Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 3;78(Pt 3):264–269. doi: 10.1107/S2056989022001037

Crystal structures of two Co(NCS)2 urotropine coordination compounds with different Co coordinations

Christoph Krebs a, Inke Jess a, Christian Näther a,*
PMCID: PMC8900509  PMID: 35371555

In the crystal structure of the title compounds, discrete complexes with different Co coordinations are observed, which are linked by inter­molecular hydrogen bonding into three-dimensional networks.

Keywords: crystal structure, cobalt thio­cyanate, urotropine, hydrogen bonding, mixed ligand occupation

Abstract

The reaction of Co(NCS)2 with urotropine in ethanol leads to the formation of two different compounds, namely, bis­(ethanol-κO)bis­(hexa­methyl­ene­tetra­mine-κN)bis­(thio­cyanato-κN)cobalt(II)–di­aqua-κ 2O-bis­(hexa­methyl­ene­tetra­mine-κN)bis­(thio­cyanato-κN)cobalt(II)–ethanol–hexa­methyl­ene­tetra­mine (1.2/0.8/1.6/4), [Co(NCS)2(C6H12N4)2(C2H6O)2]1.2·[Co(NCS)2(C6H12N4)2(H2O)2]0.8·1.6C2H6O·4C6H12N4, 1, and tris­(ethanol-κO)(hexa­methyl­ene­tetra­mine-κN)bis(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H12N4)(C2H6O)3], 2. In the crystal structure of compound 1, two crystallographically independent discrete complexes are observed that are located on centres of inversion. In one of them, the Co cation is octa­hedrally coordinated to two terminal N-bonded thio­cyanate anions, two urotropine ligands and two ethanol mol­ecules, whereas in the second complex 80% of the coordinating ethanol is exchanged by water. Formally, compound 1 is a mixture of two different complexes, i.e. di­aqua­dithio­cyanato­bis­(urotropine)cobalt(II) and di­ethano­ldi­thio­cyanato­bis­(uro­trop­ine)cobalt(II), that contain additional ethanol and urotropine solvate mol­ecules leading to an overall composition of [Co(NCS)2(urotropine)2(ethanol)1.2(H2O)0.8·0.8ethanol·4urotropine. Both discrete complexes are linked by inter­molecular O—H⋯O and O—H⋯N hydrogen bonding and additional urotropine solvate mol­ecules into chains, which are further connected into layers. These layers combine into a three-dimensional network by pairs of centrosymmetric inter­molecular C—H⋯S hydrogen bonds. In the crystal structure of compound 2, di­thio­cyanato­(urotropine)tri­ethano­lcobalt(II), the cobalt cation is octa­hedrally coordinated to two terminal N-bonded thio­cyanate anions, one urotropine ligand and three ethanol mol­ecules into discrete complexes, which are located in general positions. These complexes are linked by inter­molecular O—H⋯N hydrogen bonding into layers, which are further connected into a three-dimensional network by inter­molecular C—H⋯S hydrogen bonding.

Chemical context

Recently, we reported the crystal structure of two new coordination compounds with the composition [Co(NCS)2(urotropine)2(ethanol)2] and [Co(NCS)2(ethanol)4](urotropine)2 (Krebs et al., 2022). Both compounds consist of discrete complexes, in which the cobalt cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and by four ethanol and two ethanol and two urotropine ligands, respectively. These investigations were performed to prepare precursors that on thermal decomposition transform into coordination polymers in which the cobalt cations are linked by μ-1,3 bridging thio­cyanate anions into chains or layers (Näther et al., 2013). Several such compounds have been reported in the literature and they are of inter­est because they show ferromagnetic or anti­ferromagnetic ordering or a slow relaxation of the magnetization, which is indicative for single-chain magnetism (Böhme et al., 2020; Shi et al., 2006; Jin et al., 2007; Jochim et al., 2020; Prananto et al., 2017; Mautner et al., 2018; Rams et al., 2020; Ceglarska et al., 2021; Werner et al., 2014, 2015; Suckert et al., 2016; Wellm et al., 2020). In this context, urotropine as a coligand was of inter­est because this ligand is able to form networks (Czubacka et al., 2012; Li et al., 2012), is magnetically silent and one compound with cadmium had already been reported in which the metal cations are linked by the anionic ligands into chains (Bai et al., 2009). graphic file with name e-78-00264-scheme1.jpg

However, for the preparation of the two compounds mentioned above, cobalt thio­cyanate was reacted with urotropine in ethanol and X-ray powder measurements show that none of these compounds can be prepared as a pure crystalline phase. Either the desired compounds were obtained as the minor phase or the experimental powder patterns were completely different from the calculated one. These investigations indicate that additional compounds are present and that the desired compounds are not very stable and transform in solution. Therefore, additional crystallization experiments were performed, which lead to the formation of single crystals of two new compounds that were identified by single crystal X-ray diffraction. Even these compounds contain ethanol as a ligand but in one compound one coord­ination site is simultaneously occupied by ethanol and water, which might originate from some residual water in the solvent used in the synthesis, whereas in the second compound the cobalt cations are coordinated by only one urotropine and three ethanol ligands. All this indicates that, for this system, different species are in equilibrium in solution and some phase crystallizes, presumably by kinetic control, which means that the synthesis is difficult to control.

Structural commentary

The asymmetric unit of compound 1 consists of two crystallographically independent Co cations that are located on centres of inversion as well as two thio­cyanate anions, four urotropine ligands, three ethanol and one water mol­ecule that occupy general positions (Fig. 1). One of the cobalt cations (Co1) is sixfold coordinated to two terminal N-bonded thio­cyanate anions, two urotropine ligands and two ethanol mol­ecules into discrete complexes (Fig. 1, top left). The methyl carbon atom of these ethanol mol­ecules is disordered in two positions and was refined using a split model. The second cobalt cation is also sixfold coordinated, forming discrete complexes, to two terminal N-bonded thio­cyanate anions, two urotropine ligands and two oxygen atoms, but the latter positions are mixed occupied by water and ethanol in a ratio of 8:2, leading to an overall composition for 1 of [Co(NCS)2(urotropine)2(ethanol)1.2(H2O)0.8·1.6ethanol·4urotropine. In the case where it is occupied by water, an ethanol mol­ecule is hydrogen bonded to this water mol­ecule; if it is occupied by ethanol, this ethanol solvate mol­ecule is not present (Fig. 1, top right). The position of the disordered O atoms of the water and ethanol mol­ecule was resolved and all O—H H atoms were clearly located in the difference map and refined isotropically with reasonable displacement parameters, using restraints for the O—H distances (see Refinement). The Co—N bond lengths to the thio­canate anions are similar in both complexes, which is also valid for the bond length to the urotropine ligands (Table 1). In contrast, the Co—O bond length to the water mol­ecule is shorter than those to the ethanol mol­ecules (Table 1), even if there might be some uncertainty in the distances because of the disorder.

Figure 1.

Figure 1

Crystal structure of compound 1 with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code for the generation of equivalent atoms: (i) −x + 1, −y + 1, −z + 2; (ii) −x + 2, −y + 1, −z + 1.

Table 1. Selected bond lengths (Å) for 1 .

Co1—N1 2.0590 (16) Co2—O2 2.029 (6)
Co1—O1 2.1388 (13) Co2—O4 2.21 (3)
Co1—N11 2.2834 (15) Co2—N21 2.2788 (16)
Co2—N2 2.0812 (16)    

The asymmetric unit of compound 2 consists of one crystallographically independent cobalt cation, one urotropine ligand and three ethanol mol­ecules, all of them located in general positions (Fig. 2). In this compound the cobalt cations are sixfold coordinated to two terminal N-bonded thio­cyanate anions, one urotropine ligand and three ethanol mol­ecules. The Co—N and Co—O bond lengths are comparable to those in compound 1 and to similar ethanol complexes retrieved from the literature (Krebs et al., 2021a, Table 2). From the angles around the Co cations, it is obvious that in all compounds the octa­hedra are slightly distorted (see supporting information). It is noted that compound 2 completes the series of Co(NCS)2-urotropine compounds with ethanol as an additional ligand, because in this compound the cobalt cations are coordinated to one urotropine and three ethanol ligands, whereas in the other compounds reported recently the cobalt cations are either coordinated to two urotropine and two ethanol ligands or to four ethanol ligands (Krebs et al., 2021a).

Figure 2.

Figure 2

Crystal structure of compound 2 with labelling and displacement ellipsoids drawn at the 50% probability level.

Table 2. Selected bond lengths (Å) for 2 .

Co1—N2 2.0615 (11) Co1—O31 2.1157 (9)
Co1—N1 2.0624 (11) Co1—O21 2.1314 (9)
Co1—O41 2.1021 (10) Co1—N11 2.2489 (11)

Supra­molecular features

In the crystal structure of the title compound, extensive hydrogen bonding is observed (Table 3). The discrete complex around Co1 is linked to two urotropine solvate mol­ecules via inter­molecular O—H⋯N hydrogen bonding (Fig. 3 and Table 3). For the Co2 complex, two different surroundings are observed. In the case where this cation is coordinated to water, this water mol­ecule is hydrogen bonded to two urotropine ligands and two ethanol mol­ecules (Fig. 4, top and Table 3). There are two additional C—H⋯S hydrogen bonds, which are not shown for clarity. In the case where Co2 is coordinated to EtOH, the solvate ethanol mol­ecule is not present and the surrounding is similar to that around Co1 with only hydrogen bonding to two urotropine ligands (compare Fig. 3 and Fig. 4, bottom). Both crystallographically independent complexes are linked into chains via inter­molecular O—H⋯O and O—H⋯N hydrogen bonding (Fig. 5). The chains are further connected into layers by inter­molecular C—H⋯O and C—H⋯N inter­actions. These layers are stacked onto each other and are linked by inter­molecular centrosymmetric pairs of C—H⋯S hydrogen bonds, in which only the discrete complex built up of Co2 is involved (Fig. 6 and Table 3).

Table 3. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N31 0.88 (2) 1.92 (2) 2.793 (2) 170 (3)
C4′—H4′A⋯N43i 0.96 2.50 3.243 (14) 134
C4′—H4′C⋯N44ii 0.96 2.38 3.161 (10) 138
O2—H2A⋯N41 0.87 (2) 1.88 (2) 2.743 (7) 173 (7)
O2—H2B⋯O3 0.87 (2) 1.80 (2) 2.665 (4) 177 (5)
C5—H5A⋯S2iii 0.97 3.02 3.925 (3) 156
O3—H3⋯N34 0.87 (2) 1.97 (2) 2.821 (3) 167 (4)
O4—H4⋯N41 0.87 (2) 1.94 (5) 2.81 (3) 170 (19)
C11—H11A⋯O1ii 0.97 2.49 3.058 (2) 117
C11—H11B⋯N1 0.97 2.67 3.213 (2) 116
C12—H12B⋯N44 0.97 2.64 3.423 (3) 138
C13—H13A⋯N13iv 0.97 2.70 3.563 (2) 149
C13—H13B⋯S2iii 0.97 2.95 3.7150 (19) 136
C14—H14A⋯S2v 0.97 2.93 3.840 (2) 156
C15—H15B⋯O1 0.97 2.61 3.118 (2) 113
C22—H22B⋯N12vi 0.97 2.58 3.448 (2) 149
C25—H25A⋯O2vii 0.97 2.50 3.026 (7) 114
C25—H25A⋯O4vii 0.97 2.49 3.08 (3) 119
C25—H25B⋯N2 0.97 2.61 3.202 (3) 119
C26—H26A⋯S1ii 0.97 2.98 3.655 (2) 128
C26—H26B⋯N22viii 0.97 2.69 3.581 (3) 152
C33—H33A⋯N23 0.97 2.66 3.431 (3) 137
C45—H45A⋯S2vii 0.97 3.01 3.959 (3) 165

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic ; (vii) Inline graphic ; (viii) Inline graphic .

Figure 3.

Figure 3

View of the discrete complex in compound 1 built up of Co1, which is connected to two urotropine solvate mol­ecules via inter­molecular O—H⋯N hydrogen bonding (shown as dashed lines).

Figure 4.

Figure 4

View of the two different coordinations of Co2 in compound 1 with H2O (top) and ethanol (bottom) with inter­molecular hydrogen bonding shown as dashed lines.

Figure 5.

Figure 5

Part of the crystal structure of compound 1 showing the connection of the discrete complexes by the urotropine solvate mol­ecules via inter­molecular O—H⋯N hydrogen bonding (shown as dashed lines).

Figure 6.

Figure 6

Crystal structure of compound 1 with a view along the crystallographic b axis and inter­molecular hydrogen bonding shown as dashed lines.

In the crystal structure of compound 2, the discrete complexes are linked by strong inter­molecular O—H⋯N hydrogen bonding between two of the three O—H hydrogen atoms of the ethanol ligands and two urotropine N atoms into layers that are parallel to the bc plane (Fig. 7 and Table 4). These layers are further linked by inter­molecular O—H⋯S and C—H⋯S hydrogen bonding into a three-dimensional network (Table 4). Some of the O—H⋯S and C—H⋯S angles are close to linearity, indicating that these are relatively strong inter­actions (Table 4).

Figure 7.

Figure 7

Crystal structure of compound 2 with a view along the crystallographic a axis and inter­molecular O—H⋯N hydrogen bonding shown as dashed lines.

Table 4. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯S2i 0.99 2.87 3.6586 (13) 137
C12—H12B⋯S1ii 0.99 2.92 3.8813 (13) 164
C15—H15A⋯S1iii 0.99 2.99 3.9387 (13) 161
C15—H15B⋯S2iv 0.99 2.94 3.7110 (13) 135
C16—H16A⋯O21 0.99 2.54 3.1009 (16) 116
C16—H16B⋯N1 0.99 2.47 3.1083 (17) 122
O21—H21⋯N13ii 0.84 2.03 2.8424 (14) 161
C22—H22C⋯S1v 0.98 3.02 3.9559 (16) 161
O31—H31⋯N12vi 0.84 1.96 2.7969 (14) 172
O41—H41⋯S2vi 0.84 2.37 3.2080 (10) 174

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Database survey

In the Cambridge Structure Database (CSD version 5.42, last update November 2020; Groom et al., 2016) there are already several structures reported that contain cobalt thio­cyanate and urotropine as a ligand, but only one of them contains additional ethanol (Krebs et al., 2021a). Most of them contain water as a ligand or solvate mol­ecule. In [Co(NCS)2(H2O)4]·2urotropine (Refcode: XILXOG; Li et al., 2007), the cobalt cations are octa­hedrally coordinated by two thio­cyanate anions and four water ligands with two additional urotropine ligands acting as solvate mol­ecules. [Co(NCS)2(urotrop­ine)2(H2O)2][Co(NCS)2(H2O)4]·2H2O (Refcode: MOTNIS; Liu et al., 2002, MOTNIS01; Zhang et al., 1999, MOTNIS02; Chakraborty et al., 2006, MOTNIS03; Lu et al., 2010) consists of two crystallographically independent discrete complexes in which the cobalt cations are coordinated by two terminal N-bonded thio­cyanate anions and four water or two water and two urotropine ligands with additional water as solvate mol­ecules. There is also one complex with water and methanol as ligands with the composition [Co(NCS)2(urotropine)(CH3OH)2(H2O)] (Refcode: POFGAT; Shang et al., 2008), in which the cobalt cations are octa­hedrally coordinated by the N atoms of two thio­cyanate anions, two methanol, one water and one urotropine ligand. Moreover, a compound with the composition [Co(NCS)2(urotropine)2(CH3CN)2] that also consists of discrete complexes has been reported (Krebs et al., 2021). It is noted that even with other metal cations only discrete complexes are reported, such as, for example, with nickel (Refcode: XILROA; Bai et al., 2007, XILROA01; Lu et al., 2010), or zinc (Refcode: SIMXIY; Kruszynski et al., 2018). Finally, a crystal structure is reported with cadmium in which the Cd cations are linked by pairs of thio­cyanate anions into chains, which are further linked by the urotropine ligand (Refcode: DOZZOI; Bai et al., 2009).

Synthesis and crystallization

Synthesis Co(NCS)2 and urotropine were purchased from Merck. All chemicals were used without further purification.

Crystals of compound 1 suitable for single-crystal X-ray diffraction were obtained after one day by the reaction of 0.15 mmol of Co(NCS)2 (26.3 mg) with 0.60 mmol of urotropine (84.1 mg) in 1.0 mL of ethanol at room temperature. The reaction of 0.15 mmol of Co(NCS)2 (26.3 mg) with 0.15 mmol of urotropine (21.0 mg) in 2.0 mL of ethanol at room temperature led to the formation of single crystals of compound 2.

The data collection for single-crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu Kα radiation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All non-hydrogen atoms were refined anisotropically. The C—H hydrogen atoms were located in the difference map but positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with U iso(H) = 1.2U eq(C) (1.5 for methyl H atoms) using a riding model. The O—H hydrogen atoms were located in the difference map and were refined with restraints for the O—H distance (DFIX) and varying isotropic displacement parameters in compound 1, whereas in compound 2 they were positioned with idealized geometry allowed to rotate but not to tip and were refined isotropically with U iso(H) = 1.5U eq(O) using a riding model. In compound 1, the methyl group of the EtOH mol­ecule coordinated to Co1 is disordered and was refined using a split model. In this compound, Co2 is either coordinated to water or to EtOH. In this case the O atoms occupy nearly the same crystallographic positions but finally both O atoms can be refined separately with anisotropic displacement parameters. In the case where Co2 is coordinated to water, it is hydrogen bonded to one EtOH solvate mol­ecule. If Co2 is coordinated to EtOH, the position of the EtOH solvate mol­ecule cannot be occupied. Therefore, the site occupation factor (sof) of the EtOH solvate mol­ecule must be identical to that of the coordinated water mol­ecule. In the beginning the sof was refined, leading to values close to 0.8 for the water and 0.2 for the coordinated EtOH mol­ecule but in the final refinements it was fixed at 0.8 and 0.2. The H-atom positions of both, water and EtOH, were clearly located and were refined with restraints and varying isotropic displacement parameters. This leads to comparable and reasonable values for the O—H distances as well as for the isotropic displacement parameters of the O—H hydrogen atoms.

Table 5. Experimental details.

  1 2
Crystal data
Chemical formula [Co(NCS)2(C6H12N4)2(C2H6O)2]1.2·[Co(NCS)2(C6H12N4)2(H2O)2]0.8·1.6C2H6O·4C6H12N4 [Co(NCS)2(C6H12N4)(C2H6O)3]
M r 1684.84 453.49
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 12.1536 (2), 12.9256 (3), 12.9374 (3) 11.1463 (1), 15.7705 (1), 12.1824 (1)
α, β, γ (°) 76.629 (2), 80.395 (2), 80.578 (2) 90, 103.886 (1), 90
V3) 1932.91 (7) 2078.87 (3)
Z 1 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 4.97 8.58
Crystal size (mm) 0.16 × 0.12 × 0.08 0.2 × 0.18 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021) Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.693, 1.000 0.427, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25821, 8226, 7777 29441, 4431, 4373
R int 0.024 0.027
(sin θ/λ)max−1) 0.639 0.635
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.103, 1.09 0.025, 0.068, 1.08
No. of reflections 8226 4431
No. of parameters 545 242
No. of restraints 10 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.69 0.32, −0.31

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2014/4 and SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 1999), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989022001037/tx2047sup1.cif

e-78-00264-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989022001037/tx20471sup2.hkl

e-78-00264-1sup2.hkl (653.1KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989022001037/tx20472sup3.hkl

e-78-00264-2sup3.hkl (353KB, hkl)

CCDC references: 2145766, 2145767

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft.

supplementary crystallographic information

Bis(ethanol-κO)bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–diaqua-κ2O-bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–ethanol–hexamethylenetetramine (1.2/0.8/1.6/4) (1) . Crystal data

[Co(NCS)2(C6H12N4)2(C2H6O)2]1.2·[Co(NCS)2(C6H12N4)2(H2O)2]0.8·1.6C2H6O·4C6H12N4 Z = 1
Mr = 1684.84 F(000) = 898
Triclinic, P1 Dx = 1.447 Mg m3
a = 12.1536 (2) Å Cu Kα radiation, λ = 1.54178 Å
b = 12.9256 (3) Å Cell parameters from 18138 reflections
c = 12.9374 (3) Å θ = 3.7–79.3°
α = 76.629 (2)° µ = 4.97 mm1
β = 80.395 (2)° T = 100 K
γ = 80.578 (2)° Plate, light colourless
V = 1932.91 (7) Å3 0.16 × 0.12 × 0.08 mm

Bis(ethanol-κO)bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–diaqua-κ2O-bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–ethanol–hexamethylenetetramine (1.2/0.8/1.6/4) (1) . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 8226 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 7777 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.024
Detector resolution: 10.0000 pixels mm-1 θmax = 80.1°, θmin = 3.5°
ω scans h = −15→15
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) k = −16→13
Tmin = 0.693, Tmax = 1.000 l = −16→16
25821 measured reflections

Bis(ethanol-κO)bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–diaqua-κ2O-bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–ethanol–hexamethylenetetramine (1.2/0.8/1.6/4) (1) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.7899P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103 (Δ/σ)max = 0.001
S = 1.09 Δρmax = 0.82 e Å3
8226 reflections Δρmin = −0.69 e Å3
545 parameters Extinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
10 restraints Extinction coefficient: 0.00080 (10)
Primary atom site location: dual

Bis(ethanol-κO)bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–diaqua-κ2O-bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–ethanol–hexamethylenetetramine (1.2/0.8/1.6/4) (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(ethanol-κO)bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–diaqua-κ2O-bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–ethanol–hexamethylenetetramine (1.2/0.8/1.6/4) (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.500000 0.000000 1.000000 0.01667 (10)
Co2 1.000000 0.500000 0.500000 0.01929 (11)
N1 0.38177 (14) −0.10448 (13) 1.03166 (13) 0.0209 (3)
C1 0.31474 (16) −0.15722 (15) 1.02515 (15) 0.0219 (4)
S1 0.22329 (5) −0.23250 (5) 1.01546 (5) 0.03988 (15)
N2 0.85107 (14) 0.59836 (13) 0.46671 (13) 0.0238 (3)
C2 0.76974 (17) 0.65684 (15) 0.45319 (15) 0.0226 (4)
S2 0.65758 (5) 0.74450 (5) 0.43091 (5) 0.03506 (14)
O1 0.37719 (11) 0.13161 (11) 0.94616 (11) 0.0216 (3)
H1 0.392 (3) 0.1982 (16) 0.927 (3) 0.060 (10)*
C3 0.26483 (18) 0.13151 (18) 0.91942 (18) 0.0294 (4)
H3AA 0.250342 0.057923 0.930034 0.044* 0.8
H3AB 0.262932 0.164417 0.844216 0.044* 0.8
H3BC 0.250431 0.196444 0.865692 0.044* 0.2
H3BD 0.271029 0.072225 0.883622 0.044* 0.2
C4 0.1725 (2) 0.1909 (2) 0.98618 (19) 0.0200 (4) 0.8
H4A 0.100686 0.185071 0.968034 0.030* 0.8
H4B 0.183149 0.265097 0.971950 0.030* 0.8
H4C 0.175324 0.160103 1.060858 0.030* 0.8
C4' 0.1630 (6) 0.1249 (14) 0.9957 (8) 0.047 (3) 0.2
H4'A 0.104113 0.109715 0.962611 0.071* 0.2
H4'B 0.140682 0.191965 1.018112 0.071* 0.2
H4'C 0.176793 0.068708 1.056935 0.071* 0.2
O2 0.9172 (3) 0.3693 (6) 0.5467 (6) 0.0215 (6) 0.8
H2A 0.939 (5) 0.308 (3) 0.588 (5) 0.07 (3)* 0.8
H2B 0.8447 (17) 0.372 (4) 0.548 (4) 0.077 (18)* 0.8
O3 0.69673 (15) 0.37997 (14) 0.54414 (15) 0.0275 (4) 0.8
C5 0.6645 (2) 0.2810 (2) 0.5350 (2) 0.0267 (5) 0.8
H5A 0.586260 0.291950 0.523215 0.032* 0.8
H5B 0.672275 0.228069 0.600949 0.032* 0.8
C6 0.7380 (2) 0.2411 (2) 0.4427 (2) 0.0298 (5) 0.8
H6A 0.731836 0.294723 0.378049 0.045* 0.8
H6B 0.714164 0.176471 0.434837 0.045* 0.8
H6C 0.814805 0.226809 0.456517 0.045* 0.8
H3 0.656 (3) 0.406 (3) 0.597 (2) 0.054 (11)* 0.8
O4 0.8970 (16) 0.367 (3) 0.543 (3) 0.0215 (6) 0.2
C7 0.7799 (8) 0.3562 (8) 0.5603 (9) 0.026 (2) 0.2
H7A 0.736856 0.426993 0.546472 0.032* 0.2
H7B 0.759133 0.323060 0.634838 0.032* 0.2
C8 0.7500 (9) 0.2899 (8) 0.4899 (8) 0.030 (2) 0.2
H8A 0.762768 0.326382 0.416213 0.046* 0.2
H8B 0.672194 0.279629 0.508926 0.046* 0.2
H8C 0.796095 0.221486 0.499688 0.046* 0.2
H4 0.930 (14) 0.306 (9) 0.574 (17) 0.02 (5)* 0.2
N11 0.53970 (13) −0.04050 (12) 0.83394 (12) 0.0169 (3)
N12 0.59878 (13) −0.18558 (13) 0.73316 (12) 0.0199 (3)
N13 0.46941 (13) −0.02933 (13) 0.66262 (12) 0.0201 (3)
N14 0.66683 (13) −0.01109 (12) 0.66326 (12) 0.0189 (3)
C11 0.57045 (16) −0.15859 (14) 0.83915 (14) 0.0193 (4)
H11A 0.634285 −0.184309 0.878516 0.023*
H11B 0.507809 −0.195364 0.878363 0.023*
C12 0.63690 (15) 0.01248 (15) 0.77084 (14) 0.0189 (4)
H12A 0.618761 0.089443 0.764292 0.023*
H12B 0.701533 −0.011012 0.809414 0.023*
C13 0.56767 (16) 0.02352 (15) 0.60617 (15) 0.0213 (4)
H13A 0.586413 0.007641 0.535122 0.026*
H13B 0.548205 0.100566 0.597793 0.026*
C14 0.50120 (16) −0.14575 (16) 0.67457 (15) 0.0220 (4)
H14A 0.518813 −0.163034 0.604076 0.026*
H14B 0.437746 −0.181983 0.712554 0.026*
C15 0.44349 (16) −0.00438 (15) 0.76983 (15) 0.0205 (4)
H15A 0.378951 −0.038674 0.808307 0.025*
H15B 0.423192 0.072471 0.762594 0.025*
C16 0.69351 (16) −0.12818 (15) 0.67461 (15) 0.0208 (4)
H16A 0.758527 −0.153184 0.712455 0.025*
H16B 0.713010 −0.144866 0.603934 0.025*
N21 0.96389 (13) 0.53277 (12) 0.66888 (12) 0.0185 (3)
N22 1.03238 (14) 0.51130 (13) 0.84249 (13) 0.0209 (3)
N23 0.83260 (14) 0.50888 (13) 0.83676 (13) 0.0211 (3)
N24 0.91408 (14) 0.67678 (13) 0.77182 (13) 0.0207 (3)
C21 0.86158 (16) 0.48569 (15) 0.72915 (15) 0.0206 (4)
H21A 0.798587 0.514069 0.689148 0.025*
H21B 0.874416 0.408596 0.735116 0.025*
C22 0.81436 (16) 0.62564 (15) 0.82683 (16) 0.0221 (4)
H22A 0.794956 0.641618 0.897807 0.027*
H22B 0.751325 0.655797 0.787314 0.027*
C23 1.00907 (16) 0.62886 (15) 0.83182 (16) 0.0226 (4)
H23A 0.992555 0.645241 0.902716 0.027*
H23B 1.075775 0.660737 0.795445 0.027*
C24 1.05778 (16) 0.48863 (15) 0.73384 (15) 0.0201 (4)
H24A 1.073004 0.411640 0.739378 0.024*
H24B 1.125119 0.519334 0.697337 0.024*
C25 0.94127 (16) 0.65112 (14) 0.66518 (15) 0.0205 (4)
H25A 1.007066 0.683951 0.627731 0.025*
H25B 0.879088 0.681840 0.624686 0.025*
C26 0.92924 (16) 0.46570 (15) 0.89559 (15) 0.0217 (4)
H26A 0.942690 0.388452 0.902783 0.026*
H26B 0.911220 0.480513 0.967089 0.026*
N31 0.41819 (13) 0.34324 (13) 0.86223 (13) 0.0213 (3)
N32 0.34067 (15) 0.51211 (14) 0.75097 (14) 0.0266 (4)
N33 0.47210 (17) 0.51353 (15) 0.87450 (15) 0.0325 (4)
N34 0.53923 (15) 0.44041 (15) 0.71314 (14) 0.0289 (4)
C31 0.31950 (17) 0.40495 (16) 0.81169 (17) 0.0266 (4)
H31A 0.299473 0.365307 0.763932 0.032*
H31B 0.255972 0.411911 0.867126 0.032*
C32 0.3720 (2) 0.56912 (17) 0.82560 (18) 0.0329 (5)
H32A 0.386349 0.640567 0.787339 0.040*
H32B 0.309371 0.576543 0.881808 0.040*
C33 0.56536 (19) 0.50044 (19) 0.78861 (19) 0.0349 (5)
H33A 0.631573 0.462773 0.820177 0.042*
H33B 0.582728 0.570673 0.749263 0.042*
C34 0.51269 (18) 0.33500 (16) 0.77563 (16) 0.0272 (4)
H34A 0.578777 0.295933 0.806522 0.033*
H34B 0.494052 0.294447 0.727982 0.033*
C35 0.43694 (18) 0.49921 (17) 0.66807 (17) 0.0291 (4)
H35A 0.452907 0.569471 0.627554 0.035*
H35B 0.417450 0.460785 0.618972 0.035*
C36 0.44831 (19) 0.40664 (17) 0.93320 (16) 0.0275 (4)
H36A 0.386711 0.413627 0.990439 0.033*
H36B 0.514013 0.368715 0.965490 0.033*
N41 0.98222 (14) 0.16814 (13) 0.66156 (13) 0.0236 (3)
N42 1.07891 (16) −0.00576 (15) 0.62924 (17) 0.0350 (4)
N43 1.09861 (17) 0.05352 (15) 0.79123 (17) 0.0379 (5)
N44 0.92004 (15) 0.00149 (14) 0.77178 (14) 0.0276 (4)
C41 1.04120 (19) 0.10589 (18) 0.58097 (18) 0.0316 (5)
H41A 0.990963 0.107214 0.529629 0.038*
H41B 1.105888 0.139850 0.542356 0.038*
C42 1.15409 (19) −0.00508 (19) 0.7069 (2) 0.0420 (6)
H42A 1.219661 0.028026 0.669308 0.050*
H42B 1.179667 −0.078443 0.740249 0.050*
C43 0.9988 (2) 0.00220 (19) 0.84575 (19) 0.0358 (5)
H43A 1.022883 −0.071033 0.880625 0.043*
H43B 0.960481 0.040129 0.900804 0.043*
C44 0.88530 (17) 0.11291 (16) 0.71995 (17) 0.0260 (4)
H44A 0.845718 0.151596 0.773986 0.031*
H44B 0.833555 0.113901 0.670081 0.031*
C45 1.0595 (2) 0.16406 (17) 0.7394 (2) 0.0348 (5)
H45A 1.124033 0.199417 0.702869 0.042*
H45B 1.021402 0.202857 0.793862 0.042*
C46 0.98007 (19) −0.05437 (17) 0.68850 (19) 0.0326 (5)
H46A 0.928905 −0.054578 0.638482 0.039*
H46B 1.003704 −0.128358 0.721415 0.039*

Bis(ethanol-κO)bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–diaqua-κ2O-bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–ethanol–hexamethylenetetramine (1.2/0.8/1.6/4) (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0194 (2) 0.0162 (2) 0.0148 (2) −0.00317 (15) −0.00286 (15) −0.00303 (15)
Co2 0.0223 (2) 0.0144 (2) 0.0185 (2) 0.00176 (16) −0.00397 (16) −0.00022 (16)
N1 0.0246 (8) 0.0200 (7) 0.0189 (7) −0.0060 (6) −0.0018 (6) −0.0045 (6)
C1 0.0258 (9) 0.0193 (9) 0.0184 (9) −0.0004 (7) −0.0006 (7) −0.0029 (7)
S1 0.0345 (3) 0.0400 (3) 0.0532 (4) −0.0172 (2) 0.0012 (3) −0.0224 (3)
N2 0.0247 (8) 0.0206 (8) 0.0232 (8) 0.0042 (6) −0.0050 (6) −0.0025 (6)
C2 0.0267 (10) 0.0226 (9) 0.0199 (9) −0.0029 (8) −0.0031 (7) −0.0075 (7)
S2 0.0283 (3) 0.0407 (3) 0.0403 (3) 0.0136 (2) −0.0156 (2) −0.0217 (2)
O1 0.0244 (7) 0.0192 (6) 0.0222 (6) −0.0027 (5) −0.0082 (5) −0.0030 (5)
C3 0.0272 (10) 0.0309 (11) 0.0322 (11) −0.0013 (8) −0.0083 (8) −0.0091 (9)
C4 0.0190 (11) 0.0222 (12) 0.0184 (11) −0.0034 (10) −0.0006 (8) −0.0044 (10)
C4' 0.042 (7) 0.059 (10) 0.040 (7) −0.022 (7) −0.012 (6) 0.006 (7)
O2 0.0187 (17) 0.0192 (8) 0.0251 (10) 0.0002 (16) −0.0061 (15) −0.0012 (7)
O3 0.0245 (10) 0.0260 (9) 0.0324 (10) −0.0041 (7) −0.0003 (7) −0.0087 (7)
C5 0.0244 (13) 0.0246 (12) 0.0298 (13) −0.0041 (10) −0.0060 (10) −0.0004 (10)
C6 0.0291 (13) 0.0293 (13) 0.0308 (14) −0.0040 (11) −0.0050 (11) −0.0052 (11)
O4 0.0187 (17) 0.0192 (8) 0.0251 (10) 0.0002 (16) −0.0061 (15) −0.0012 (7)
C7 0.013 (5) 0.028 (5) 0.035 (5) 0.003 (4) 0.002 (4) −0.008 (4)
C8 0.032 (6) 0.024 (5) 0.028 (5) −0.001 (4) −0.006 (4) 0.007 (4)
N11 0.0173 (7) 0.0173 (7) 0.0149 (7) −0.0003 (6) −0.0035 (5) −0.0016 (6)
N12 0.0233 (8) 0.0198 (7) 0.0168 (7) 0.0004 (6) −0.0046 (6) −0.0051 (6)
N13 0.0207 (8) 0.0226 (8) 0.0175 (7) 0.0011 (6) −0.0057 (6) −0.0060 (6)
N14 0.0203 (7) 0.0204 (8) 0.0154 (7) −0.0004 (6) −0.0030 (6) −0.0041 (6)
C11 0.0247 (9) 0.0165 (8) 0.0163 (8) −0.0009 (7) −0.0039 (7) −0.0033 (7)
C12 0.0204 (9) 0.0208 (9) 0.0152 (8) −0.0024 (7) −0.0023 (7) −0.0033 (7)
C13 0.0233 (9) 0.0225 (9) 0.0165 (8) 0.0017 (7) −0.0057 (7) −0.0022 (7)
C14 0.0227 (9) 0.0242 (9) 0.0214 (9) −0.0016 (7) −0.0064 (7) −0.0076 (7)
C15 0.0193 (9) 0.0237 (9) 0.0188 (9) 0.0012 (7) −0.0044 (7) −0.0067 (7)
C16 0.0194 (9) 0.0222 (9) 0.0199 (9) 0.0026 (7) −0.0042 (7) −0.0053 (7)
N21 0.0185 (7) 0.0153 (7) 0.0200 (7) −0.0003 (6) −0.0041 (6) −0.0004 (6)
N22 0.0226 (8) 0.0189 (7) 0.0209 (8) 0.0001 (6) −0.0060 (6) −0.0031 (6)
N23 0.0215 (8) 0.0212 (8) 0.0197 (8) −0.0026 (6) −0.0032 (6) −0.0024 (6)
N24 0.0226 (8) 0.0186 (7) 0.0198 (8) −0.0002 (6) −0.0033 (6) −0.0032 (6)
C21 0.0208 (9) 0.0192 (9) 0.0210 (9) −0.0024 (7) −0.0036 (7) −0.0023 (7)
C22 0.0197 (9) 0.0217 (9) 0.0232 (9) 0.0012 (7) −0.0032 (7) −0.0041 (7)
C23 0.0232 (9) 0.0202 (9) 0.0251 (9) −0.0020 (7) −0.0073 (7) −0.0041 (7)
C24 0.0192 (8) 0.0188 (8) 0.0210 (9) 0.0008 (7) −0.0044 (7) −0.0028 (7)
C25 0.0246 (9) 0.0154 (8) 0.0197 (9) −0.0004 (7) −0.0031 (7) −0.0014 (7)
C26 0.0239 (9) 0.0197 (9) 0.0196 (9) −0.0017 (7) −0.0049 (7) 0.0003 (7)
N31 0.0206 (8) 0.0206 (8) 0.0227 (8) −0.0029 (6) −0.0045 (6) −0.0032 (6)
N32 0.0251 (8) 0.0217 (8) 0.0312 (9) −0.0001 (7) −0.0056 (7) −0.0025 (7)
N33 0.0441 (11) 0.0273 (9) 0.0303 (9) −0.0127 (8) −0.0096 (8) −0.0056 (7)
N34 0.0246 (8) 0.0307 (9) 0.0258 (9) −0.0009 (7) −0.0019 (7) 0.0022 (7)
C31 0.0219 (9) 0.0241 (10) 0.0332 (11) −0.0022 (8) −0.0071 (8) −0.0027 (8)
C32 0.0431 (13) 0.0203 (10) 0.0345 (11) −0.0020 (9) −0.0035 (9) −0.0068 (8)
C33 0.0317 (11) 0.0337 (11) 0.0385 (12) −0.0148 (9) −0.0111 (9) 0.0056 (9)
C34 0.0277 (10) 0.0249 (10) 0.0251 (10) 0.0040 (8) −0.0026 (8) −0.0031 (8)
C35 0.0299 (11) 0.0288 (10) 0.0247 (10) 0.0005 (8) −0.0057 (8) 0.0007 (8)
C36 0.0343 (11) 0.0281 (10) 0.0221 (9) −0.0087 (8) −0.0045 (8) −0.0054 (8)
N41 0.0239 (8) 0.0223 (8) 0.0236 (8) −0.0054 (6) −0.0049 (6) 0.0000 (6)
N42 0.0301 (10) 0.0273 (9) 0.0417 (11) 0.0018 (7) 0.0013 (8) −0.0037 (8)
N43 0.0397 (11) 0.0287 (10) 0.0452 (11) −0.0112 (8) −0.0241 (9) 0.0100 (8)
N44 0.0273 (9) 0.0219 (8) 0.0310 (9) −0.0063 (7) −0.0025 (7) 0.0009 (7)
C41 0.0304 (11) 0.0307 (11) 0.0281 (10) −0.0011 (9) 0.0019 (8) −0.0010 (9)
C42 0.0240 (11) 0.0309 (12) 0.0623 (17) −0.0016 (9) −0.0088 (10) 0.0084 (11)
C43 0.0447 (13) 0.0295 (11) 0.0302 (11) −0.0087 (10) −0.0126 (10) 0.0075 (9)
C44 0.0246 (10) 0.0231 (9) 0.0276 (10) −0.0028 (8) −0.0034 (8) −0.0004 (8)
C45 0.0420 (13) 0.0243 (10) 0.0404 (12) −0.0122 (9) −0.0219 (10) 0.0056 (9)
C46 0.0343 (11) 0.0199 (10) 0.0434 (13) −0.0050 (8) −0.0042 (10) −0.0059 (9)

Bis(ethanol-κO)bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–diaqua-κ2O-bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–ethanol–hexamethylenetetramine (1.2/0.8/1.6/4) (1) . Geometric parameters (Å, º)

Co1—N1i 2.0590 (16) C16—H16B 0.9700
Co1—N1 2.0590 (16) N21—C21 1.493 (2)
Co1—O1i 2.1388 (13) N21—C24 1.490 (2)
Co1—O1 2.1388 (13) N21—C25 1.500 (2)
Co1—N11i 2.2834 (15) N22—C23 1.478 (2)
Co1—N11 2.2834 (15) N22—C24 1.474 (2)
Co2—N2ii 2.0812 (16) N22—C26 1.469 (2)
Co2—N2 2.0812 (16) N23—C21 1.465 (2)
Co2—O2 2.029 (6) N23—C22 1.468 (2)
Co2—O2ii 2.029 (6) N23—C26 1.469 (2)
Co2—O4ii 2.21 (3) N24—C22 1.473 (2)
Co2—O4 2.21 (3) N24—C23 1.470 (2)
Co2—N21 2.2788 (16) N24—C25 1.465 (2)
Co2—N21ii 2.2788 (16) C21—H21A 0.9700
N1—C1 1.169 (3) C21—H21B 0.9700
C1—S1 1.629 (2) C22—H22A 0.9700
N2—C2 1.154 (3) C22—H22B 0.9700
C2—S2 1.643 (2) C23—H23A 0.9700
O1—H1 0.880 (18) C23—H23B 0.9700
O1—C3 1.464 (2) C24—H24A 0.9700
C3—H3AA 0.9700 C24—H24B 0.9700
C3—H3AB 0.9700 C25—H25A 0.9700
C3—H3BC 0.9700 C25—H25B 0.9700
C3—H3BD 0.9700 C26—H26A 0.9700
C3—C4 1.515 (3) C26—H26B 0.9700
C3—C4' 1.4495 (10) N31—C31 1.486 (2)
C4—H4A 0.9600 N31—C34 1.474 (3)
C4—H4B 0.9600 N31—C36 1.486 (2)
C4—H4C 0.9600 N32—C31 1.466 (3)
C4'—H4'A 0.9600 N32—C32 1.471 (3)
C4'—H4'B 0.9600 N32—C35 1.465 (3)
C4'—H4'C 0.9600 N33—C32 1.469 (3)
O2—H2A 0.872 (19) N33—C33 1.467 (3)
O2—H2B 0.871 (19) N33—C36 1.463 (3)
O3—C5 1.433 (3) N34—C33 1.480 (3)
O3—H3 0.871 (19) N34—C34 1.470 (3)
C5—H5A 0.9700 N34—C35 1.480 (3)
C5—H5B 0.9700 C31—H31A 0.9700
C5—C6 1.505 (4) C31—H31B 0.9700
C6—H6A 0.9600 C32—H32A 0.9700
C6—H6B 0.9600 C32—H32B 0.9700
C6—H6C 0.9600 C33—H33A 0.9700
O4—C7 1.427 (17) C33—H33B 0.9700
O4—H4 0.87 (2) C34—H34A 0.9700
C7—H7A 0.9700 C34—H34B 0.9700
C7—H7B 0.9700 C35—H35A 0.9700
C7—C8 1.507 (13) C35—H35B 0.9700
C8—H8A 0.9600 C36—H36A 0.9700
C8—H8B 0.9600 C36—H36B 0.9700
C8—H8C 0.9600 N41—C41 1.483 (3)
N11—C11 1.499 (2) N41—C44 1.482 (2)
N11—C12 1.488 (2) N41—C45 1.475 (3)
N11—C15 1.496 (2) N42—C41 1.465 (3)
N12—C11 1.465 (2) N42—C42 1.469 (3)
N12—C14 1.472 (2) N42—C46 1.464 (3)
N12—C16 1.476 (2) N43—C42 1.479 (4)
N13—C13 1.474 (2) N43—C43 1.473 (3)
N13—C14 1.470 (2) N43—C45 1.469 (3)
N13—C15 1.468 (2) N44—C43 1.465 (3)
N14—C12 1.467 (2) N44—C44 1.467 (3)
N14—C13 1.472 (2) N44—C46 1.463 (3)
N14—C16 1.473 (2) C41—H41A 0.9700
C11—H11A 0.9700 C41—H41B 0.9700
C11—H11B 0.9700 C42—H42A 0.9700
C12—H12A 0.9700 C42—H42B 0.9700
C12—H12B 0.9700 C43—H43A 0.9700
C13—H13A 0.9700 C43—H43B 0.9700
C13—H13B 0.9700 C44—H44A 0.9700
C14—H14A 0.9700 C44—H44B 0.9700
C14—H14B 0.9700 C45—H45A 0.9700
C15—H15A 0.9700 C45—H45B 0.9700
C15—H15B 0.9700 C46—H46A 0.9700
C16—H16A 0.9700 C46—H46B 0.9700
N1i—Co1—N1 180.0 N14—C16—H16A 109.1
N1—Co1—O1i 89.16 (6) N14—C16—H16B 109.1
N1i—Co1—O1 89.16 (6) H16A—C16—H16B 107.9
N1—Co1—O1 90.84 (6) C21—N21—Co2 110.79 (11)
N1i—Co1—O1i 90.84 (6) C21—N21—C25 106.97 (14)
N1i—Co1—N11 93.90 (6) C24—N21—Co2 113.66 (11)
N1—Co1—N11 86.10 (6) C24—N21—C21 107.30 (14)
N1—Co1—N11i 93.90 (6) C24—N21—C25 107.16 (14)
N1i—Co1—N11i 86.10 (6) C25—N21—Co2 110.66 (11)
O1—Co1—O1i 180.00 (7) C24—N22—C23 108.01 (14)
O1i—Co1—N11i 91.57 (5) C26—N22—C23 107.79 (15)
O1—Co1—N11 91.57 (5) C26—N22—C24 108.16 (15)
O1—Co1—N11i 88.43 (5) C21—N23—C22 108.62 (14)
O1i—Co1—N11 88.43 (5) C21—N23—C26 108.13 (15)
N11—Co1—N11i 180.0 C22—N23—C26 107.86 (15)
N2—Co2—N2ii 180.0 C23—N24—C22 108.30 (14)
N2—Co2—O4 85.7 (7) C25—N24—C22 107.77 (15)
N2ii—Co2—O4ii 85.7 (7) C25—N24—C23 107.98 (15)
N2—Co2—O4ii 94.3 (7) N21—C21—H21A 109.1
N2ii—Co2—O4 94.3 (7) N21—C21—H21B 109.1
N2—Co2—N21ii 91.78 (6) N23—C21—N21 112.54 (15)
N2ii—Co2—N21ii 88.22 (6) N23—C21—H21A 109.1
N2ii—Co2—N21 91.78 (6) N23—C21—H21B 109.1
N2—Co2—N21 88.22 (6) H21A—C21—H21B 107.8
O2ii—Co2—N2 89.20 (16) N23—C22—N24 112.53 (15)
O2—Co2—N2ii 89.20 (16) N23—C22—H22A 109.1
O2ii—Co2—N2ii 90.80 (16) N23—C22—H22B 109.1
O2—Co2—N2 90.80 (16) N24—C22—H22A 109.1
O2ii—Co2—O2 180.0 N24—C22—H22B 109.1
O2—Co2—O4ii 174.6 (9) H22A—C22—H22B 107.8
O2ii—Co2—O4ii 5.4 (9) N22—C23—H23A 109.1
O2—Co2—N21 91.3 (2) N22—C23—H23B 109.1
O2—Co2—N21ii 88.7 (2) N24—C23—N22 112.47 (15)
O2ii—Co2—N21ii 91.3 (2) N24—C23—H23A 109.1
O2ii—Co2—N21 88.7 (2) N24—C23—H23B 109.1
O4ii—Co2—O4 180.0 H23A—C23—H23B 107.8
O4ii—Co2—N21ii 92.9 (9) N21—C24—H24A 109.1
O4—Co2—N21 92.9 (9) N21—C24—H24B 109.1
O4ii—Co2—N21 87.1 (9) N22—C24—N21 112.52 (15)
O4—Co2—N21ii 87.1 (9) N22—C24—H24A 109.1
N21ii—Co2—N21 180.0 N22—C24—H24B 109.1
C1—N1—Co1 164.85 (15) H24A—C24—H24B 107.8
N1—C1—S1 178.89 (18) N21—C25—H25A 109.0
C2—N2—Co2 175.29 (16) N21—C25—H25B 109.0
N2—C2—S2 177.31 (19) N24—C25—N21 112.98 (14)
Co1—O1—H1 122 (2) N24—C25—H25A 109.0
C3—O1—Co1 129.84 (12) N24—C25—H25B 109.0
C3—O1—H1 107 (2) H25A—C25—H25B 107.8
O1—C3—H3AA 109.0 N22—C26—H26A 109.0
O1—C3—H3AB 109.0 N22—C26—H26B 109.0
O1—C3—H3BC 106.0 N23—C26—N22 112.80 (15)
O1—C3—H3BD 106.0 N23—C26—H26A 109.0
O1—C3—C4 113.01 (18) N23—C26—H26B 109.0
H3AA—C3—H3AB 107.8 H26A—C26—H26B 107.8
H3BC—C3—H3BD 106.3 C34—N31—C31 107.28 (15)
C4—C3—H3AA 109.0 C34—N31—C36 107.97 (16)
C4—C3—H3AB 109.0 C36—N31—C31 107.86 (16)
C4'—C3—O1 125.1 (6) C31—N32—C32 107.40 (17)
C4'—C3—H3BC 106.0 C35—N32—C31 107.85 (16)
C4'—C3—H3BD 106.0 C35—N32—C32 108.44 (17)
C3—C4—H4A 109.5 C33—N33—C32 108.52 (17)
C3—C4—H4B 109.5 C36—N33—C32 108.32 (17)
C3—C4—H4C 109.5 C36—N33—C33 108.01 (18)
H4A—C4—H4B 109.5 C34—N34—C33 107.50 (16)
H4A—C4—H4C 109.5 C34—N34—C35 108.18 (16)
H4B—C4—H4C 109.5 C35—N34—C33 107.51 (17)
C3—C4'—H4'A 109.5 N31—C31—H31A 109.0
C3—C4'—H4'B 109.5 N31—C31—H31B 109.0
C3—C4'—H4'C 109.5 N32—C31—N31 112.86 (16)
H4'A—C4'—H4'B 109.5 N32—C31—H31A 109.0
H4'A—C4'—H4'C 109.5 N32—C31—H31B 109.0
H4'B—C4'—H4'C 109.5 H31A—C31—H31B 107.8
Co2—O2—H2A 127 (4) N32—C32—H32A 109.1
Co2—O2—H2B 123 (3) N32—C32—H32B 109.1
H2A—O2—H2B 106 (4) N33—C32—N32 112.59 (17)
C5—O3—H3 112 (3) N33—C32—H32A 109.1
O3—C5—H5A 109.8 N33—C32—H32B 109.1
O3—C5—H5B 109.8 H32A—C32—H32B 107.8
O3—C5—C6 109.6 (2) N33—C33—N34 112.55 (17)
H5A—C5—H5B 108.2 N33—C33—H33A 109.1
C6—C5—H5A 109.8 N33—C33—H33B 109.1
C6—C5—H5B 109.8 N34—C33—H33A 109.1
C5—C6—H6A 109.5 N34—C33—H33B 109.1
C5—C6—H6B 109.5 H33A—C33—H33B 107.8
C5—C6—H6C 109.5 N31—C34—H34A 109.1
H6A—C6—H6B 109.5 N31—C34—H34B 109.1
H6A—C6—H6C 109.5 N34—C34—N31 112.62 (16)
H6B—C6—H6C 109.5 N34—C34—H34A 109.1
Co2—O4—H4 115 (10) N34—C34—H34B 109.1
C7—O4—Co2 137 (2) H34A—C34—H34B 107.8
C7—O4—H4 106 (10) N32—C35—N34 112.61 (16)
O4—C7—H7A 109.1 N32—C35—H35A 109.1
O4—C7—H7B 109.1 N32—C35—H35B 109.1
O4—C7—C8 112.4 (15) N34—C35—H35A 109.1
H7A—C7—H7B 107.9 N34—C35—H35B 109.1
C8—C7—H7A 109.1 H35A—C35—H35B 107.8
C8—C7—H7B 109.1 N31—C36—H36A 109.2
C7—C8—H8A 109.5 N31—C36—H36B 109.2
C7—C8—H8B 109.5 N33—C36—N31 111.87 (16)
C7—C8—H8C 109.5 N33—C36—H36A 109.2
H8A—C8—H8B 109.5 N33—C36—H36B 109.2
H8A—C8—H8C 109.5 H36A—C36—H36B 107.9
H8B—C8—H8C 109.5 C44—N41—C41 107.46 (16)
C11—N11—Co1 112.38 (10) C45—N41—C41 108.17 (18)
C12—N11—Co1 110.45 (11) C45—N41—C44 107.65 (16)
C12—N11—C11 106.96 (14) C41—N42—C42 107.76 (19)
C12—N11—C15 106.95 (13) C46—N42—C41 107.89 (17)
C15—N11—Co1 112.93 (11) C46—N42—C42 107.80 (19)
C15—N11—C11 106.83 (14) C43—N43—C42 107.73 (19)
C11—N12—C14 108.22 (14) C45—N43—C42 108.42 (19)
C11—N12—C16 108.09 (14) C45—N43—C43 107.79 (19)
C14—N12—C16 108.03 (14) C43—N44—C44 108.03 (17)
C14—N13—C13 107.97 (15) C46—N44—C43 108.19 (18)
C15—N13—C13 107.82 (14) C46—N44—C44 107.81 (16)
C15—N13—C14 108.50 (14) N41—C41—H41A 109.1
C12—N14—C13 108.45 (14) N41—C41—H41B 109.1
C12—N14—C16 108.30 (14) N42—C41—N41 112.64 (17)
C13—N14—C16 107.44 (14) N42—C41—H41A 109.1
N11—C11—H11A 109.0 N42—C41—H41B 109.1
N11—C11—H11B 109.0 H41A—C41—H41B 107.8
N12—C11—N11 113.01 (14) N42—C42—N43 112.48 (18)
N12—C11—H11A 109.0 N42—C42—H42A 109.1
N12—C11—H11B 109.0 N42—C42—H42B 109.1
H11A—C11—H11B 107.8 N43—C42—H42A 109.1
N11—C12—H12A 109.0 N43—C42—H42B 109.1
N11—C12—H12B 109.0 H42A—C42—H42B 107.8
N14—C12—N11 112.97 (15) N43—C43—H43A 109.1
N14—C12—H12A 109.0 N43—C43—H43B 109.1
N14—C12—H12B 109.0 N44—C43—N43 112.46 (18)
H12A—C12—H12B 107.8 N44—C43—H43A 109.1
N13—C13—H13A 109.1 N44—C43—H43B 109.1
N13—C13—H13B 109.1 H43A—C43—H43B 107.8
N14—C13—N13 112.61 (14) N41—C44—H44A 109.1
N14—C13—H13A 109.1 N41—C44—H44B 109.1
N14—C13—H13B 109.1 N44—C44—N41 112.30 (16)
H13A—C13—H13B 107.8 N44—C44—H44A 109.1
N12—C14—H14A 109.1 N44—C44—H44B 109.1
N12—C14—H14B 109.1 H44A—C44—H44B 107.9
N13—C14—N12 112.35 (15) N41—C45—H45A 109.2
N13—C14—H14A 109.1 N41—C45—H45B 109.2
N13—C14—H14B 109.1 N43—C45—N41 112.17 (17)
H14A—C14—H14B 107.9 N43—C45—H45A 109.2
N11—C15—H15A 109.0 N43—C45—H45B 109.2
N11—C15—H15B 109.0 H45A—C45—H45B 107.9
N13—C15—N11 112.95 (14) N42—C46—H46A 108.9
N13—C15—H15A 109.0 N42—C46—H46B 108.9
N13—C15—H15B 109.0 N44—C46—N42 113.21 (17)
H15A—C15—H15B 107.8 N44—C46—H46A 108.9
N12—C16—H16A 109.1 N44—C46—H46B 108.9
N12—C16—H16B 109.1 H46A—C46—H46B 107.7
N14—C16—N12 112.42 (15)
Co1—O1—C3—C4 121.56 (18) C26—N22—C23—N24 −57.6 (2)
Co1—O1—C3—C4' 85.5 (9) C26—N22—C24—N21 57.87 (19)
Co1—N11—C11—N12 −178.62 (11) C26—N23—C21—N21 −58.52 (19)
Co1—N11—C12—N14 179.71 (11) C26—N23—C22—N24 58.1 (2)
Co1—N11—C15—N13 179.36 (12) C31—N31—C34—N34 57.9 (2)
Co2—O4—C7—C8 125 (2) C31—N31—C36—N33 −57.3 (2)
Co2—N21—C21—N23 −177.58 (11) C31—N32—C32—N33 58.9 (2)
Co2—N21—C24—N22 179.79 (11) C31—N32—C35—N34 −58.0 (2)
Co2—N21—C25—N24 178.24 (12) C32—N32—C31—N31 −58.1 (2)
C11—N11—C12—N14 57.12 (18) C32—N32—C35—N34 58.0 (2)
C11—N11—C15—N13 −56.60 (19) C32—N33—C33—N34 −57.9 (2)
C11—N12—C14—N13 58.77 (19) C32—N33—C36—N31 58.5 (2)
C11—N12—C16—N14 −58.43 (18) C33—N33—C32—N32 57.4 (2)
C12—N11—C11—N12 −57.24 (19) C33—N33—C36—N31 −58.9 (2)
C12—N11—C15—N13 57.65 (19) C33—N34—C34—N31 57.9 (2)
C12—N14—C13—N13 −58.23 (19) C33—N34—C35—N32 −58.0 (2)
C12—N14—C16—N12 58.46 (19) C34—N31—C31—N32 −58.4 (2)
C13—N13—C14—N12 58.01 (19) C34—N31—C36—N33 58.3 (2)
C13—N13—C15—N11 −58.61 (19) C34—N34—C33—N33 −58.4 (2)
C13—N14—C12—N11 57.91 (19) C34—N34—C35—N32 57.8 (2)
C13—N14—C16—N12 −58.50 (19) C35—N32—C31—N31 58.6 (2)
C14—N12—C11—N11 −58.54 (19) C35—N32—C32—N33 −57.4 (2)
C14—N12—C16—N14 58.45 (19) C35—N34—C33—N33 57.9 (2)
C14—N13—C13—N14 −58.58 (19) C35—N34—C34—N31 −58.0 (2)
C14—N13—C15—N11 58.09 (19) C36—N31—C31—N32 57.7 (2)
C15—N11—C11—N12 57.00 (19) C36—N31—C34—N34 −58.1 (2)
C15—N11—C12—N14 −57.03 (18) C36—N33—C32—N32 −59.6 (2)
C15—N13—C13—N14 58.46 (19) C36—N33—C33—N34 59.3 (2)
C15—N13—C14—N12 −58.6 (2) C41—N41—C44—N44 58.1 (2)
C16—N12—C11—N11 58.22 (19) C41—N41—C45—N43 −57.3 (2)
C16—N12—C14—N13 −58.04 (19) C41—N42—C42—N43 58.4 (2)
C16—N14—C12—N11 −58.39 (19) C41—N42—C46—N44 −58.3 (2)
C16—N14—C13—N13 58.63 (19) C42—N42—C41—N41 −58.4 (2)
C21—N21—C24—N22 −57.37 (19) C42—N42—C46—N44 57.9 (2)
C21—N21—C25—N24 57.47 (19) C42—N43—C43—N44 −58.0 (2)
C21—N23—C22—N24 −58.9 (2) C42—N43—C45—N41 57.5 (2)
C21—N23—C26—N22 58.7 (2) C43—N43—C42—N42 58.1 (2)
C22—N23—C21—N21 58.28 (19) C43—N43—C45—N41 −58.8 (3)
C22—N23—C26—N22 −58.6 (2) C43—N44—C44—N41 58.3 (2)
C22—N24—C23—N22 57.5 (2) C43—N44—C46—N42 −57.9 (2)
C22—N24—C25—N21 −58.47 (19) C44—N41—C41—N42 −57.8 (2)
C23—N22—C24—N21 −58.54 (19) C44—N41—C45—N43 58.5 (2)
C23—N22—C26—N23 58.2 (2) C44—N44—C43—N43 −58.6 (2)
C23—N24—C22—N23 −57.9 (2) C44—N44—C46—N42 58.7 (2)
C23—N24—C25—N21 58.31 (19) C45—N41—C41—N42 58.1 (2)
C24—N21—C21—N23 57.83 (19) C45—N41—C44—N44 −58.2 (2)
C24—N21—C25—N24 −57.34 (19) C45—N43—C42—N42 −58.3 (2)
C24—N22—C23—N24 59.1 (2) C45—N43—C43—N44 58.8 (3)
C24—N22—C26—N23 −58.31 (19) C46—N42—C41—N41 57.7 (2)
C25—N21—C21—N23 −56.89 (18) C46—N42—C42—N43 −57.8 (2)
C25—N21—C24—N22 57.21 (19) C46—N44—C43—N43 57.8 (2)
C25—N24—C22—N23 58.72 (19) C46—N44—C44—N41 −58.4 (2)
C25—N24—C23—N22 −58.9 (2)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y+1, −z+1.

Bis(ethanol-κO)bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–diaqua-κ2O-bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–ethanol–hexamethylenetetramine (1.2/0.8/1.6/4) (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N31 0.88 (2) 1.92 (2) 2.793 (2) 170 (3)
C4′—H4′A···N43iii 0.96 2.50 3.243 (14) 134
C4′—H4′C···N44i 0.96 2.38 3.161 (10) 138
O2—H2A···N41 0.87 (2) 1.88 (2) 2.743 (7) 173 (7)
O2—H2B···O3 0.87 (2) 1.80 (2) 2.665 (4) 177 (5)
C5—H5A···S2iv 0.97 3.02 3.925 (3) 156
O3—H3···N34 0.87 (2) 1.97 (2) 2.821 (3) 167 (4)
O4—H4···N41 0.87 (2) 1.94 (5) 2.81 (3) 170 (19)
C11—H11A···O1i 0.97 2.49 3.058 (2) 117
C11—H11B···N1 0.97 2.67 3.213 (2) 116
C12—H12B···N44 0.97 2.64 3.423 (3) 138
C13—H13A···N13v 0.97 2.70 3.563 (2) 149
C13—H13B···S2iv 0.97 2.95 3.7150 (19) 136
C14—H14A···S2vi 0.97 2.93 3.840 (2) 156
C15—H15B···O1 0.97 2.61 3.118 (2) 113
C22—H22B···N12vii 0.97 2.58 3.448 (2) 149
C25—H25A···O2ii 0.97 2.50 3.026 (7) 114
C25—H25A···O4ii 0.97 2.49 3.08 (3) 119
C25—H25B···N2 0.97 2.61 3.202 (3) 119
C26—H26A···S1i 0.97 2.98 3.655 (2) 128
C26—H26B···N22viii 0.97 2.69 3.581 (3) 152
C33—H33A···N23 0.97 2.66 3.431 (3) 137
C45—H45A···S2ii 0.97 3.01 3.959 (3) 165

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) x, y−1, z; (vii) x, y+1, z; (viii) −x+2, −y+1, −z+2.

\ Tris(ethanol-κO)(hexamethylenetetramine-κN)bis(thiocyanato-\ κN)cobalt(II) (2) . Crystal data

[Co(NCS)2(C6H12N4)(C2H6O)3] F(000) = 956
Mr = 453.49 Dx = 1.449 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 11.1463 (1) Å Cell parameters from 23697 reflections
b = 15.7705 (1) Å θ = 4.7–78.0°
c = 12.1824 (1) Å µ = 8.57 mm1
β = 103.886 (1)° T = 100 K
V = 2078.87 (3) Å3 Block, intense orange
Z = 4 0.2 × 0.18 × 0.03 mm

\ Tris(ethanol-κO)(hexamethylenetetramine-κN)bis(thiocyanato-\ κN)cobalt(II) (2) . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 4431 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 4373 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 10.0000 pixels mm-1 θmax = 78.2°, θmin = 4.7°
ω scans h = −14→13
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) k = −20→18
Tmin = 0.427, Tmax = 1.000 l = −14→15
29441 measured reflections

\ Tris(ethanol-κO)(hexamethylenetetramine-κN)bis(thiocyanato-\ κN)cobalt(II) (2) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.8765P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068 (Δ/σ)max = 0.002
S = 1.08 Δρmax = 0.32 e Å3
4431 reflections Δρmin = −0.31 e Å3
242 parameters Extinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.00065 (9)
Primary atom site location: dual

\ Tris(ethanol-κO)(hexamethylenetetramine-κN)bis(thiocyanato-\ κN)cobalt(II) (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

\ Tris(ethanol-κO)(hexamethylenetetramine-κN)bis(thiocyanato-\ κN)cobalt(II) (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.51335 (2) 0.27266 (2) 0.57458 (2) 0.01059 (7)
N1 0.67247 (10) 0.34371 (7) 0.62465 (9) 0.0153 (2)
C1 0.76466 (12) 0.38035 (8) 0.65618 (11) 0.0141 (2)
S1 0.89474 (3) 0.43141 (2) 0.70092 (3) 0.02407 (10)
N2 0.35462 (10) 0.20093 (7) 0.52823 (9) 0.0153 (2)
C2 0.25674 (12) 0.17255 (8) 0.49267 (11) 0.0134 (2)
S2 0.11817 (3) 0.13335 (2) 0.44031 (3) 0.01552 (8)
N11 0.48544 (9) 0.32562 (7) 0.39886 (9) 0.0110 (2)
N12 0.35142 (10) 0.34740 (7) 0.20867 (9) 0.0131 (2)
N13 0.49385 (10) 0.45980 (7) 0.29661 (9) 0.0127 (2)
N14 0.57416 (10) 0.32908 (7) 0.23263 (9) 0.0137 (2)
C11 0.36212 (11) 0.30856 (8) 0.32095 (10) 0.0123 (2)
H11A 0.349734 0.246546 0.312045 0.015*
H11B 0.296401 0.331440 0.354686 0.015*
C12 0.37105 (12) 0.44001 (8) 0.22303 (11) 0.0140 (2)
H12A 0.363639 0.466531 0.148044 0.017*
H12B 0.306101 0.464431 0.256487 0.017*
C13 0.58915 (12) 0.42110 (8) 0.24547 (11) 0.0147 (2)
H13A 0.583835 0.446900 0.170375 0.018*
H13B 0.672136 0.433681 0.293783 0.018*
C14 0.58124 (11) 0.29098 (8) 0.34359 (11) 0.0130 (2)
H14A 0.664260 0.301634 0.393063 0.016*
H14B 0.570316 0.228850 0.334757 0.016*
C15 0.45097 (12) 0.31188 (8) 0.15994 (11) 0.0147 (2)
H15A 0.439358 0.249853 0.150305 0.018*
H15B 0.445047 0.337046 0.084374 0.018*
C16 0.50169 (12) 0.41931 (8) 0.40684 (11) 0.0126 (2)
H16A 0.437357 0.443759 0.441062 0.015*
H16B 0.583193 0.432292 0.457605 0.015*
O21 0.41718 (8) 0.37678 (6) 0.62519 (8) 0.01481 (19)
H21 0.458750 0.419051 0.654234 0.022*
C21 0.31119 (12) 0.36740 (9) 0.67299 (12) 0.0174 (3)
H21A 0.320943 0.404600 0.740012 0.021*
H21B 0.306126 0.308048 0.697966 0.021*
C22 0.19389 (14) 0.39014 (12) 0.58774 (14) 0.0295 (3)
H22A 0.181805 0.351233 0.523285 0.044*
H22B 0.199742 0.448405 0.561561 0.044*
H22C 0.123733 0.385578 0.622869 0.044*
O31 0.62924 (8) 0.17312 (6) 0.54561 (8) 0.01390 (18)
H31 0.695985 0.172350 0.595461 0.021*
C31 0.59743 (13) 0.08809 (8) 0.50586 (12) 0.0172 (3)
H31A 0.508810 0.085995 0.466374 0.021*
H31B 0.610588 0.049076 0.571334 0.021*
C32 0.67444 (14) 0.05882 (9) 0.42600 (12) 0.0210 (3)
H32A 0.658634 0.095774 0.359399 0.032*
H32B 0.652206 0.000353 0.402320 0.032*
H32C 0.762264 0.061398 0.464640 0.032*
O41 0.54084 (10) 0.22913 (6) 0.74187 (8) 0.0173 (2)
H41 0.564436 0.261997 0.797094 0.026*
C41 0.51429 (13) 0.14737 (9) 0.78184 (12) 0.0197 (3)
H41A 0.591114 0.123102 0.829704 0.024*
H41B 0.485447 0.109128 0.716372 0.024*
C42 0.41750 (15) 0.15144 (12) 0.84905 (16) 0.0344 (4)
H42A 0.339647 0.171959 0.800591 0.052*
H42B 0.444763 0.190262 0.912993 0.052*
H42C 0.405042 0.094752 0.877347 0.052*

\ Tris(ethanol-κO)(hexamethylenetetramine-κN)bis(thiocyanato-\ κN)cobalt(II) (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.00865 (11) 0.01120 (12) 0.01104 (12) −0.00058 (7) 0.00060 (8) −0.00032 (7)
N1 0.0121 (5) 0.0164 (5) 0.0155 (5) −0.0011 (4) −0.0003 (4) −0.0007 (4)
C1 0.0149 (6) 0.0116 (6) 0.0154 (6) 0.0034 (5) 0.0029 (5) 0.0009 (5)
S1 0.01192 (16) 0.01850 (17) 0.0400 (2) −0.00438 (12) 0.00274 (14) −0.00662 (14)
N2 0.0143 (5) 0.0149 (5) 0.0157 (5) −0.0015 (4) 0.0016 (4) 0.0008 (4)
C2 0.0157 (6) 0.0123 (6) 0.0122 (5) 0.0019 (5) 0.0035 (5) 0.0015 (4)
S2 0.01174 (15) 0.01751 (16) 0.01595 (15) −0.00302 (11) 0.00064 (11) −0.00024 (11)
N11 0.0099 (5) 0.0110 (5) 0.0114 (5) −0.0007 (4) 0.0014 (4) −0.0008 (4)
N12 0.0133 (5) 0.0133 (5) 0.0117 (5) −0.0004 (4) 0.0015 (4) 0.0004 (4)
N13 0.0117 (5) 0.0125 (5) 0.0132 (5) −0.0006 (4) 0.0018 (4) 0.0005 (4)
N14 0.0135 (5) 0.0143 (5) 0.0137 (5) −0.0003 (4) 0.0038 (4) 0.0003 (4)
C11 0.0101 (5) 0.0146 (6) 0.0111 (6) −0.0015 (4) 0.0006 (4) 0.0010 (4)
C12 0.0117 (6) 0.0128 (6) 0.0156 (6) 0.0005 (4) −0.0003 (5) 0.0017 (5)
C13 0.0126 (6) 0.0150 (6) 0.0169 (6) −0.0014 (5) 0.0044 (5) 0.0002 (5)
C14 0.0116 (6) 0.0145 (6) 0.0134 (6) 0.0029 (5) 0.0037 (5) 0.0006 (5)
C15 0.0157 (6) 0.0157 (6) 0.0127 (6) −0.0009 (5) 0.0037 (5) −0.0018 (5)
C16 0.0131 (6) 0.0115 (6) 0.0124 (5) −0.0006 (4) 0.0017 (5) −0.0010 (4)
O21 0.0123 (4) 0.0142 (4) 0.0191 (5) −0.0019 (3) 0.0062 (4) −0.0027 (3)
C21 0.0156 (6) 0.0202 (7) 0.0183 (6) −0.0013 (5) 0.0078 (5) −0.0025 (5)
C22 0.0155 (7) 0.0410 (9) 0.0313 (8) 0.0045 (6) 0.0044 (6) −0.0042 (7)
O31 0.0114 (4) 0.0129 (4) 0.0148 (4) 0.0013 (3) −0.0020 (3) −0.0017 (3)
C31 0.0169 (6) 0.0139 (6) 0.0190 (6) −0.0001 (5) 0.0007 (5) −0.0031 (5)
C32 0.0215 (7) 0.0214 (7) 0.0175 (6) 0.0063 (5) −0.0008 (5) −0.0041 (5)
O41 0.0230 (5) 0.0156 (5) 0.0122 (4) −0.0048 (3) 0.0022 (4) −0.0001 (3)
C41 0.0209 (7) 0.0159 (6) 0.0192 (6) −0.0026 (5) −0.0011 (5) 0.0040 (5)
C42 0.0219 (8) 0.0392 (9) 0.0434 (10) −0.0028 (7) 0.0103 (7) 0.0176 (8)

\ Tris(ethanol-κO)(hexamethylenetetramine-κN)bis(thiocyanato-\ κN)cobalt(II) (2) . Geometric parameters (Å, º)

Co1—N2 2.0615 (11) C14—H14B 0.9900
Co1—N1 2.0624 (11) C15—H15A 0.9900
Co1—O41 2.1021 (10) C15—H15B 0.9900
Co1—O31 2.1157 (9) C16—H16A 0.9900
Co1—O21 2.1314 (9) C16—H16B 0.9900
Co1—N11 2.2489 (11) O21—C21 1.4446 (15)
N1—C1 1.1610 (18) O21—H21 0.8400
C1—S1 1.6335 (13) C21—C22 1.505 (2)
N2—C2 1.1625 (18) C21—H21A 0.9900
C2—S2 1.6437 (13) C21—H21B 0.9900
N11—C16 1.4889 (16) C22—H22A 0.9800
N11—C11 1.4955 (15) C22—H22B 0.9800
N11—C14 1.4957 (15) C22—H22C 0.9800
N12—C11 1.4771 (15) O31—C31 1.4409 (16)
N12—C12 1.4810 (16) O31—H31 0.8400
N12—C15 1.4878 (16) C31—C32 1.5157 (19)
N13—C16 1.4705 (16) C31—H31A 0.9900
N13—C12 1.4783 (16) C31—H31B 0.9900
N13—C13 1.4855 (16) C32—H32A 0.9800
N14—C14 1.4640 (16) C32—H32B 0.9800
N14—C13 1.4648 (17) C32—H32C 0.9800
N14—C15 1.4695 (16) O41—C41 1.4339 (16)
C11—H11A 0.9900 O41—H41 0.8400
C11—H11B 0.9900 C41—C42 1.504 (2)
C12—H12A 0.9900 C41—H41A 0.9900
C12—H12B 0.9900 C41—H41B 0.9900
C13—H13A 0.9900 C42—H42A 0.9800
C13—H13B 0.9900 C42—H42B 0.9800
C14—H14A 0.9900 C42—H42C 0.9800
N2—Co1—N1 178.73 (4) N14—C15—N12 111.62 (10)
N2—Co1—O41 90.12 (4) N14—C15—H15A 109.3
N1—Co1—O41 88.61 (4) N12—C15—H15A 109.3
N2—Co1—O31 93.75 (4) N14—C15—H15B 109.3
N1—Co1—O31 86.35 (4) N12—C15—H15B 109.3
O41—Co1—O31 88.09 (4) H15A—C15—H15B 108.0
N2—Co1—O21 92.51 (4) N13—C16—N11 113.06 (10)
N1—Co1—O21 87.27 (4) N13—C16—H16A 109.0
O41—Co1—O21 86.42 (4) N11—C16—H16A 109.0
O31—Co1—O21 171.68 (4) N13—C16—H16B 109.0
N2—Co1—N11 91.69 (4) N11—C16—H16B 109.0
N1—Co1—N11 89.57 (4) H16A—C16—H16B 107.8
O41—Co1—N11 177.25 (4) C21—O21—Co1 123.67 (8)
O31—Co1—N11 93.85 (4) C21—O21—H21 109.5
O21—Co1—N11 91.43 (4) Co1—O21—H21 117.9
C1—N1—Co1 176.60 (11) O21—C21—C22 110.89 (12)
N1—C1—S1 179.67 (14) O21—C21—H21A 109.5
C2—N2—Co1 168.63 (11) C22—C21—H21A 109.5
N2—C2—S2 179.00 (12) O21—C21—H21B 109.5
C16—N11—C11 107.39 (9) C22—C21—H21B 109.5
C16—N11—C14 107.64 (10) H21A—C21—H21B 108.0
C11—N11—C14 107.18 (10) C21—C22—H22A 109.5
C16—N11—Co1 108.63 (7) C21—C22—H22B 109.5
C11—N11—Co1 115.68 (7) H22A—C22—H22B 109.5
C14—N11—Co1 110.02 (7) C21—C22—H22C 109.5
C11—N12—C12 108.83 (10) H22A—C22—H22C 109.5
C11—N12—C15 108.14 (10) H22B—C22—H22C 109.5
C12—N12—C15 108.38 (10) C31—O31—Co1 129.48 (8)
C16—N13—C12 107.78 (10) C31—O31—H31 109.5
C16—N13—C13 108.23 (10) Co1—O31—H31 111.1
C12—N13—C13 108.07 (10) O31—C31—C32 111.56 (11)
C14—N14—C13 109.17 (10) O31—C31—H31A 109.3
C14—N14—C15 108.43 (10) C32—C31—H31A 109.3
C13—N14—C15 108.26 (10) O31—C31—H31B 109.3
N12—C11—N11 111.76 (10) C32—C31—H31B 109.3
N12—C11—H11A 109.3 H31A—C31—H31B 108.0
N11—C11—H11A 109.3 C31—C32—H32A 109.5
N12—C11—H11B 109.3 C31—C32—H32B 109.5
N11—C11—H11B 109.3 H32A—C32—H32B 109.5
H11A—C11—H11B 107.9 C31—C32—H32C 109.5
N13—C12—N12 111.64 (10) H32A—C32—H32C 109.5
N13—C12—H12A 109.3 H32B—C32—H32C 109.5
N12—C12—H12A 109.3 C41—O41—Co1 128.97 (8)
N13—C12—H12B 109.3 C41—O41—H41 109.5
N12—C12—H12B 109.3 Co1—O41—H41 121.3
H12A—C12—H12B 108.0 O41—C41—C42 112.33 (13)
N14—C13—N13 112.16 (10) O41—C41—H41A 109.1
N14—C13—H13A 109.2 C42—C41—H41A 109.1
N13—C13—H13A 109.2 O41—C41—H41B 109.1
N14—C13—H13B 109.2 C42—C41—H41B 109.1
N13—C13—H13B 109.2 H41A—C41—H41B 107.9
H13A—C13—H13B 107.9 C41—C42—H42A 109.5
N14—C14—N11 112.31 (10) C41—C42—H42B 109.5
N14—C14—H14A 109.1 H42A—C42—H42B 109.5
N11—C14—H14A 109.1 C41—C42—H42C 109.5
N14—C14—H14B 109.1 H42A—C42—H42C 109.5
N11—C14—H14B 109.1 H42B—C42—H42C 109.5
H14A—C14—H14B 107.9

\ Tris(ethanol-κO)(hexamethylenetetramine-κN)bis(thiocyanato-\ κN)cobalt(II) (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12A···S2i 0.99 2.87 3.6586 (13) 137
C12—H12B···S1ii 0.99 2.92 3.8813 (13) 164
C15—H15A···S1iii 0.99 2.99 3.9387 (13) 161
C15—H15B···S2iv 0.99 2.94 3.7110 (13) 135
C16—H16A···O21 0.99 2.54 3.1009 (16) 116
C16—H16B···N1 0.99 2.47 3.1083 (17) 122
O21—H21···N13ii 0.84 2.03 2.8424 (14) 161
C22—H22C···S1v 0.98 3.02 3.9559 (16) 161
O31—H31···N12vi 0.84 1.96 2.7969 (14) 172
O41—H41···S2vi 0.84 2.37 3.2080 (10) 174

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+1/2, z−1/2; (iv) x+1/2, −y+1/2, z−1/2; (v) x−1, y, z; (vi) x+1/2, −y+1/2, z+1/2.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant NA720/5-2.

References

  1. Bai, Y., Shang, W.-L., Dang, D.-B., Sun, J.-D. & Gao, H. (2009). Spectrochim. Acta Part A, 72, 407–411. [DOI] [PubMed]
  2. Bai, Y., Shang, W.-L., Zhang, F.-L., Pan, X.-J. & Niu, X.-F. (2007). Acta Cryst. E63, m2628.
  3. Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338. [DOI] [PubMed]
  4. Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281–10289. [DOI] [PubMed]
  6. Chakraborty, J., Samanta, B., Rosair, G., Gramlich, V., Salah El Fallah, M., Ribas, J., Matsushita, T. & Mitra, S. (2006). Polyhedron, 25, 3006–3016.
  7. Czubacka, E., Kruszynski, R. & Sieranski, T. (2012). Struct. Chem. 23, 451–459.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.
  11. Jochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020). Dalton Trans. 49, 15310–15322. [DOI] [PubMed]
  12. Krebs, C., Jess, I., Ceglarska, M. & Näther, C. (2022). Acta Cryst. E78, 66–70. [DOI] [PMC free article] [PubMed]
  13. Krebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 1120–1125. [DOI] [PMC free article] [PubMed]
  14. Li, J., Meng, S., Zhang, J., Song, Y., Huang, Z., Zhao, H., Wei, H., Huang, W., Cifuentes, M. P., Humphrey, M. G. & Zhang, C. (2012). CrystEngComm, 14, 2787–2796.
  15. Li, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.
  16. Liu, Q., Xi, H.-T., Sun, X.-Q., Zhu, J.-F. & Yu, K.-B. (2002). Chin. J. Struct. Chem. 21, 355–359.
  17. Lu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641–647.
  18. Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.
  19. Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.
  20. Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.
  21. Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851. [DOI] [PMC free article] [PubMed]
  22. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.
  23. Shang, W.-L., Bai, Y., Ma, C.-Z. & Li, Z.-M. (2008). Acta Cryst. E64, m1184–m1185. [DOI] [PMC free article] [PubMed]
  24. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  25. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  26. Shi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909–1913.
  27. Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201. [DOI] [PubMed]
  28. Wellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707–16714. [DOI] [PubMed]
  29. Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342. [DOI] [PubMed]
  30. Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149–14158. [DOI] [PubMed]
  31. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  32. Zhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191–196.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989022001037/tx2047sup1.cif

e-78-00264-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989022001037/tx20471sup2.hkl

e-78-00264-1sup2.hkl (653.1KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989022001037/tx20472sup3.hkl

e-78-00264-2sup3.hkl (353KB, hkl)

CCDC references: 2145766, 2145767

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES