken, J., Huch, V., Morgenstern, B., Bischoff, I.-A., Zimmer, M. & Schäfer, A. (2021). Chem. Eur. J. 27, 6500–6510. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Vollet, J., Baum, E. & Schnöckel, H. (2003). Organometallics, 22, 2525–2527.
  19. Weber, F., Sitzmann, H., Schultz, M., Sofield, C. D. & Andersen, R. A. (2002). Organometallics, 21, 3139–3146.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Wilkinson, G. & Cotton, F. A. (1954). Chem. Ind. 307–308.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001189/pk2661sup1.cif

e-78-00287-sup1.cif (715.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001189/pk2661Isup2.hkl

e-78-00287-Isup2.hkl (224.5KB, hkl)

CCDC reference: 2149608

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES